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1 Introduction

Throughout their teenage years, individuals make decisions regarding human capital ac-
cumulation that can permanently alter their lifetime economic trajectories. Of particular
import is the decision of whether or not to complete high school. Additional years of
high school education have been shown to increase adult earnings (Angrist and Krueger
1991) and lifetime wealth (Oreopoulos 2007), as well as reduce rates of teen pregnancy
(Black, Devereux, and Salvanes 2008) and the incidence of adolescent crime (Anderson
2014; Bell, Costa, and Machin 2022). Policymakers, educators, and parents invest sub-
stantial time and money in efforts to shape such human capital decisions.

However, understanding the effects of policies aimed at influencing early human capi-
tal accumulation is complicated by the interrelated nature of teen choices regarding work,
schooling, and leisure. Policies that are intended to directly impact teen employment de-
cisions may also unintentionally affect schooling decisions (and vice versa) if the two
activities are strong complements or substitutes. Furthermore, policies that impact the
set of leisure activities available to teens may have indirect effects on both schooling and
employment decisions.

We study a policy targeted at teen car safety that was not intended to impact human
capital accumulation and show that, nonetheless, it affected both high school dropout
decisions and teen employment. We employ quasi-experimental variation in teen driv-
ing laws within a difference-in-differences-in-differences research design to identify the
overall effects of teen mobility restrictions on educational attainment and employment.
We then develop and estimate a structural framework that rationalizes these findings.
The framework separates the direct effects of the policy from indirect effects due to activ-
ities being substitutes or complements. Distinguishing these channels not only clarifies
and enriches our results, but is also broadly useful in designing future policies to better
target teen behavior.

Specifically, we investigate graduated driver’s licensing (GDL) laws, which aim to re-
duce automobile accidents by limiting teen access to driving. GDL laws typically increase
the minimum age at which teens can access full-privilege driver’s licenses and create an
intermediate licensing level that restricts nighttime driving and/or restricts the number
of passengers who may ride with a teen driver. We combine variation in the timing of
GDL laws across states with variation in compulsory schooling laws to create a novel
triple-difference research design, which allows us to identify the total effect of teen mobil-
ity restrictions on high school retention. Compulsory schooling laws make it very costly
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for targeted teens to drop out of high school, potentially masking the consequences of re-
stricted mobility on school attendance. We use differences in compulsory attendance ages
to compare outcomes in states where GDL laws change for teens whose dropout behavior
is unrestricted with outcomes in states where GDL laws change but teens face a legal re-
quirement to stay in school. The timing of these policy changes (GDL laws were adopted
by many states in the late 1990s, whereas the increase in minimum school-leaving ages
began largely in the early 2000s) provides a unique opportunity to observe the effects of
teen mobility restrictions when students have the option to (legally) drop out of school.

Using microdata from the Current Population Survey’s Annual Social and Economic
Supplement, we find that GDL laws decrease the probability of high school dropout for
16-year-old teenagers by 1.1pp (a 28% reduction at the mean) only in state-years where
these teens are legally able to leave high school. A benefit of this triple-difference de-
sign is that it also provides a natural placebo test. We find no evidence of an effect of
GDL laws on teens for whom school attendance is compulsory, which suggests that our
identification strategy successfully isolates exogenous policy variation.

That restricting teen mobility improves educational attainment is surprising because
reducing access to an activity should have a weakly negative effect on participation, ce-
teris paribus (particularly in rural areas or cities with few transportation alternatives).
However, mobility restrictions might also limit access to alternative activities, such as
employment or leisure. The indirect effects on high school completion stemming from
changes in access to alternative activities could dominate the direct effect, depending on
the magnitude of those indirect effects and substitution patterns between activities. Thus,
the sign of the total impact of mobility restrictions on critical human capital accumulation
during formative teen years is ex ante ambiguous. Our positive estimate on high school
retention suggests that these indirect margins are likely very important to the underlying
teen decision-making process.1

We next investigate the impact of GDL laws on teens’ human capital decisions sur-
rounding labor force participation. We apply our triple-difference approach to teen em-
ployment outcomes, which provides some evidence on whether our findings on high
school dropout are attributable in part to reduced access to employment opportunities.

1Note, however, that the strictest variant of GDL law, which completely disallows unsupervised 16-year-
old driving, does not cause a corresponding decline in the probability of high school dropout. These two
results together suggest that limiting teen driving may improve educational outcomes by reducing access
to alternative activities (such as leisure or employment), but these positive effects diminish if teen access to
driving is completely removed.
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We find that GDL laws reduce 16-year-old labor force participation by 1.7pp (a 7% reduc-
tion at the mean) only in state-years where those teens are unrestricted by compulsory
schooling laws. This results strongly suggests an indirect channel linking teen’s decisions
regarding school and work. However, it is unclear how much of this reduction in teen
labor force activity reflects a direct effect from GDL laws restricting teens’ ability to com-
mute to jobs, or indirect effects caused by changes in school-going or leisure activities.

To distinguish these channels, we turn to a multiple discrete choice model in which
teens choose to participate in school, work, both activities, or neither activity. We al-
low GDL laws to differentially impact each of these options. The model identifies the
complementarity or substitutability of schooling and work using exclusion restrictions
on compulsory schooling laws and labor market conditions. Model estimates reveal that
employment is not a strong substitute for high school attendance; in fact, they are weak
complements. Thus, we conclude that very little of the reduction in high school dropout
behavior can be attributed to the changes in labor market access caused by GDL laws.
Counterfactual simulations reveal that improved high school retention reflects decreased
access to leisure activities (including, for example, risky behaviors).2 On the other hand,
the observed reduction in teen labor force participation can be attributed almost entirely
to increased difficulty in commuting to work opportunities.

This paper offers several contributions. The first is an important insight into the de-
terminants of educational attainment among teenagers. Sixteen-year-olds, despite not
being adults de jure, make meaningful human capital decisions that will impact their life-
time trajectories in the labor market. Policies that influence the economic environments
in which these teens live can shape those decisions in unexpected ways. We show that
GDL laws are one such policy, adding to a growing literature investigating how various
non-education policies can impact high school dropout behavior (Cohodes et al. 2016;
Lovenheim, Reback, and Wedenoja 2016; Miller and Wherry 2018; Groves 2020; Kennedy
2020).3 By limiting teen mobility, policy-makers inadvertently impacted the monumental
decision of whether or not to complete a high school degree.

This finding contributes to the broader literature on the determinants of high school
2This finding complements related literature showing that GDL laws reduce the likelihood of risky be-

haviors by teens (Deza and Litwok 2016; Deza 2019).
3Lovenheim, Reback, and Wedenoja (2016) show that school-based health centers reduce teen child-

bearing but have no impact on high school dropout rates. Nonetheless, Medicaid expansions for children
and pregnant women do generate significant reductions in high school dropout rates (Cohodes et al. 2016;
Miller and Wherry 2018; Groves 2020). Kennedy (2020) finds that targeted mobility restrictions in the form
of “No Pass, No Drive” laws do not impact high school graduation rates.
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dropout behavior, which has consistently shown that leisure activities (and especially
risky behaviors) are strongly correlated with the decision to drop out (Bray et al. 2000;
Koch and McGeary 2005; Crispin 2017).4 In a comprehensive analysis of the effects of
compulsory schooling laws on educational attainment, Oreopoulos (2007) concludes that,
“it is very difficult to reconcile substantial returns to compulsory schooling with an invest-
ment model of school attainment. The results are more consistent with the possibility that
many adolescents ignore or heavily discount future consequences when deciding to drop
out of school.” Our findings are in line with this conclusion and show that GDL laws,
through reduced access to leisure activities, improve educational attainment for teens.

We also provide insight into teen employment decisions, which are both directly im-
pacted by mobility restrictions and provide a mechanism through which driving restric-
tions might impact educational attainment. Our framework reveals that GDL policies di-
rectly limit access to employment for 16-year-olds. However, estimates show that school
and work are complements, so it is not reduced work access that increases high school re-
tention.5 This finding complements existing evidence that restrictions to mobility can im-
pact the labor supply of non-teen groups (Amuedo-Dorantes, Arenas-Arroyo, and Sevilla
2020; Black, Kolesnikova, and Taylor 2014) and updates the literature investigating the
link between education and employment for teens (e.g., Eckstein and Wolpin 1999).6

Finally, we develop a structural framework for policy analysis that incorporates our
triple-difference research design. We show that this model distinguishes mechanisms,
separating direct from indirect (substitution) effects. We also show how the model can be
adapted to contexts where there is no “outside option” unaffected by the policy of inter-
est by using additional restrictions to set identify a normalizing parameter. Our model
retains a primary focus on identifying policy parameters while adding structure to gain
additional insight and interpretation; relatively few papers combine quasi-experimental
research design with discrete choice models for policy evaluation (an exception is Li
2018).7 Moreover, the model provides an alternative to, and ultimately reinforces, the

4Anderson (2014) and Bell, Costa, and Machin (2016) also find evidence of a reversed causal link: in-
creasing the minimum legal dropout age has a significant and negative effect on violent and property crime
arrest rates for teens.

5Argys, Mroz, and Pitts (2019) study the related question of whether GDL laws are responsible for the
secular decline in US teen employment. They find that GDL laws can explain about half of the drop in teen
labor force participation. This result is broadly consistent with our employment findings despite the fact
that we employ a different research design, data sample, and observation window.

6The evidence on the impact of working while in high school has largely shown that part-time employ-
ment while in school is not detrimental to academic success (Montmarquette, Viennot-Briot, and Dagenais
2007; Dustmann and Soest 2008).

7An extensive literature applies dynamic structural modeling to human capital accumulation. Given
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design-based (i.e., reduced form) approach. These two methods are complementary.
We describe the background and context for our study and detail data sources in Sec-

tion 2. In Section 3, we describe the triple-difference research design. Section 4 presents
our main results on education outcomes as well as an array of robustness checks employ-
ing alternate model specifications8, alternate estimators9, and alternate data sets.10 In this
section we also explore heterogeneity across various subgroups and heterogeneity by dif-
fering levels of mobility restrictions imposed by GDL laws. In Section 5, we turn to an
investigation of teen employment outcomes to explore potential mechanisms. Section 6
unites education and employment decisions within a structural model to differentiate the
various effects of GDL laws on teen activities and Section 7 concludes.

2 Context and Data

High teen driving fatality risk in the United States in the 1980s led to the implementation
of a number of policies targeted at improving both car safety and limiting teen driving.
One such policy that has been widely adopted starting in the mid 1990s is the graduated
driver’s license (GDL). GDL laws: (i) limit full privilege licenses to older (>16) teens and
(ii) create an intermediate licensing level that restricts nighttime driving and/or restricts
the number of passengers who may ride with a teen driver. GDLs have been successful,
reducing teen traffic fatalities by over 50% in both the US and Australia (Dee, Grabowski,
and Morrisey 2005; Moore and Morris, n.d.; Shults, Olsen, and Williams 2015). Further,
GDLs decrease fatalities primarily by decreasing teen driving rather than improving the
quality of teen driving, implying restricted mobility (Gilpin 2019; Karaca-Mandic and
Ridgeway 2010).

We develop a database of pertinent state-level GDL laws in the 50 states and DC
from several sources, including the Federal Highway Administration’s (FHWA) High-
way Statistics and the Insurance Institute for Highway Safety (IIHS) covering the years
1990 to 2017.11 Figure 1a shows counts of the number of states with various types of

our repeated cross-sectional data, our approach instead grows out of product choice models from industrial
organization (e.g., Berry, Levinsohn, and Pakes 1995; Gentzkow 2007; Goolsbee and Petrin 2004).

8We provide evidence of parallel pre-trends using several event-study specifications to support our iden-
tifying assumptions.

9We address the new literature on staggered adoption difference-in-differences models and show that
our results are robust to a variation of the imputation estimator of Borusyak, Jaravel, and Spiess (2021).

10We replicate our main findings using school-district level data from the National Center for Education
Statistics’ Common Core of Data.

11IIHS data begins coverage in 1995. We use FHWA data for the years before 1995, and to rectify conflicts
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GDL laws over time. Prior to 1995, fewer than ten states limited full privilege licenses to
those older than 16 or had nighttime driving restrictions. But by 2010, forty-seven states
had placed increased restrictions on teenage driving. Much of the adoption of GDL laws
occurred between 1996 and 2003.

To verify that GDL laws had a binding effect on teen automobile use, we link our GDL
law dataset to information from the US Department of Transportation’s Fatality Analysis
Reporting System (FARS). We use the rate of fatal car accidents involving a teen driver as a
proxy for the prevalence of teen driving and estimate the effect of increasing the minimum
full-privilege driving license age on teen accident rates. We find that the GDL driving
restrictions reduced the rate of fatal car accidents for drivers aged 16 by 27 percent. This
result indicates that teens are significantly less likely to be involved in a fatal car accident
when they cannot access an unrestricted driver’s license and that GDL laws significantly
restricted teen driving. We discuss this verification exercise in detail in Appendix A.

In order to identify the effects of GDL laws on teen human capital decisions, we will
implement a triple-difference identification strategy that interacts variation in GDL laws
with variation in state-specific compulsory schooling (CS) laws. Specifically, we will use
the mandated school-leaving age (the minimum age at which a teen is legally allowed to
drop out of school) to create a “control” group of teens who are exposed to GDL restric-
tions but who cannot respond by dropping out of high school due to the local CS laws.
We extend the school-leaving age data from Anderson (2014) (which covers 1980–2008)
up to 2017. For 2009–2011, 2013–2015, and 2017, we draw on the National Center for Ed-
ucation Statistics’ (NCES) State Education Reforms tables and fill in the intervening years
for states with no changes. For states with a change in the minimum school-leaving age,
we verified the timing of the change in legal databases.12 Figure 1b shows counts of the
number of states with different minimum school-leaving ages from 1990 to 2017. Over
this time period 25 states changed their minimum school-leaving age, in most cases from
16 to either 17 or 18.

We link the data on each state’s GDL and CS laws to individual-level data on schooling
and work decisions in the Current Population Survey (CPS) Annual Social and Economic
Supplement (ASEC).13 The CPS ASEC data is from an annual survey of U.S. households
conducted in March of each year and provides person-level information on a variety of

between the two datasets. The GDL data is similar to that used in Severen and Van Benthem (2022).
12A precise accounting of these changes is available from the authors upon request.
13When linking these datasets, we assign a GDL law to a year if that law was in effect by December of

that year. In Appendix A, we verify that this approach is reasonable.

7



Figure 1: Teen Driving Restrictions & Minimum School-Leaving Age from 1990–2017

(a) Graduate Driver Licensing Adoption

(b) Minimum Legal School-Leaving Age

demographics, household controls, and teen outcomes. Importantly, the survey asks all
participants aged 16–24 if they were enrolled in high school or college during the previous
week, and, if so, whether they were enrolled full- or part-time.14 We use these responses

14Students on holiday or seasonal vacation at the time of the survey were instructed to answer “yes" to
this question.
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to construct a single indicator variable, NotInSchooli, which equals 1 if individual i is not
enrolled in any amount of either high school or college in the week preceding the survey.
We use this measure as a proxy for high school dropout, although it will also incorporate
measurement error from those teens who have already completed a high school degree
and chose not to enroll in college. CPS ASEC participants were also surveyed on labor
force participation and employment status in the preceding week.

To construct our final estimation sample, we limit the linked GDL law, CS law, and
CPS data to individuals aged 16 at the time of the ASEC survey. This serves dual pur-
poses: (1) our measure of high school dropout, NotInSchooli, should incorporate less
noise for this age group as they are very unlikely to have already completed high school;
(2) this is the age that is most impacted by the implementation of the GDL laws. Between
1990–2017, 40 states switched from allowing 16-year-old teens to obtain full driver’s li-
censes to restricting this privilege to older teens.15

Table 1: Summary Statistics on Individuals Aged 16

Mean Std. Dev Min Max

Individual Characteristics:
Female 0.49 0.50 0 1
White 0.78 0.42 0 1
Black 0.15 0.36 0 1
Asian 0.02 0.15 0 1
Other Race 0.05 0.22 0 1
Hispanic 0.16 0.37 0 1
Mother Edu � B.A. 0.24 0.43 0 1
Father In Household 0.76 0.43 0 1
Receives SNAP* Benefits 0.12 0.33 0 1
Outcome Variables:
NotInSchool = 1 0.038 0.19 0 1
InLaborForce = 1 0.233 0.42 0 1
Treatment Variables:
Minimum Unrestricted Driving Age 16.9 0.72 15 18
Minimum School-Leaving Age 16.9 0.91 16 18
State-level Characteristics:
3-Month Unemployment Rate 6.45 1.98 2.50 14.2
Log Minimum Wage 1.91 0.11 1.71 2.41

* SNAP = Supplemental Nutrition Assistance Program
Source: CPS ASEC Data on individuals aged 16 linked to GDL and CS
data, BLS unemployment data, and state minimum wage data. This data
includes 75,196 individual observations.

15In contrast, the GDL laws created binding age limits for 17-year-old drivers in only 14 states.
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Finally, in order to control for the local economic environment, we link in data from
the Bureau of Labor Statistics (BLS) on the monthly non-seasonally adjusted unemploy-
ment rates by state and data from the Federal Reserve Economic Data (FRED) on state
minimum wages. We use the BLS data to construct a state-specific unemployment rate in
each year as the three-month average of unemployment rates centered around January.16

From FRED, we take the maximum of the state and federal minimum wage in each year
and inflation-adjust to measure the binding real minimum wage in each state-year.

Table 1 reports summary statistics for the final linked estimation sample of 75,196
individuals aged 16. In this sample, 3.8% report not attending any school in the week
preceding the survey. This corresponds closely to the national dropout rates reported by
the NCES for the 10th and 11th grades: 3.5% and 4.1%, respectively.

3 Empirical Strategy

Our primary analyses investigate the relationship between GDL law adoption and teen
dropout decisions using a difference-in-differences-in-differences identification strategy.
The first difference compares teen dropout behavior before and after the implementation
of a GDL law. The second difference leverages the staggered roll-out of the GDL policies
and compares teens across states that restricted teen driving in different years (or not at
all). Finally, the third difference compares teens across states with different compulsory
schooling requirements.

All 50 states have some form of compulsory schooling law in place, which disallows
teens to drop out of high school education before reaching a certain age. These age thresh-
olds vary considerably across states and over time (see Figure 1b). We compare teens from
states where the minimum school-leaving age is 16 or lower to those where the school-
leaving age is 17 or higher to comprise our third difference.

The primary identifying assumption in this type of triple-difference set-up is a some-
what altered version of the parallel trends assumption needed for difference-in-differences.
Identification in this model allows for differential trends, as long as those differences are
evolving similarly across the third difference grouping. Specifically, we assume that in
the absence of treatment, the difference in 16-year-old dropout rates between states that
adopt GDL laws and states that do not would evolve similarly over time regardless of

16For example, the 3-month rate for 1995 is the average of the unemployment rates in December 1994,
January 1995, and February 1995.
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whether those states had binding compulsory schooling laws or not.17

We estimate the following fixed effects triple-difference specification for our sample
of 16-year-olds:

NotInSchoolist = �1GDLst + �2CSst + �3GDLst ⇤ CSst

+X 0
i⌫ + Z 0

stµ+Ds +Dt + ✏ist, (1)

where GDLst is an indicator variable that equals one if the minimum unrestricted driving
age in state s in year t is > 16 (i.e., 16-year-olds experience mobility restrictions).18 We
capture compulsory schooling laws with CSst, an indicator that equals one if the min-
imum school-leaving age is  16 (i.e., 16-year-olds are legally permitted to drop out of
school). The vector Xi includes individual-level controls: gender, race/ethnicity indica-
tors, mother’s education, presence of father in household, and receipt of SNAP benefits.
The variable Zst includes controls for the state’s minimum wage and the 3-month average
unemployment rate. This specification also includes both state fixed effects to control for
time-invariant confounding factors (such as persistent differences in school quality or re-
turns to education across states) and year fixed effects to control for aggregate fluctuations
(such as changes in national schooling laws over time).19

Because the effect of mobility restrictions on teen dropout behavior is ex ante ambigu-
ous, we first discuss the channels through which GDL laws might impact teen educational
attainment. When a state introduces a GDL law that restricts a teen’s access to driving,
this may have a direct effect on the dropout decision if the restriction hinders the teen’s
ability to commute to school. In particular, for low-income households or teens in rural
areas with minimal access to alternative transportation, this direct effect may lead to a
significant increase in high school dropout rates. However, the mobility restrictions im-
posed by GDL laws may also impact the teen’s dropout decision indirectly through an
effect on access to labor and leisure activities. In fact, we know from previous studies that
GDL laws decrease teen participation in risky behaviors and teen labor force participation
(Deza and Litwok 2016; Deza 2019; Argys, Mroz, and Pitts 2019).20

17Identification also relies on an assumption of homogenous treatment effects. We consider threats to the
validity of this assumption in detail in Section 4.1 and Appendix C.

18For the purposes of this variable, we consider as restrictions: limits of the time of day that one can
drive, limits on the number of passengers, or limits on destinations. We do not consider a requirement of
parental approval a restriction.

19All specifications are estimated using CPS ASEC person-level weights.
20Huh and Reif (2021) do not study GDL laws specifically, but investigate the effect of teenage driving

more generally on mortality and risky behaviors. They estimate that total mortality rises by 15% at the

11



The sign of these indirect effects will depend on whether schooling and employment
(or schooling and leisure) serve as complements or substitutes in the teen’s utility func-
tion. If work (or leisure) is seen as a substitute for schooling, then reducing access to
employment will lead to a decrease in high school dropout behavior. However, if the teen
views the two activities as complements, then the indirect effect will have the reverse sign
and could lead to an increase in high school dropouts. Thus, the total or net effect of GDL
laws on high school dropout rates will be positive in the absence of indirect effects, but
may be either positive or negative if indirect effects are significant.

Our discussion thus far has assumed that teens have the option to drop out of high
school in response to changes in their mobility restrictions. This assumption will fail in
states that impose compulsory schooling laws making it illegal for younger teens to opt
out of high school attendance. These CS laws create a natural placebo test in state-years
where the school-leaving age is greater than the minimum age needed for an unrestricted
driver’s license. To the extent that compulsory schooling laws are well enforced, these
policies effectively shut down all effects of the GDL laws on dropout behavior.

The coefficient �1 in Equation 1 will therefore identify the “placebo” effect of imposing
mobility restrictions on dropout behavior in states where 16-year-olds cannot legally drop
out. However, if CS laws are not well-enforced (or if they incorporate exemptions for
teens who are working or have parental consent), then we may still observe an impact
of the GDL laws on high school dropout (ie., �1 6= 0). In this case, an effect should be
observable only if there are enough students who experience a direct or indirect effect
of the mobility restriction that is large enough to incentivize law-breaking. For example,
in rural areas where school attendance zones are expansive and school buses can require
long commutes (Howley, Howley, and Shamblen 2001), we might expect the direct effect
of GDL laws to be large enough to cause an increase in high school dropout rates, even in
states where the compulsory schooling laws are binding.

The coefficient �2 in Equation 1 captures the impact of more lenient compulsory school-
ing laws (minimum school-leaving age is below 17) on high school dropout behavior in
the absence of GDL laws. We expect this coefficient to be large and positive. Finally,
the coefficient �3 will capture the differential effect of increasing driving restrictions on
the probability of dropping out between teens who are legally able to do so relative to
teens who cannot drop out at age 16. Of particular interest is the sum of the two coeffi-

minimum legal driving age cutoff, driven by an increase in motor vehicle fatalities and poisoning deaths,
which are caused primarily by drug overdoses.
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cients, �1+�3, which identifies the total effect of GDL laws on those teens who are legally
permitted to drop out of school.

4 Education Results

We estimate the model in Equation 1 using a probit maximum likelihood estimator.21

Standard errors are estimated that allow for clustering at the state level. Table 2 reports the
corresponding marginal effects for each coefficient evaluated at the mean of all covariates.

In column (1), we estimate the model in Equation 1 excluding all control variables (Xi

and Zst). Column (2) presents our main specification, which includes all covariates. The
estimates in these two columns demonstrate that our results are not sensitive to or driven
by the inclusion of covariates. Estimates of �1 (our placebo test) are very small and are
statistically insignificant, indicating that there is no discernible effect of GDL laws on 16-
year-old dropout behavior in states where the minimum schooling-leaving age is binding
(17 or older). As expected, the estimates of �2 are large and statistically significant, in-
dicating that compulsory schooling laws are generally effective (i.e. the probability of a
16-year-old leaving high school is significantly larger in states where dropout is legally
permitted at that age). Moreover, these estimates are quantitatively similar to those in
previous studies that analyze the impacts of compulsory schooling laws (Anderson 2014;
Oreopoulos 2009). As we use more recent years of data than those papers, this provides
some evidence that compulsory schooling laws continue to be impactful for educational
attainment.22

Estimates of �3 indicate that the differential effect of GDL laws on dropout behavior for
16-year-olds in states where dropout is legally permitted (vs. those states where dropout
is not legal) is negative and statistically significant. The total (or net) effect of GDL laws
on teen dropout behavior is estimated by the sum of coefficients, �1+�3. This sum reveals
that increasing the minimum driving age in states where 16-year-olds can legally drop out
reduces the probability that these teens are no longer in school by approximately 1.1pp,
a 28% reduction from the mean.23 This negative estimate of the net effect indicates that,

21Given that only 3.8% of 16-year-olds are not in school (Table 1), a probit specification avoids the prob-
able pitfall of predicting probabilities outside the unit interval. However, results estimated using a linear
probability model are qualitatively and quantitatively similar and are shown in Appendix Table B.1.

22This is in mild contrast to Bell, Costa, and Machin (2016), who find inconsistent patterns between vari-
ous measures of compulsory schooling and educational attainment.

23We assign a GDL law to a year if that law was in effect by December of that year. The CPS ASEC survey
is conducted in March of each year. Because we do not observe each teen’s month of birth, this means
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Table 2: The Effect of Minimum Unrestricted Driving Age on 16-yo Dropout

Not In School = 1

Triple-Diff Diff-in-Diff

(1) (2) (3) (4) (5) (6)

Min. Unres. Driving Age >16 (�1) 0.0022 0.0014 0.0013 0.0030 0.0080
(0.0042) (0.0039) (0.0040) (0.0049) (0.0067)

School-Leaving Age  16 (�2) 0.0197*** 0.0182***
(0.0048) (0.0047)

Min. Unres. Driving Age >16 -0.0129*** -0.0119** -0.0115** -0.0191***
⇥ School-Leaving Age  16 (�3) (0.0048) (0.0048) (0.0054) (0.0071)

Effect of GDL if -0.0107** -0.0105** -0.0102** -0.0161** -0.0165***
School-Leaving Age  16 (�1 + �3) (0.0050) (0.0049) (0.0051) (0.0076) (0.0064)

Fixed in Never
School-Leaving Age As Observed Yr. of GDL Switchers Always Always

Change Only >16  16
Controls - Y Y Y Y Y
Obs 75,196 75,196 75,196 46,567 24,298 22,269

Marginal effects evaluated at sample means from probit regression using CPS ASEC data from 1990–2017. All
specifications include state and year fixed effects. Controls in columns (2)–(6) are: gender; race/ethnicity in-
dicators; mother’s education; presence of father in household; receipt of SNAP benefits; state unemployment
rate; and state log real effective minimum wage. Column (3) also includes indicators for the state minimum
legal dropout age. Column (3) fixes school-leaving age to its level when the state increased minimum unre-
stricted driving age to >16, while columns (4)–(6) limit the sample to states that never changed school-leaving
age. Column (5) further restricts the sample to states where the school-leaving age is always >16, while col-
umn (6) includes only states where the school-leaving age is always  16. Standard errors are clustered at the
state level. * p<0.10, ** p<0.05, *** p<0.01

if there is any direct effect of GDL laws on high school attendance (through increased
difficulty in commuting to/from school), it is more than completely offset by the indirect
effects of GDL laws through reduced access to labor and leisure activities.

4.1 Robustness and Alternative Estimators

In this section, we provide evidence that supports our identification assumptions and that
demonstrates the robustness of our main findings. Additional results show that we can
relax separability assumptions on the effects of GDL and CS laws and provide evidence
in support of identification by establishing parallel pre-trends. We also address the liter-
ature on staggered adoption difference-in-differences models and show that our results

that some teens may have turned 16 before the GDL law went into place. We account for this potential
misclassification by dropping observations from the initial treatment year for each state and find that our
results are largely unchanged. These results are available upon request.
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are robust to alternative estimators that do not rely on an assumption of homogenous
treatment effects. In Section 4.2, we further show that our results can be replicated using
an alternative dataset. Finally, in Section 6 we estimate a structural model that relies on
alternative assumptions and also verifies our main findings.

One potential confounding factor in the empirical model stems from the evolution of
compulsory schooling laws. Between 1990 and 2017, about half of states increased their
minimum school-leaving age (see Figure 1b). To avoid conflating effects from changes
in this policy with the effects of the GDL laws, we employ several robustness checks.24

First, we replace CSst in Equation 1 with a time-invariant measure that is fixed at each
state’s minimum school-leaving age in the year that the GDL law first increases the min-
imum unrestricted driving age to over 16. For states where the minimum unrestricted
driving age is either always less than or equal to 16 or always greater than 16, we use the
minimum school-leaving age from the first year of the sample, 1990.25 The results of this
specification, shown in column (3) of Table 2, are nearly identical to our main specification
in column (2).26

Second, we estimate Equation 1 on the sub-sample of states that did not change their
minimum school-leaving age during the time period under study. Results are shown in
column (4) of Table 2 and are again consistent with our main specification. Next, we
separate this restricted sample of “never-switchers” into two groups: (a) those states that
always have a minimum school-leaving age that is older than 16; and (b) those states that
always have a minimum school-leaving age of 16 or younger. The first group consists of
placebo states where we do not expect GDL law adoption to impact dropout rates. We
estimate a simpler difference-in-differences model on this sub-sample:

NotInSchoolist = �1GDLst +X 0
i⌫ + Z 0

stµ+Ds +Dt + ✏ist. (2)

As anticipated, the placebo estimate in column (5) of Table 2 indicates that there is no
change in 16-year-old dropout behavior in response to GDL laws in states where school
enrollment is mandated. In contrast, column (6) displays estimates from Equation 2 us-

24An additional concern regarding CS laws may be that employment exemptions (which allow teens to
drop out of school prior to reaching the age threshold if they are employed) cause measurement error in
the CSst variable. We collect data on such exemptions (thanks to Bell, Costa, and Machin 2022) and show
that our main results are robust to dropping states with employment exemptions in their CS laws. These
results are available upon request.

25In this specification we also control separately for the actual time-varying school-leaving age.
26Note that in these alternate specifications, the coefficient �2 is absorbed by the state fixed effects.

15



ing the sub-sample of states that always allow dropout by 16-year-olds. In these states,
GDL law adoption leads to a 1.7pp decrease in high school dropout among 16-year-olds,
consistent with—and somewhat larger in magnitude to—our main specification.

We next provide an indirect test of the plausibility of our identifying assumptions,
again using the sample of states that did not change their minimum school-leaving age
during the time period under study. We estimate two event study models. First, we esti-
mate the following linear probability model on each of the two sub-samples in columns
(5) and (6) from Table 2:

NotInSchoolist =
�2X

k=�5

✓kGDLs,t+k +
5X

k=0

✓kGDLs,t+k +X 0
i⌫ + Z 0

stµ+Ds +Dt + ✏ist, (3)

where each GDLs,t+k is an indicator for k years from the adoption of a GDL law (e.g.,
GDLs,t+0 = 1 if state s increased the minimum unrestricted driving age to > 16 in year t).
The omitted category is k = �1. We restrict the effect of GDL laws on cohorts who turned
16 more than five years before or after the law went into effect to be constant so that ✓�5

and ✓5 represent the average effect five or more years prior to or after the GDL adoption,
respectively.

Figure 2 plots estimates and confidence intervals for ✓k. Panel (a) displays estimates of
Equation 3 for states where 16-year-olds are legally required to stay in school and shows
no impact of GDL laws on dropout behavior, confirming our placebo test. Panel (b) dis-
plays similar estimates but for states where dropout is legally permitted for 16-year-olds.
In panel (b), there is a clear decline in the probability of 16-year-old dropout that coin-
cides with GDL law adoption. Though post-treatment point estimates are not statistically
significant in each year, the sign and magnitudes are broadly consistent with the pri-
mary estimates in Table 2. Furthermore, panels (a) and (b) of Figure 2 suggest parallel
pre-trends and a lack of anticipation effects, supporting the identifying assumption of
parallel counterfactual trends.

We also estimate the following fully-interacted event study model on the combined
sample of all states that did not change their minimum school-leaving age during our
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Figure 2: The Effect of Minimum Unrestricted Driving Age on 16-yo Dropout
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(b) States with school-leaving age  16
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(c) All states that do not change school-leaving
age

Coefficient estimates of ✓k and 95% confidence intervals in dashed lines from a linear probability model
using CPS ASEC data from 1990–2017. Panels (a) and (b) display estimates of Equation 3 and panel (c)
shows results from Equation 4. Controls in all models include: gender; race/ethnicity indicators; mother’s
education; presence of father in household; receipt of SNAP benefits; state unemployment rate; state log
real effective minimum wage, state fixed effects, and year fixed effects. Standard errors are clustered at the
state level.

study window:

NotInSchoolist =
�2X

k=�5

�kGDLs,t+k +
5X

k=0

�kGDLs,t+k +
�2X

k=�5

✓kGDLs,t+k ⇤ CSs

+
5X

k=0

✓kGDLs,t+k ⇤ CSs +X 0
i⌫ + Z 0

stµ+Ds +Dt + ✏ist. (4)
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Estimates and confidence intervals for the interaction coefficients (✓k) are plotted in panel
(c) of Figure 2 and are approximately the difference between the estimates shown in panel
(b) less the estimates in panel (a) for each treatment year. This specification again confirms
our main findings, indicating a sizable decline in 16-year-old dropout following GDL law
adoption and a lack of differential pre-trends.

A growing literature has revealed that two-way fixed effects estimation of staggered-
adoption difference-in-differences research designs does not generally identify the aver-
age treatment effect on the treated (ATT) when treatment effects are heterogeneous or
dynamic (e.g., Chaisemartin and D’Haultfœuille 2020; Goodman-Bacon 2021; Sun and
Abraham 2021). While several solutions have been proposed, none (thus far) fit our set-
ting of repeated cross-sectional data with a placebo-style triple-difference design where
policy interactions turns on and off.27 Because there is no estimation strategy available
in the current literature that precisely fits our design, we provide several exercises to test
the robustness of our results to possible deviations from static, homogeneous treatment
effects. We also alter our design to use the imputation estimator of Borusyak, Jaravel,
and Spiess (2021). We detail these strategies and results in Appendix C and provide a
summary of our findings below.

We first estimate two models similar to our preferred specification that consider sub-
sets of the time variation used in the full analysis and allow for some dynamism in treat-
ment effects. The results (shown in Table C.1 and Table C.2) provide evidence that our
main results are not being driven by long-run dynamics in the treatment effects of GDL
laws and that effects remain relatively constant over time.

We then recast our research design as difference-in-differences and assume a linear
specification in order to apply the imputation estimator of Borusyak, Jaravel, and Spiess
(2021).28 This estimator recovers a well-defined ATT even under arbitrary treatment-effect
heterogeneity and dynamics. Estimates, shown in Table 3, are strikingly similar to our
main results, even despite the smaller sample size. The model in column (1) omits all
controls excsept CSst. Column (2) includes all control variables (Xi and Zst). Column (3)
omits never-treated units (all three columns omit always-treated units) to test whether

27Moreover, the literature primarily focuses on linear models. As our outcome is binary with a mean
value close to zero, a linear probability model is potentially biased and inconsistent. Note that Chaise-
martin and D’Haultfoeuille (2022) make some progress toward interacted designs, targeting difference-in-
differences designs with multiple treatments.

28For this exercise, treatment is the interaction term GDLst ⇤ CSst, though CSst also enters as a control
variable and the sample excludes those in always-treated states and in state-years after the treatment turns
off. See Appendix C, section C.1 for additional details.
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Table 3: Imputation Based Effect of Minimum Unrestricted Driving Age on 16-yo Dropout

Not In School = 1
(1) (2) (3)

Effect of GDL if -0.0109** -0.0111** -0.0113**
School-Leaving Age  16 (0.0047) (0.0045) (0.0046)

Exclude Always Treated Y Y Y
Exclude Never Treated - - Y
Controls - Y Y
Obs 50,729 50,729 46,853

Static treatment effect estimated using the imputation estimator
of Borusyak, Jaravel, and Spiess (2021). Data are from the CPS
ASEC covering 1990–2017. All specifications include state and
year fixed effects and indicator for minimum legal dropout age.
Controls in columns (2–3) are: gender; race/ethnicity indicators;
mother’s education; presence of father in household; receipt of
SNAP benefits; state unemployment rate; and state log real effec-
tive minimum wage. * p<0.10, ** p<0.05, *** p<0.01

our results hinge on comparisons to states that are subject to different trends than those
that eventually adopt GDL laws; they do not. Taken together, these exercises indicate that
our main results are robust to dynamics, to arbitrary treatment effect heterogeneity, and
to reasonable restrictions on the control group.

4.2 Alternative Dropout Data

To further support our findings, we also analyze the impact of GDL laws on teen dropout
decisions using school-district level data from the NCES’ Common Core of Data. The
Common Core is a comprehensive national database of public elementary and secondary
schools and provides high school dropout rates aggregated at the school district-by-grade
level. A key advantage of this dataset is that, because it includes data by school district,
we can include school district fixed effects to control for time-invariant differences be-
tween places within states; we discuss this data and analysis in detail in Appendix D.

We find that the implementation of GDL laws leads to a 0.42pp reduction in high
school dropout rates in the NCES data (a 12% reduction at the mean).29 Furthermore, the

29The NCES data is reported at the district-by-grade level and the estimates from this analysis thus com-
bine the GDL effects on students of various ages, some of whom might be directly impacted by the law
change and others who are not. It is therefore unsurprising that these estimates are smaller in magnitude
than those reported in Table 2.
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effects of increasing the minimum driving age to over 16 are largest in the 10th and 11th
grades (the grades in which students are most likely to be 16 years old and thus directly
affected by GDL laws) - a 14% reduction from the mean for both grades. These results
confirm our main findings in Table 2 and provide compelling evidence that imposing
restrictions on teen mobility maintains high school enrollment and leads to a significant
reduction in high school dropouts.

As noted in Section 3, we might expect the direct effect of GDL laws on high school
attendance, which functions through restricting teens’ ability to commute to school, to
differ across various subgroups. To some extent, the NCES analysis controls for average
differences across school districts. However, it seems likely that teens from rural areas or
from low-income backgrounds might experience larger direct effects. We next return to
the CPS data to investigate this type of potential heterogeneity.

4.3 Heterogeneity Analysis

We estimate our preferred specification, given by Equation 1, separately for several sub-
populations of interest. The marginal effects estimates are shown in Table 4, which also
reports mean outcome values for each subgroup, and Figure 3. The top-left panel of
Figure 3 shows the effects of GDL laws on 16-year-old dropout separately for males and
females. The top three estimates show the effects of GDL laws in states where dropout
is not legal (�1) for the full sample, for male teens only, and for female teens only. The
bottom three estimates show the effects of GDL laws in states where dropout is legal for
16-year-olds (�1 + �3) for those same three populations. It is clear from these estimates
that there are no meaningful differences in the effects of GDL laws by sex and a Wald test
reveals that the estimates are also not statistically different.30

We next examine heterogeneity by race and household income. Heterogeneity in ef-
fects among these groups could reflect differential vehicle availability to teens, or could
also reflect differential reliance on a vehicle, if available. For example, a lower-income
household may be less able to purchase or afford a vehicle for teen use. If vehicle take-up
for teens in lower-income households is ex ante low, there would be less margin for GDL
policies to shift behavior. At the same time, teens in lower-income households may have
less access to alternatives to driving, such as parental transportation. This would suggest
increased exposure to changes wrought by GDL laws and potentially larger effects.

30Due to the difficulties of testing for equality of marginal effects estimates across samples in the probit
specification, we instead test for equality across samples using linear probability model estimates.

20



Figure 3: The Effect of Minimum Unrestricted Driving Age on 16-yo Dropout for Sub-
Populations

(IIHFW�RI�*'/
LQ�VWDWHV

ZKHUH�GURSRXW
LV�127�OHJDO

(IIHFW�RI�*'/
LQ�VWDWHV

ZKHUH�GURSRXW
LV�OHJDO

���� ���� � ��� ���

)XOO�VDPSOH 0DOH
)HPDOH

%\�6H[

(IIHFW�RI�*'/
LQ�VWDWHV

ZKHUH�GURSRXW
LV�127�OHJDO

(IIHFW�RI�*'/
LQ�VWDWHV

ZKHUH�GURSRXW
LV�OHJDO

���� ���� � ��� ���

)XOO�VDPSOH 1RQ�850
850

%\�5DFH�(WKQLFLW\

(IIHFW�RI�*'/
LQ�VWDWHV

ZKHUH�GURSRXW
LV�127�OHJDO

(IIHFW�RI�*'/
LQ�VWDWHV

ZKHUH�GURSRXW
LV�OHJDO

���� ���� � ��� ���

)XOO�VDPSOH $ERYH�0HGLDQ�++�,QFRPH
%HORZ�0HGLDQ�++�,QFRPH

%\�6RFLRHFRQRPLF�6WDWXV

(IIHFW�RI�*'/
LQ�VWDWHV

ZKHUH�GURSRXW
LV�127�OHJDO

(IIHFW�RI�*'/
LQ�VWDWHV

ZKHUH�GURSRXW
LV�OHJDO

���� ���� � ��� ���

)XOO�VDPSOH 8UEDQ
1RQ�8UEDQ

%\�8UEDQ�6WDWXV

Marginal effects evaluated at sample means from probit regression using CPS ASEC data from 1990–2017.
Bars show 95% confidence intervals. All specifications include state and year fixed effects. Controls include:
gender; race/ethnicity indicators; mother’s education; presence of father in household; receipt of SNAP
benefits; state unemployment rate; and state log real effective minimum wage. Standard errors are clustered
at the state level.

In the top-right panel of Figure 3 (and columns (4)–(5) of Table 4) are effects of GDL
laws estimated separately for underrepresented minorities (teens who identify as Black,
Hispanic, or Native American) and all other race/ethnicity groups (non-URM). These
estimates reveal that the negative impact of GDL laws on high school dropout is largely
driven by non-URM 16-year-olds, who typically have a lower average dropout rate. The
estimates for URM teens are quite noisy and much smaller than in the overall population.
These results may reflect greater access to vehicles related to wealth or household income,
or a greater affinity for car culture among non-URM families.
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Table 4: The Effect of Minimum Unrestricted Driving Age on 16-yo Dropout for Sub-Populations

Not In School = 1

Full Non- HH Income HH Income Non-
Sample Men Women URM URM � Median < Median Urban Urban

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Min. Unres. Driving Age >16 (�1) 0.0014 0.0037 -0.0007 0.0055 -0.0079 -0.0029 0.0053 0.0061 -0.0150**
(0.0039) (0.0052) (0.0044) (0.0043) (0.0072) (0.0031) (0.0059) (0.0040) (0.0059)

School-Leaving Age  16 (�2) 0.0182*** 0.0225*** 0.0142*** 0.0184*** 0.0234** 0.0137*** 0.0228** 0.0163*** 0.0281**
(0.0047) (0.0065) (0.0053) (0.0054) (0.0105) (0.0043) (0.0099) (0.0048) (0.0110)

Min. Unres. Driving Age >16 -0.0119** -0.0142** -0.0093* -0.0166*** 0.0002 -0.0106*** -0.0145* -0.0140*** -0.0058
⇥ School-Leaving Age  16 (�3) (0.0048) (0.0064) (0.0050) (0.0055) (0.0107) (0.0040) (0.0088) (0.0049) (0.0136)

Effect of GDL if -0.0105** -0.0106* -0.0100* -0.0111** -0.0076 -0.0135*** -0.0092 -0.0079 -0.0208
School-Leaving Age  16 (�1 + �3) (0.0049) (0.0059) (0.0053) (0.0056) (0.0121) (0.0043) (0.0081) (0.0054) (0.0145)

Mean Outcome 0.038 0.040 0.035 0.032 0.050 0.024 0.051 0.035 0.046
Obs 75,196 38,587 36,609 52,641 22,441 37,598 37,598 59,227 15,897

Marginal effects evaluated at sample means from probit regression using CPS ASEC data from 1990–2017. All specifications include state and year
fixed effects. Controls include: gender; race/ethnicity indicators; mother’s education; presence of father in household; receipt of SNAP benefits;
state unemployment rate; and state log real effective minimum wage. Standard errors are clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01
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In the bottom-left panel of Figure 3 (and columns (6)–(7) of Table 4), we split the sam-
ple into two halves based on household income (as reported in the CPS). The median
household income is $53,236 (in 1999 dollars). Sixteen-year-olds in lower-income house-
holds are more than twice as likely to be observed as not in school than those in higher-
income households. However, the estimated effects of GDL laws are noticeably smaller
and less precise for the lower-income sub-sample (despite having the same sample size).
This provides some support to the hypothesis that teens from lower-income backgrounds
are more likely to experience direct effects of the GDL laws making travel to school more
difficult and therefore increasing the probability of dropout. Those (positive) direct ef-
fects would then counterbalance the (negative) indirect effects and lead to a combined
effect that is closer to zero. An alternative explanation is greater vehicle availability for
teens in higher-income households, for whom GDL laws decrease the probability of high
school dropout by 56% at the mean. Note, however, that the difference in the estimates
across the lower-income and higher-income groups is not statistically significant.

Finally, the bottom-right panel of Figure 3 (and columns (8)–(9) of Table 4) show the
effects of GDL laws estimated separately for teens living in urban and non-urban areas.
For teens in urban locations, the effects of GDL laws on high school dropout are negative
and significant even when compulsory schooling laws make dropout illegal for the 16-
year-olds in our sample. This suggests that access to the automobile may provide even
greater access to educational distractions in urban areas; GDL laws so greatly reduce
access to these activities that CS laws do not modulate their effect.

4.4 Variation in GDL Intensity

We next investigate potential mechanisms to explain why increasing the minimum driv-
ing age reduces the probability of high school dropout in states where teens can legally
drop out. The negative estimate of the net effect of GDL laws indicates that any direct ef-
fect of GDL laws on commuting to high school is more than completely offset by indirect
effects stemming from reduced access to labor and leisure activities. We can further tease
this apart using variation in the intensity of GDL laws.

As discussed in Section 2, GDL laws create an intermediate licensing level that restricts
nighttime driving and/or restricts the number of passengers who may ride with a teen
driver. Our binary measure of GDL laws (GDLst = 1 if the minimum unrestricted driv-
ing age is > 16) encompasses two levels of mobility restrictions: (A) state-years where
16-year-olds have access only to an intermediate license; and (B) state-years where 16-
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year-olds do not have access to any level of license (except perhaps a learner’s permit).
When teens have access to the intermediate license, it is unlikely that we would observe
a direct effect of the GDL law on the dropout decision. Because the intermediate license
primarily restricts nighttime driving and carpooling it seems less likely that this type of
GDL restriction would hinder the teen’s ability to commute to school. On the other hand,
when a teen has no access to driving, we expect to see both an indirect channel from re-
duced access to labor and leisure activities as well as the direct channel stemming from
limiting transportation to and from school.

We estimate the following model to allow for these different levels of mobility restric-
tion within GDL laws:

NotInSchoolist = �A
1 IntLicensest + �B

1 NoLicensest + �2CSst

+ �A
3 IntLicensest ⇤ CSst + �B

3 NoLicensest ⇤ CSst

+X 0
i⌫ + Z 0

stµ+Ds +Dt + ✏ist. (5)

This specification is identical to Equation 1, except that we have replaced the single binary
measure of GDL restrictions with two indicator variables corresponding to the two dif-
ferent levels of mobility restrictions. IntLicensest is an indicator variable that equals one
if 16-year-olds in state s in year t can procure an intermediate driver’s license only (and
cannot obtain a full-privilege license until they are older). NoLicensest is an indicator
variable that equals one if 16-year-olds cannot obtain either type of driver’s license (inter-
mediate or unrestricted). The omitted category comprises state-years where 16-year-olds
have access to unrestricted, full-privilege licenses. The marginal effects estimates from
this expanded model are shown in Table 5.

As with the main results in Table 2, estimates of the placebo test in our expanded
model (�A

1 and �B
1 ) are small and statistically insignificant under both levels of GDL re-

strictions. The estimate of �A
3 indicates that the differential effect of having access to an

intermediate license only for 16-year-olds in states where dropout is legally permitted is
negative and statistically significant. The total effect of the restriction to an intermediate
license on teen dropout behavior is estimated by the sum of coefficients, �A

1 +�A
3 . This sum

reveals that limiting teen driving access to only the intermediate license level reduces the
probability of high school dropout by 0.95pp in states where compulsory schooling laws
are non-binding. Because the intermediate license is unlikely to hinder access to school
transportation, we can interpret this negative effect as representing only the indirect chan-
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Table 5: Effects of Different Levels of Mobility Restrictions on 16-yo Dropout

Not In School = 1

(1) (2)

GDL at 16:
Intermediate License Only (�A

1 ) 0.0037 0.0028
(0.0043) (0.0040)

No License (�B
1 ) 0.0022 0.0023

(0.0057) (0.0052)
School-Leaving Age  16 (�2) 0.0187*** 0.0175***

(0.0049) (0.0048)
GDL at 16 ⇥ School-Leaving Age  16:

Intermediate License Only (�A
3 ) -0.0133*** -0.0123***

(0.0046) (0.0046)
No License (�B

3 ) -0.0019 -0.0032
(0.0059) (0.0059)

Effect of Intermediate License Only if -0.0096* -0.0095*
School-Leaving Age  16 (�A

1 + �A
3 ) (0.0049) (0.0049)

Effect of No License if 0.0003 -0.0008
School-Leaving Age  16 (�B

1 + �B
3 ) (0.0084) (0.0080)

Additional Effect of No License if 0.0099** 0.0087*
School-Leaving Age  16 (�B

1 + �B
3 )- (�A

1 + �A
3 ) (0.0047) (0.0045)

Controls - Y
Obs 75,196 75,196

Results from two-way fixed-effects regression using CPS ASEC data from
1990–2017. All specifications include state and year fixed effects. Controls in
column (2) are: gender; race/ethnicity indicators; mother’s education; pres-
ence of father in household; receipt of SNAP benefits; state unemployment
rate; and state log real effective minimum wage. Standard errors are clus-
tered at the state level. * p<0.10, ** p<0.05, *** p<0.01

nels. In other words, the reduction in access to labor and/or leisure activities caused by
limiting 16-year-old driving privileges leads to a 25% reduction in the probability of high
school dropout among this age group.

The estimate of �B
3 indicates that the differential effect of having no access to driving

for 16-year-olds in states where dropout is legally permitted (vs. states where the CS laws
are binding) is negative but statistically insignificant. The total effect of the restriction to
no license on teen dropout behavior is estimated by the sum of coefficients, �B

1 +�B
3 . This
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sum is almost precisely zero.31 This estimate suggests that the negative effect of the GDL
law on high school dropout stemming from reduced access to alternate activities is offset
by a positive direct effect stemming from reduced ability to commute to school when teen
access to driving is completely removed.

Also of interest here is the difference between the two total effect estimates, (�B
1 + �B

3 )
- (�A

1 + �A
3 ). This difference identifies the additional effect of going from a GDL law that

restricts teens to an intermediate license only to a GDL law that fully restricts teen driving
(at age 16). This estimate, a 0.87pp increase in the probability of high school dropout,
again suggests that there is a significant direct effect of the GDL laws on teens’ ability
to commute to school that can lead to an increase in high school dropout if teen access
to driving is completely removed. Note, however, that interpreting this point estimate
solely as the direct effect requires the strong assumption that the indirect effect of fully
restricting teen driving is no larger than the indirect effect of the intermediate license
alone. Therefore, we take the estimates in Table 5 as merely an indication that both direct
and indirect channels exist for this policy and rely on structural estimation to provide a
more formal effect decomposition in Section 6.

5 Employment Results

We next study the effects of GDL laws on teen employment. This analysis provides ev-
idence as to whether our findings on high school dropouts are attributable, at least in
part, to reduced access to job opportunities under GDL laws. We replace the dependent
variable in Equation 1 with an indicator for whether the individual 16-year-old teen is
currently in the labor force:

LFPist = �1GDLst + �2CSst + �3GDLst ⇤ CSst

+X 0
i⌫ + Z 0

stµ+Ds +Dt + ✏ist. (6)

All other variable definitions are unchanged.
In Figure 4, we illustrate the potential direct and indirect channels through which GDL

laws might impact teen labor force participation. In panel (a), we consider the case where
the teen resides in a state with compulsory schooling laws that do not permit dropping

31Note that only 12 states ever fully restricted access to driving for 16-year-olds during the time period
under study. Thus, estimation of �B

1 and �B
3 relies on a relatively small number of observations.
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Figure 4: Direct and Indirect Effects of GDL Laws on Labor Force Participation

(a) When Teens Cannot Drop Out, CSst = 0
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Indirect Effect from School if Substitutes

out at age 16. In this case, the restriction on teen driving imposed by the GDL laws will
have a negative direct effect on employment. However, the GDL laws may also impact
teen employment indirectly by limiting access to leisure activities. This indirect effect will
have a positive effect on employment.32 Because of the binding compulsory schooling
laws, there is no effect of the GDL laws on the teen’s schooling decision (and therefore,
no indirect effect on teen employment coming through that channel). The coefficient �1 in
Equation 6 captures the sum of the direct effect and the indirect effect from leisure when
CS laws prohibit 16-year-old drop out.

In panel (b) of Figure 4, we illustrate the case where CS laws are non-binding and
32Note that we are implicitly assuming in Figure 4 that work and leisure are substitutes. Although this

does seem like a reasonable assumption, we do not actually impose such a restriction in our estimation
strategy.
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16-year-olds are legally permitted to drop out of school. This adds an additional channel
through which GDL laws can impact teen labor force participation. Namely, the reduc-
tion in access to school may have an indirect effect on teen employment decisions. If teens
view work and school as substitutes, then the indirect effect caused by reduced access to
school contributes positively to labor force participation. If instead, they view work and
school as complementary activities, then the indirect effect from the school channel con-
tributes negatively to labor force participation. In Equation 6, �3 captures this additional
indirect channel between work and school.

Columns (1)–(2) of Table 6 show estimated average marginal effects from the triple-
difference model in Equation 6. Increasing the minimum driving age has a small, statisti-
cally insignificant effect on 16-year-old labor force participation in states where dropping
out is disallowed. As discussed above, this estimate reveals the sum of the (negative) di-
rect effect of GDL laws on teen labor force participation and the (positive) indirect effect
stemming from reduced access to leisure activities. We can therefore interpret this null
finding as either an indication that neither of these two effects are very large, or that they
are approximately equal in magnitude (and opposite in sign).

Conversely, GDL laws significantly decrease labor force participation by 1.7pp in states
where teens are legally able to drop out. At the mean, this is a 7% reduction in 16-year-
old labor force participation (about one quarter of 16-year-olds work in this sample; see
Table 1).33 Moreover, results from a linear probability model are similar but larger in mag-
nitude and substantively more significant (see Appendix Table B.2). This negative esti-
mate indicates that allowing for the additional channel of high school dropout creates a
negative indirect effect on teen labor force participation. In other words, when GDL laws
reduce access to school, the negative direct effect on school-going also leads to a negative
indirect effect on the propensity to work. This is consistent with a model in which teens
view work and school as complementary activities, rather than as substitutes.

As with the education analysis, we show that these employment results are not being
confounded by the evolution of CS laws.34 Column (3) replaces CSst with a time-invariant
measure that fixes the CS law at its value in the year that the GDL laws first bind for 16-
year-olds or in 1990 (for states that did not change their CS law in our sample). Column

33Results are similar if we replace the dependent variable with an indicator for employment rather than
labor force participation.

34We also find that our results are not confounded by measurement error in the CSst variable caused by
CS law employment exemptions. The results in Table 6 are qualitatively unchanged when we drop states
that have employment exemptions in their CS laws. These results are available upon request.
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Table 6: Effects of Minimum Unrestricted Driving Age on Teen Labor Force Participation

In Labor Force = 1

Triple-Diff Diff-in-Diff

(1) (2) (3) (4) (5) (6)

Min. Unres. Driving Age >16 (�1) -0.0033 -0.0024 0.0010 -0.0113 -0.0157
(0.0102) (0.0116) (0.0105) (0.0145) (0.0135)

School-Leaving Age  16 (�2) 0.0244 0.0183
(0.0160) (0.0168)

Min. Unres. Driving Age >16 -0.0138 -0.0149 -0.0211 -0.0195
⇥ School-Leaving Age  16 (�3) (0.0130) (0.0141) (0.0129) (0.0199)

Marginal Effect of GDL if -0.0171* -0.0173* -0.0202* -0.0308** -0.0314*
School-Leaving Age  16 (�1 + �3) (0.0100) (0.0101) (0.0108) (0.0140) (0.0172)

Fixed in Never
School-Leaving Age As Observed Yr. of GDL Switchers Always Always

Change Only > 16  16
Controls - Y Y Y Y Y
Obs 75,196 75,196 75,196 46,567 24,298 22,269

Marginal effects evaluated at sample means from probit regression using CPS ASEC data from 1990–
2017. All specifications include state and year fixed effects. Controls in columns (2)–(6) are: gender;
race/ethnicity indicators; mother’s education; presence of father in household; receipt of SNAP benefits;
state unemployment rate; and state log real effective minimum wage. Column (3) also includes indicators
for the state minimum legal dropout age. Column (3) fixes school-leaving age to its level when the state
increased minimum unrestricted driving age to >16, while columns (4)–(6) limit the sample to states that
never changed school-leaving age. Column (5) further restricts the sample to states where the school-
leaving age is always > 16, while column (6) includes only states where the school-leaving age is always
 16. Standard errors are clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01

(4) restricts the sample to states that did not change their minimum school-leaving age
during our sample. Results from both exercises are stronger than baseline estimates.

We next replace the dependent variable in Equation 2 with an indicator for whether
the individual 16-year-old teen is currently in the labor force and estimate this model sep-
arately for states that always have a minimum school-leaving age above 16 (see column
(5) of Table 6) and for states that always have a school-leaving age of 16 or younger (see
column (6) of Table 6). These results are consistent with the triple-difference model and
show that there is a negative, but statistically insignificant, effect of GDL law adoption
in states where 16-year-olds are not legally able to drop out of high school. Conversely,
there is a large and significant decline in labor force participation among that age group
when they are allowed to adjust enrollment.

Taken together, these results indicate that the impact of GDL restrictions is, at most, a
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weak reduction in teen labor force participation when teens are required to stay in school.
However, when teens can drop out, they significantly reduce labor force participation in
response to the GDL laws. This strongly suggests that there is an indirect channel linking
teens’ decisions regarding schooling and work when they are faced with mobility restric-
tions. However, GDL laws may also restrict access to other activities besides work and
school, and the estimates in Table 2 could reflect substitution away from those activities as
well. We next turn to a formal discrete choice model to better understand these findings.

6 Distinguishing Channels with Model-Based Analysis

The positive effects of GDL laws on high school retention likely reflect indirect chan-
nels caused by decisions regarding work or leisure activities that dominate any direct ef-
fects on access to school. Which of these indirect channels is most important depends
on whether school and work are complementary or substitutable activities. If school
and work are highly substitutable, then the negative effect of GDL laws on high school
dropout rates likely reflects a reduction in teen labor force participation. If not, then the
change in dropout behavior can be attributed to changes in access to other activities. Dis-
tinguishing between these two indirect channels has important implications for future
policy recommendations.

We develop a model that disentangles these channels. Agents choose between work,
school, both work and school, or neither activity, and school and work can be comple-
ments or substitutes.35 Agents have (potentially correlated) idiosyncratic preferences for
school and for work. Exclusion restrictions separate this correlation from the comple-
mentarity or substitutability of school and work. GDL laws can differentially impact each
choice and separate direct from indirect effects. We set identify the effect of the GDL laws
on the outside (neither) option using auxiliary sign restrictions. Overall, the model has
similarities to Montmarquette, Viennot-Briot, and Dagenais (2007) or a static version of
Eckstein and Wolpin (1999), though we focus on estimating and decomposing treatment
effects and cleanly identifying school-work spillovers.

35Because the activities do not have observed pecuniary costs, they are substitutes (complements) in the
sense that restricting access to one activity increases (reduces) demand for the other activity. Our model
adapts the multiple discrete product choice model of Gentzkow (2007) to school and work decisions. An
alternative model is bivariate probit with both outcomes endogenous. However, Lewbel (2007) shows that
such a model is generally incoherent and/or incomplete. Recent work explores new combinatorial discrete
choice methods (Arkolakis and Eckert 2017).
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6.1 Model Description

Denote work and school as A and B, respectively. Each agent i chooses to partake in one
activity, both, or neither; their choice set is (yAi , yBi ) 2 {0, 1}2 = C. Agents receive indirect
utility Ṽi(yAi , y

B
i ) from each bundle. The normalized indirect utility that agent i obtains

from each choice is:

Vi(0, 0) = �̃0GDL0
st (7)

Vi(1, 0) = ↵A + (�A + �̃0)GDLA
st + x0

ist�
A + z0st⇡

A + fA(s, ⇠) + �At + eAi (8)

Vi(0, 1) = ↵B + (�B + �̃0)GDLB
st + x0

ist�
B + z0st⇡

B + fB(s, ⇠) + �Bt + eBi (9)

Vi(1, 1) = Vi(1, 0) + Vi(0, 1) + �+ (�� � �̃0)GDL�
st, (10)

where �k+ are the parameters of interest intended to capture the utility effect of the grad-
uated driver license policy, for k+ 2 {0, A,B,�}. We index GDL by k+ to anticipate the
decomposition; each individual experiences only one value of GDLk+

st (equal to GDLst),
but this does not hold in the decomposition.

The idiosyncratic terms reflect the latent indirect utility associated with each activity,
and may be correlated. Thus, eAi can be interpreted as motivation to work or expected la-
bor market returns, and eBi can be interpreted as motivation for school or expected returns
to schooling. Teens with low values of both terms have a high value of leisure. Comple-
mentarity or substitutability between school and work is captured by �+(��� �̃0)GDL�

st,
which is > 0 if the activities are relative complements and < 0 if relative substitutes. This
term captures the (utility-valued) effect of school-going on work (and vice versa).

State-year characteristics, used for exclusion restrictions, are captured by:

z0st =
h
URst, ln(MWst), CSst, GDLB

st ⇥ CSst

i
.

Here, URst is the state-level unemployment rate, ln(MWst) is log real minimum wage,
and CSst and GDLst are measures of the compulsory schooling laws and graduated
driver licensing laws, as in Equation 1. The fk(s, ⇠) terms include correlated random
effects (discussed below) and �kt represent year dummies, k 2 {A,B}. The model also
includes individual characteristics xist: gender, race/ethnicity indicators, mother’s edu-
cation, presence of father in household, and receipt of SNAP benefits. Agents choose the
bundle that maximizes utility: max(yAi ,yBi ) Vi(yAi , y

B
i ). The probability that agent i chooses

bundle c 2 C is the probability that i’s utility from c is greater than that from all other
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choices c0: P c
i = Pr (Vi(c) � Vi(c0), 8c0 2 C).

The model features a non-standard normalization that nests the standard normaliza-
tion (Vi(0, 0) = 0) when �̃0 = 0. Because discrete choice models only identify relative
differences in utility, the utility of one choice is typically normalized to zero. Such a nor-
malization does not affect model fit or identification, but makes the implicit assumption
that the utility of the normalized option is not affected by treatment. However, the lit-
erature relating changes in teen risky behaviors to GDL law adoption strongly suggests
that the value of the neither-work-nor-school option was shifted by the implementation
of GDL policies (e.g., Deza and Litwok 2016; Deza 2019; Huh and Reif 2021). Accordingly,
we interact an auxiliary parameter, �̃0, with the policy, Vi(0, 0) = �̃0GDL0

st, to capture the
impact of GDL laws on the utility of the normalized option. We then set the utility for
each other option to: Vi(yAi , y

B
i ) = Ṽi(yAi , y

B
i ) � Ṽi(0, 0) + �̃0GDL0

st. The observed data are
compatible with any value of the auxiliary parameter; �̃0 merely redistributes the inci-
dence of the direct effects of the GDL laws to the outside option.

The model decomposes total effects into their direct and indirect channels. Total ef-
fects of GDL laws on each activity capture the overall impact of increasing the minimum
unrestricted driving age from 16 or less. Total effects are the model-based analogs to the
reduced-form estimates shown in Section 4 and Section 5. Direct effects (denoted ✓kDir)
reflect how each GDL component affects its own activity, e.g., the effect of GDLA on work-
ing and of GDLB on school enrollment. Indirect effects capture the consequences of the
direct changes in utility of GDL laws on one activity to the other activities, i.e., of GDL0,
GDLB, and GDL� on working, or GDL0, GDLA and GDL� on schooling decisions.36

While total effects are invariant to �̃0, direct and indirect effects are not.

6.2 Identification

We make the following assumptions to identify and estimate the model parameters:

Assumption 1 (Idiosyncratic Preferences are Bivariate Normal). Idiosyncratic preferences
are independent and distributed bivariate normal: ei = [eAi eBi ]

0 ⇠ N(0,⌦), where

⌦ =

 
1 ⇢�

· �2

!
,

36We provide precise definitions in Appendix E. There are several reasonable ways to define these effects.
Our definition preserves additivity, such that total effects are the sum of direct and indirect effects.
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such that the scale of the idiosyncratic preference is normalized to activity A (work).

Assumption 2 (Exclusion Restrictions). Components of z may shift the utility of at most one
of A or B. Specifically,

⇡A
0
=
h
⇡A
UR, ⇡

A
MW , 0, 0

i

⇡B
0
=
h
0, 0, ⇡B

CS, ⇡
B
GDL⇥CS

i
.

Assumption 3 (Correlated Random Effects). The state-specific unobserved effects fk(s, ⇠) for
k 2 {A,B} are correlated with GDLst, xist, and zst in the following manner:

fA(s, ⇠) = ⇠k1GDLs + x0
s⇠

k
2 + z0s⇠

k
3 ,

where ·s indicates an average across observations in state s.

Assumption 1 imposes the structure of a multinomial probit model (e.g., Goolsbee
and Petrin 2004) onto the model of multiple discreteness (Gentzkow 2007). The scale of
one parameter must be fixed because utility is scaleless; we set V (eAi ) = 1. Normality
is not necessary; for example, we could instead use a finite number of discrete points to
approximate any bivariate distribution at little computational cost (Train 2008). However,
the parsimony of joint normality facilitates interpretation and discussion.37

The exclusion restrictions in Assumption 2 primarily serve to separately identify �

and ⇢, but also strengthen identification of the model more generally. Both � and ⇢ reflect
how often school and work are chosen together, so are not separately identified without
further assumptions. Variation in choice-specific utility shifters can be used to infer �.
Intuitively, a shift in the utility of one activity only increases (decreases) the likelihood of
choosing the other activity if both activities are complements (substitutes).38 Moreover,
Keane (1992) shows that even though the parameters of multinomial probit models are
theoretically identified, identification is weak in the absence of exclusion restrictions.

Assumption 3 imposes a correlated random effects structure on the model, allowing
for parametric correlation between unobserved state-specific factors and observable co-
variates (Mundlak 1978). This helps ensure that estimates of �k+ are not confounded by

37The approach in Berry, Levinsohn, and Pakes (1995) using iid logit errors with random coefficients also
flexibly captures substitution patterns. However, incorporating multiple discreteness and complementarity
into such models is challenging, and interpreting coefficients in such models can be tedious.

38See Gentzkow (2007) (section I.D) for a detailed discussion of identification in this model.
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other state-specific factors that may be correlated with the implementation of GDL poli-
cies.39

These three assumptions are sufficient to identify all model parameters except �̃0. Be-
cause GDLk+

st = GDLst in estimation, choice probabilities are invariant to �̃0. Thus, it
is impossible to identify �̃0 from observed choice data alone. Conversely, all other pa-
rameters are unaffected by the value of �̃0. However, identification of �̃0 is necessary to
decompose the total effects into direct and indirect channels. To set identify this parame-
ter, we make an assumption on the sign and relative size of the direct effects in the model:

Assumption 4 (Normalization). Let �̃0 be such that the indirect utility impact of GDL laws on
neither, work, and school are weakly negative (�̃0  0, �A+ �̃0  0, and �B +⇡B

CS⇥GDL+ �̃0  0)
and that the direct effect on schooling is no larger in magnitude than the direct effect on work
�
|✓BDir|  |✓ADir|

�
. That is, �̃0 2 G, where

G = {g :
�
|✓ADir(g)| < |✓BDir(g)|

�
^
�
g  min{0,��A,�(�B + ⇡B

CS⇥GDL}
�
}.

These assumptions are independently reasonable. Direct effects are likely weakly neg-
ative because GDL laws do not increase access to any activity; each activity has become
weakly harder to access. Second, direct employment effects are likely larger in magnitude
than direct schooling effects because there are a number of transportation alternatives to
access school (e.g., school buses) that may not be available for work access.

6.3 Estimation

The likelihood function for individual i, given that i chooses c 2 C is:

P c
i (wi;#, �, ⇢) =

Z
[Vi(c, wi;#, e) � Vi(c

0, wi;#, e), 8c0 2 C] f(e; �, ⇢)de,

where wi collects data for i, # collects all model parameters except �, ⇢, and �̃0, and
f(e; �, ⇢) is the pdf of the bivariate random variable distribution N(0,⌦) evaluated at e.
Joint normality and multiple discreteness imply that choosing c does not generally cor-
respond to a rectangular subset of e and so analytic or fast computational functions are

39Correlated random effects models are distinct both from standard random effects models and from
random coefficients models. Correlated random effects are intuitively similar to fixed effects, but are more
convenient in nonlinear settings. In fact, in linear models, fixed effects and correlated random effects are
numerically equivalent (Mundlak 1978).
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unavailable to calculate P c
i (wi;#, �, ⇢). We therefore approximate this term by simulating

the likelihood as

P̂ c
i (wi;#, �, ⇢) =

1

R

X

r

[Vi(c, wi;#, er) � Vi(c
0, wi;#, er), 8c0 2 C] ,

where er is one of R draws for each i from f(e; �, ⇢). We make use of Lemma 1 (see
Appendix E), which asserts that, under Assumption 1, the model given by Equations
(7)–(10) can be estimated with a Geweke, Hajivassiliou, and Keane (GHK) simulator.40

We estimate the model using maximum simulated likelihood to recover all parameters
except �̃0 (these parameters are sufficient to estimate total effects and to determine G given
Assumption 4). Specifically, we select

#⇤, �⇤, ⇢⇤ = argmax
X

i

!i ln P̂
c
i (wi;#, �, ⇢),

where !i are sample weights, via a multistep procedure the prioritizes finding �, ⇢ and
the other non-� parameters first to limit dimensionality. Initial steps use R = 100 Gibbs
draws from a standard normal bivariate distribution (which are then transformed via the
GHK simulator), while the final steps use R = 250.41

6.4 Model Results

Table 7 shows estimates of ten key model parameters.42 Non-policy parameters of partic-
ular interest are the correlation of idiosyncratic preferences for school and work, ⇢, and
the complementarity between activities, �. The negative estimate of ⇢ (-0.47) indicates
negative correlation in the ‘types’ of teens that choose school or work. Those who re-
ceive a high (utility) value from school are more likely to receive low value from work.
Conversely, those receiving the highest utility from work are less likely to find school
valuable. Despite this, the estimate of � > 0 indicates that school and work are weak
complements: decreasing access to school mildly decreases the value of work (and vice

40This result is somewhat unexpected, as the error covariance structure of the four-choice multinomial
probit model implied by Equations (7)–(10) is not positive definite. For a description of the GHK simulator,
see Train (2009).

41See Appendix E for additional details.
42Table E.1 assesses model fit by comparing how often a simulated choice matches the observed choice

(averaged over 100 draws of e). The model returns choice shares that deviate by less than 0.02pp from the
observed sample. Overall, the model correctly classifies those in the sample 62.2% of the time. Given the
large number of idiosyncratic factors that we do not observe, we believe this to be reasonable.
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Table 7: Key Model Parameters

Work School

⇢ � � ↵A �A ↵B �B ⇡B
CS ⇡B

CS⇥GDL ��

-0.4690 0.0233 0.0119 -0.6222 -0.0268 0.0131 0.0004 -0.0055 0.0034 -0.0022
(0.0012) (0.0004) (6.03e-5) (0.0122) (0.0005) (2.52e-5) (5.34e-5) (0.0001) (3.71e-5) (2.89e-5)

Point estimates of key model parameters estimated via maximum simulated likelihood using a GHK
simulator and limited-memory BFGS optimization algorithm with 250 draws per observation of idiosyn-
cratic preferences. Standard errors (in parentheses) are calculated from the Hessian and are not robust to
correlation or clustering. Observations are weighted using sample weights.

versa). This is a key piece of evidence that the decline in employment and increase in
school-going in response to GDLs does not primarily reflect substitution between these
two activities. It also highlights the importance of identifying the negative correlation in
preferences for school-going and work. Failing to account for ⇢ < 0 would make working
while in high school appear more deleterious for school-going than it actually is.

These results both confirm and contrast previous findings. Eckstein and Wolpin (1999)
and Montmarquette, Viennot-Briot, and Dagenais (2007) both find evidence of negative
correlation in preferences for school and work (⇢ < 0), although Montmarquette, Viennot-
Briot, and Dagenais (2007) show that an additional preference for good grades undoes
some of this relationship. The results in Eckstein and Wolpin (1999) for 16 year-old teens
indicate that there is a negative psychic cost of participating in both school and part-time
work simultaneously, although this substitutability decreases with age. However, Mont-
marquette, Viennot-Briot, and Dagenais (2007) find evidence that, at least for some high
school seniors, school and work are complementary. This is supported by Ruhm (1997),
who shows that part-time work has no negative effect on educational outcomes.43 Rela-
tive to this literature, we are able to separately identify both ⇢ and �, lending credibility
to the narrative that teens’ preferences for school-going and work are negatively related
but that school and work are not substitutes, at least on average.

The policy parameters (� and ⇡) are qualitatively consistent with results in Section 4
and Section 5. The utility effect of GDL laws on teen labor force participation is larger than
the corresponding effect on high school enrollment, both in absolute levels and in terms
of standard deviations of idiosyncratic preference (|�A| > |�B

� |). Legalizing high school
dropout (by instituting a lower minimum school-leaving age) substantially decreases the
relative indirect utility of attending school. However, the interaction of legalizing school-

43Relatedly, Light (1999) finds that the effect of high school employment on subsequent earnings for men
is small and relatively short-lived.
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leaving and restricting mobility (through GDL laws) partially reverses that reduction in
relative utility. Finally, GDL laws mildly reduce the complementarity between school-
going and work, as indicated by the negative value on ��.

We show model-based equivalents of the design-based treatment effects estimated in
Sections 4 and 5 as total effects in the top row of Table 8. The model predicts that adopt-
ing a GDL law when school-leaving is legal increases the probability of being enrolled
in school by 1.31pp and decreases the probability of labor force participation by 0.83pp.44

These results are roughly in line with those in prior sections, though the magnitudes differ
a bit. This is to be expected, as the model incorporates additional information by model-
ing the entire decision space, while also imposing additional structure via the correlated
preferences and exclusion restrictions. The model suggests that GDL policies reduce the
likelihood of the “neither work nor school” option by about -1.06pp, or about 44% from
the mean.45 We interpret this “neither” option as reflecting teen preferences for leisure
activities, which encompass both risky behaviors as well as less-risky forms of truancy. It
is then unsurprising that the estimated reduction in this category is somewhat larger than
previously estimated effects found in the literature on the impacts of GDL laws and teen
driving on risky behaviors (Deza and Litwok 2016; Deza 2019; Huh and Reif 2021).

Table 8 also shows the decomposition of each total effect into direct and indirect chan-
nels for �̃0 at the upper and lower boundaries of G. We further decompose the indirect
effects for work and school into their root causes in italics: changes in the indirect utility
of neither-work-nor-school or changes in the indirect utility of the other activity and the
complementarity between the two activities.

Panel A of Table 8 shows the decomposition assuming �̃0 = supG = �0.0038. Under
this assumption, the renormalized impact of GDL laws on the indirect utility of school-
going is 0, and thus so is its direct effect. All of the total effect on school-going is there-
fore indirect, and is primarily coming from a reduction in the utility of neither-work-nor-
school. Only 14% of the total schooling effect is due to changing work access or comple-
mentarity effects. In contrast, the total effect of GDL laws on teen employment is entirely
attributable to a direct effect, with only a small countervailing indirect effect mainly re-
flecting the complementarity between school and work. Similarly, most of the total effect
of GDL laws on neither-work-nor-school is through the direct channel.

44Counterfactuals impose the triple-difference design and estimate effects assuming teens have the option
to drop out.

45In our estimation sample, 2.4% of 16-year-olds are neither working nor in school and 23.1% are both in
school and working.
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Table 8: Decomposition of GDL Law Effects by Activity

Effect of GDL Laws on:

Neither Work School

Effect % of Total Effect % of Total Effect % of Total

Total effect -1.06pp -0.83pp 1.31pp

A. Upper-bound renormalization �̃0 = min{0,��A,�(�B + ⇡B
CS⇥GDL)}.

Direct -1.13pp 106.7% -0.88pp 106.6% 0pp 0.0%
Indirect 0.07pp 0.05pp 1.31pp

via Neither - 0.01pp -1.2% 1.13pp 86.1%
via Other activities 0.07pp -6.7% 0.04pp -5.4% 0.18pp 13.9%

B. Lower-bound renormalization �̃0 : ✓ADir = ✓BDir.

Direct -1.56pp 146.8% -0.93pp 112.8% -0.93pp -71.3%
Indirect 0.50pp 0.11pp 2.24pp

via Neither - 0.01pp -1.7% 1.78pp 136.0%
via Other activities 0.50pp -46.8% 0.09pp -11.1% 0.46pp 35.3%

These are the simulated total, direct, and indirect effects of policy counterfactuals using param-
eters shown in Table 7 averaged over 100 draws ei per person. To match the triple-difference
design, for all counterfactuals CSst = 1 (and so GDLB

st ⇥ CSst = GDLB
st). Observations are

weighted using sample weights.

Panel B of Table 8 instead assumes �̃0 = inf G = �0.0056. In this scenario, the direct ef-
fects of GDL laws on labor force participation and school enrollment are, by assumption,
equivalent. At this lower bound, the impact of GDL laws on the utility of school-going
generates a direct effect of -0.93pp, but this is counteracted by a large indirect effect, again
predominately due to the reduction in the utility of neither-work-nor-school. A much
smaller portion of the total effect is due to the indirect channel stemming from reduced
access to work and the declining complementarity between work and school. The decom-
position of the total effect of GDL laws on teen employment is largely similar to that in
Panel A, with only a slightly larger indirect effect due to school-going. The direct effect
on neither-work-nor-school is quite large in this scenario.

In summary, the reduced access to employment created by GDL laws increases teen
school-going by only 0.18pp–0.46pp, which accounts for at most 35% of the total impact
of GDL laws on high school enrollment/dropout. The total effect of the GDL policy on
school-going is instead attributable largely to the reduced utility from the neither-work-
nor-school option.

This conclusion is crucial for interpreting the effects presented earlier in this paper and
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for future policy design. The reduction in high school dropout due to GDL laws is not
caused by teens substituting away from employment, and is unlikely to mask large nega-
tive direct effects of GDL laws on access to high school. On the other hand, the estimated
reduction in teen employment due to GDL laws seems to have been driven primarily by
a reduction in teens’ ability to commute to jobs. School and work are somewhat com-
plementary, so policy design need not be overly concerned about substitution between
the two. Future policies that specifically target access to non-work, non-school activities
would therefore likely be able to preserve the negative dropout effect without inducing a
corresponding negative effect on teen employment.

7 Conclusion

We interact graduated driver licensing and compulsory schooling laws to study the ef-
fects of mobility restrictions on schooling and employment outcomes for 16-year-olds in
the United States. GDL laws were adopted by many states in the late 1990s, before the
gradual ratcheting up of minimum legal dropout ages in the 2000s. This created a win-
dow of time during which teen automobility was restricted but when teens could choose
to drop out of school. We use this window to determine whether mobility restrictions
increase or decrease school-leaving in a setting in which students still have the option to
leave school.

A robust set of results indicate that GDL laws—which restrict teen mobility—actually
decrease high school dropout by about 1.1pp (a 28% reduction from the mean), but only
in settings in which school-leaving is a legal option. This potentially surprising result
contrasts with evidence from large, middle-income cities that transit expansions increas-
ing school access improve educational outcomes (Asahi and Pinto 2022; Dustan and Ngo
2018). Our result instead suggests that access to other activities may have decreased even
more than access to school in the US setting, leading to substitution towards schooling.
To this end, we estimate the effect of GDL laws on teen labor force participation and
find that these laws led to a 1.7pp (7% at the mean) reduction in 16-year-old labor force
participation.

We turn to a structural model of multiple activity choice to help interpret these results.
The model has its own set of identification and interpretation challenges, and our discus-
sion of these may be useful for others combining policy analysis with structural modeling.
The model separates the direct effects of the policy from indirect channels (through sub-
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stitution or complementarity effects). Under reasonable assumptions, we find that the
indirect impacts of GDL laws on schooling are not due to decreased access to work, but
likely reflect decreased access to activities that are neither work nor school. This accords
with the literature on GDL laws and risky behaviors.

Teen mobility restrictions offer a classic economic example of trade-offs in policy de-
sign. While the motivation for GDL laws was to increase teen safety, they had a number
of other effects on teen behavior. We find an additional benefit on school-going, contribut-
ing to educational attainment. However, GDL laws also decreased teen work, which may
itself have additional positive or negative consequences in the long run. Our decompo-
sition of the total effects of GDL laws into direct and indirect channels offers important
insight for future policy design. Namely, that policies limiting teen mobility might pre-
serve the benefit to educational attainment, while avoiding the negative effect on teen
employment by targeting access to non-work, non-school activities.
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Appendix

A GDL Laws and Teen Driving

To verify that GDL laws had a binding effect on teen automobile use, we estimate the
effect of GDL roll-out on a proxy for driving.46 We use the rate of fatal car accidents in-
volving a teen driver as a proxy for the prevalence of teen driving by linking the GDL
laws to data from the US Department of Transportation’s Fatality Analysis Reporting
System (FARS). FARS is a nationwide census of all fatal injuries suffered in motor vehi-
cle crashes and provides data on the location and timing of the accident as well as the
involved drivers’ birth-years.

We collapse each year of FARS data into state-by-age-of-driver bins and calculate the
number of car accidents involving a fatality for each bin. To convert these accident counts
into rates, we use data from the National Cancer Institute’s Surveillance, Epidemiology,
and End Results (SEER) dataset, which includes estimates of year-by-age populations for
every county. This allows us to create state-, year-, and age-specific measures of the fatal
car accident rate. An advantage of this outcome is that FARS contains the universe of fatal
car accidents in the United States over our entire sample period and includes all persons
involved in accidents that result in a fatality, not just fatalities themselves.

We estimate the effect of increasing the minimum full-privilege driving license age on
age-specific accident rates using a two-way fixed effects model:

AccRate16,st = �GDLst +Ds +Dt + ✏st, (A.1)

where AccRate16,st is the count of fatal car accidents in which at least one driver was
aged 16 divided by the population aged 16 in state s in year t (in 1,000s). The primary
variable of interest is GDLst, which measures the minimum age at which teens can obtain
a full driver’s license with no restrictions. The model includes both state and year fixed
effects and is weighted by the population aged 16 in state s in year t. Standard errors are
clustered at the state level.

Column (1) of Table A.1 shows that a one year increase in the minimum age at which
teens can receive an unrestricted driver’s license reduces the rate of fatal car accidents for

46Few data directly report teen automobile use, and none that we are aware of contain large samples of
teens across states and over time.
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drivers aged 16 by 0.032 accidents per thousand 16-year-olds in the (state’s) population.
At the mean (0.259 fatal accidents per thousand population aged 16), this is equivalent to a
12% reduction. In column (2), we replace the continuous measure of unrestricted driving
age with an indicator variable that equals one if the minimum unrestricted driving age is
strictly greater than 16 (corresponding to the solid, black line in Figure 1a). This yields
an even larger negative estimate of 0.07 accidents per thousand 16-year-old population,
indicating that teens are a statistically significant 27% less likely to be involved in a fatal
car accident when they cannot access an unrestricted driver’s license.

Table A.1: Effect of Minimum Driving Age on Fatal Car Accidents with Age 16 Drivers

Accidents per 1,000

(1) (2) (3)

Minimum Unrestricted Driving Age -0.032***
(0.011)

Min. Unres. Driving Age > 16 (year t-2) -0.013
(0.018)

Min. Unres. Driving Age > 16 (year t-1) 0.009
(0.014)

Min. Unres. Driving Age > 16 -0.070*** -0.022
(0.016) (0.015)

Min. Unres. Driving Age > 16 (year t+1) -0.038***
(0.012)

Min. Unres. Driving Age > 16 (year t+2) -0.018
(0.015)

Mean Outcome 0.259
Obs 1,400 1,400 1,200

Specifications include state and year fixed-effects. Data are from FARS, are
collapsed to state-year cells, and cover 1990–2017. All specifications are
weighted by the total state population and standard errors are clustered at
the state level. * p<0.10, ** p<0.05, *** p<0.01

The results in Table A.1 indicate that the introduction of GDL laws significantly re-
stricted teen driving de facto. In column (3) we also include two leads and two lags of the
minimum driving age indicator variable as a test for whether we are merely picking up
trends in teen driving behavior. We find no evidence of pre-trends, however, there does
seem to be a slightly delay in the timing of the effect on fatal accident rates. This result
provides a measure of confidence that we are conservatively assigning changes in GDL
laws to the effective year or the year prior.

These findings accord with previous work showing that the implementation of GDL
laws decreased teen driving fatalities (Dee, Grabowski, and Morrisey 2005). While our
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results likely reflect declines in teen driving, they may also capture changes in other mar-
gins of driving behavior, such as safety. However, Gilpin (2019) and Karaca-Mandic and
Ridgeway (2010) show that decreases in driving fatalities stem primarily from reductions
in teen driving rather than improvements in the quality of teen driving.47 When taken in
conjunction with our results, it appears that GDL laws did, in fact, restrict teen mobility.

47Relatedly, Severen and Van Benthem (2022) find that GDL laws do not appear to lead to long-run
reductions in driving. Bostwick (2018) uses changes in school start times to show that teen driving safety is
very responsive to outside factors, such as cognitive load and sleepiness as well as traffic congestion.
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B Additional Results

Table B.1: The Effect of Minimum Unrestricted Driving Age on Teen Dropout Decision
(Linear)

Not In School = 1

Triple-Diff Diff-in-Diff

(1) (2) (3) (4) (5) (6)

Min. Unres. Driving Age >16 (�1) 0.0019 0.0009 0.0012 0.0022 0.0080
(0.0041) (0.0039) (0.0040) (0.0049) (0.0069)

School-Leaving Age  16 (�2) 0.0207*** 0.0196***
(0.0049) (0.0048)

Min. Unres. Driving Age >16 -0.0119** -0.0108** -0.0110** -0.0168**
⇥ School-Leaving Age  16 (�3) (0.0045) (0.0046) (0.0052) (0.0065)

Effect of GDL if -0.0101** -0.0099** -0.0098* -0.0145** -0.0168**
School-Leaving Age  16 (�1 + �3) (0.0045) (0.0047) (0.0049) (0.0069) (0.0075)

Fixed in Never
School-Leaving Age As Observed Yr. of GDL Switchers Always Always

Change Only >16  16
Controls - Y Y Y Y Y
Obs 75,196 75,196 75,196 46,567 24,298 22,269

Results from two-way fixed-effects regression using CPS ASEC data from 1990–2017. All specifications in-
clude state and year fixed effects. Controls in columns (2)–(6) are: gender; race/ethnicity indicators; mother’s
education; presence of father in household; receipt of SNAP benefits; state unemployment rate; and state log
real effective minimum wage. Column (3) also includes indicators for the state minimum legal dropout age.
Column (3) fixes school-leaving age to its level when the state increased minimum unrestricted driving age
to >16, while columns (4)–(6) limit the sample to states that never changed school-leaving age. Column (5)
further restricts the sample to states where the school-leaving age is always >16, while column (6) includes
only states where the school-leaving age is always  16. Standard errors are clustered at the state level. *
p<0.10, ** p<0.05, *** p<0.01
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Table B.2: The Effect of Minimum Unrestricted Driving Age on Teen Labor Force Partici-
pation (Linear)

In Labor Force = 1

Triple-Diff Diff-in-Diff

(1) (2) (3) (4) (5) (6)

Min. Unres. Driving Age >16 (�1) -0.0048 -0.0045 0.0017 -0.0175 -0.0127
(0.0119) (0.0130) (0.0126) (0.0140) (0.0129)

School-Leaving Age  16 (�2) 0.0329** 0.0287*
(0.0146) (0.0150)

Min. Unres. Driving Age >16 -0.0174 -0.0173 -0.0315** -0.0180
⇥ School-Leaving Age  16 (�3) (0.0130) (0.0137) (0.0134) (0.0171)

Marginal Effect of GDL if -0.0222** -0.0218** -0.0298** -0.0356** -0.0437**
School-Leaving Age  16 (�1 + �3) (0.0109) (0.0107) (0.0112) (0.0149) (0.0190)

Fixed in Never
School-Leaving Age As Observed Yr. of GDL Switchers Always Always

Change Only > 16  16
Controls - Y Y Y Y Y
Obs 75,196 75,196 75,196 46,567 24,298 22,269

Results from two-way fixed-effects regression using CPS ASEC data from 1990–2017. All specifications in-
clude state and year fixed effects. Controls in columns (2)–(6) are: gender; race/ethnicity indicators; mother’s
education; presence of father in household; receipt of SNAP benefits; state unemployment rate; and state log
real effective minimum wage. Column (3) also includes indicators for the state minimum legal dropout age.
Column (3) fixes school-leaving age to its level when the state increased minimum unrestricted driving age
to >16, while columns (4)–(6) limit the sample to states that never changed school-leaving age. Column (5)
further restricts the sample to states where the school-leaving age is always > 16, while column (6) includes
only states where the school-leaving age is always  16. Standard errors are clustered at the state level. *
p<0.10, ** p<0.05, *** p<0.01
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C Robustness Analyses

In this section, we address the literature that has identified biases in two-way fixed effects
estimation of staggered adoption difference-in-differences research designs (e.g., Chaise-
martin and D’Haultfœuille 2020; Goodman-Bacon 2021; Sun and Abraham 2021). One
source of such bias highlighted by Goodman-Bacon (2021) is that the two-way fixed ef-
fects estimator for a difference-in-differences identification strategy implicitly uses previously-
treated cohorts to estimate counterfactual outcomes for later-treated cohorts. This can be
problematic if treatment effects are changing over time. Given that our data covers 28
years and that there are changes in GDL laws over several years, we are able to consider
subsets of the full study window in order to probe whether our estimated treatment ef-
fects are dynamic or static.

Specifically, we introduce two sample restrictions into the estimation of the probit
model in Equation 1. First, we remove states that are “always-treated” in our study win-
dow (i.e., adopted a GDL law restricting full privilege licenses to teens older than 16 prior
to 1997).48 This precludes long-run dynamic effects from early-adopter states from con-
taminating estimated effects. Second, we cut off the sample at earlier and earlier years,
targeting the 1997–2002 window when most states adopted GDL laws.

Table C.1 shows the results of these exercises. Column (1) replicates our preferred
specification (column (2) of Table 2) to aid comparison. Columns (2)–(5) drop any states
that are always-treated during our study window (about 20% of observations). While col-
umn (2) uses data over the full study window, columns (3)–(5) respectively omit the five,
ten, and fifteen most recent years of data. Results for all model estimates are relatively
constant across specifications, though they become less precise as more data is omitted.
The placebo effect (�1) remains close to zero, whereas the interaction effect (�3) and total
effect of GDL where dropouts are legal (�1+�3) both vary within relatively narrow bands.
There is a bit more variation in the CS effect (�2), but these estimates all suggest that, if
anything, our primary estimates are conservative relative to other sample windows. The
results in Table C.1 suggest that our main findings are not being driven by long-run dy-
namics in the effects of GDL laws.

In a second test of the dynamism of GDL law treatment effects, we estimate a model
that includes indicators for bins of years in post-treatment time: 0–4, 5–9, 10–14, and
15+ years after GDL adoption. As before, we also drop always-treated units to avoid

48Our data observation window begins in 1990, but no states adopted a new GDL law between 1990 and
1997.
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Table C.1: The Effect of Min. Unrestricted Driving Age on Dropout for a Limited Panel

Not In School = 1

Drop always-treated states &
Limit sample to years:

Full
Sample 1990-2017 1990-2012 1990-2007 1990-2002

(1) (2) (3) (4) (5)

Min. Unres. Driving Age >16 (�1) 0.0014 -0.0008 0.0008 0.0022 0.0018
(0.0039) (0.0039) (0.0029) (0.0032) (0.0059)

School-Leaving Age  16 (�2) 0.0182*** 0.0202*** 0.0229*** 0.0274*** 0.0257***
(0.0047) (0.0051) (0.0057) (0.0063) (0.0099)

Min. Unres. Driving Age >16 -0.0119** -0.0135** -0.0131*** -0.0144*** -0.0135*
⇥ School-Leaving Age  16 (�3) (0.0048) (0.0052) (0.0047) (0.0051) (0.0075)

Effect of GDL -0.0105** -0.0143** -0.0123** -0.0121** -0.0117*
if School-Leaving Age  16 (�1 + �3) (0.0049) (0.0061) (0.0055) (0.0055) (0.0062)

Exclude Always Treated - Y Y Y Y
Obs 75,196 60,864 49,038 35,755 21,603

Marginal effects evaluated at sample means from probit regression using CPS ASEC data. All spec-
ifications include state and year fixed effects. Controls include: gender; race/ethnicity indicators;
mother’s education; presence of father in household; receipt of SNAP benefits; state unemployment
rate; and state log real effective minimum wage. Standard errors are clustered at the state level. *
p<0.10, ** p<0.05, *** p<0.01

contamination from long-run effects. Table C.2 reports the results of this “grouped” triple-
difference design. Estimates of �1 are stable and close to zero, providing further placebo
evidence that our research design and implementation identifies the effect of interest and
is not overly subject to dynamic contamination. Moreover, the total effects of GDL laws
in states without binding CS laws (�1 + �3) are fairly constant over time as well, further
suggesting that our estimates are not biased by treatment effect dynamism.

C.1 Imputation Design

In order to implement the solutions provided in the recent literature on robust difference-
in-difference estimation, we recast our research design into a more compatible framework
for those proposed estimators. This section details how we recast our design to fit the
imputation estimator of Borusyak, Jaravel, and Spiess (2021).

We make three major changes from our preferred specification. First, we disallow an
independent effect of GDL laws on school-going when teens are not permitted to drop
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Table C.2: The Effect of Minimum Unrestricted Driving Age on 16-yo Dropout Over Time

Not In School = 1

Main Specification Effect Over Time
(1) (2)

Min. Unres. Driving Age >16 (�1) -0.0008
(0.0039)

0-4 Yrs Post 0.0007
(0.0041)

5-9 Yrs Post -0.0012
(0.0048)

10-14 Yrs Post -0.0019
(0.0074)

15+ Yrs Post 0.0041
(0.0096)

School-Leaving Age  16 (�2) 0.0202*** 0.0240***
(0.0051) (0.0063)

Min. Unres. Driving Age >16 -0.0135**
⇥ School-Leaving Age  16 (�3) (0.0052)
0-4 Yrs Post -0.0148**

(0.0059)
5-9 Yrs Post -0.0065

(0.0042)
10-14 Yrs Post -0.0119*

(0.0055)
15+ Yrs Post -0.0169**

(0.0072)

Effect of GDL if -0.0143**
School-Leaving Age  16 (�1 + �3) (0.0061)
0-4 Yrs Post -0.0142**

(0.0056)
5-9 Yrs Post -0.0077

(0.0056)
10-14 Yrs Post -0.0139**

(0.0055)
15+ Yrs Post -0.0128

(0.0083)

Obs 60,864 60,864

Marginal effects evaluated at sample means from probit regression using CPS ASEC
data from 1990–2017. All specifications include: gender; race/ethnicity indicators;
mother’s education; presence of father in household; receipt of SNAP benefits; state
unemployment rate; state log real effective minimum wage; state and year fixed effects.
Observations within states for which the minimum unrestricted driving age is always
greater than 16 during our sample are omitted. Standard errors are clustered at the state
level. * p<0.10, ** p<0.05, *** p<0.01
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out (when school-leaving age is >16). That is, we recast our triple-difference design as
a more standard difference-in-differences design where the treatment is the interaction
of restricted driving laws and non-binding compulsory schooling laws. Given the small,
insignificant, and relatively precise estimates of �1 throughout our analyses, we view this
as a reasonable restriction on the estimation model.

Second, we assume a linear probability model. This is potentially consequential be-
cause our binary outcome variable has a mean that is very close to zero (only 3.8% of
16-year-olds drop out in our sample), a setting in which a linear probability model will
usually generate biased and inconsistent estimates. However, comparing the linear prob-
ability model estimates in Table B.1 with the probit results in Table 2 suggests that this is
reasonable.

Finally, the newly developed estimators that account for treatment effect dynamics in
a difference-in-differences model do not permit treatment to “turn on” and then “turn off”
again. Therefore, we must omit some data from our sample to account for the fact that
our interacted treatment (GDLst⇤CSst) both turns on and turns off over time. Specifically,
in states for which the interacted treatment ever equals one (turns on), we drop all years
of data after treatment then turns off. Figure 1a reveals that states are gradually adopt-
ing GDL laws, and Figure 1b shows that they are also gradually restricting the ability of
16-year-olds to drop out. This implies that the interaction of restricted GDL laws and un-
restricted dropout legality typically comes into effect (turns on) for a period of time before
being blocked (turns off) by more restrictive compulsory schooling laws. To illustrate, the
solid black line in Figure C.1 plots the number of states for which the interacted treatment
is equal to one over time. Many states adopt GDL laws without restricting dropping out
between 1995 and 2001, but the number of states with this interacted treatment begins to
decline slowly through 2010 and more abruptly in 2013 and 2014.

We consider a model similar to Equation 1 that excludes the non-interacted GDLst

term:

NotInSchoolist = �2CSst +
X

k

�sk1[t� Es = k]

+X 0
i⌫ + Z 0

stµ+Ds +Dt + ✏ist, (C.1)

wherein Es is the first year that GDLst ⇤ CSst = 1 in state s and the �sk are potentially
heterogeneous and dynamic treatment effects that, when aggregated, correspond to �3 in
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Figure C.1: Prevalence of the “Interacted” Treatment over Time

Equation 1.49 If, as previously estimated, the true value of �1 is zero, then estimates from
Equation 1 and Equation C.1 should be very similar.

We apply the imputation estimator of Borusyak, Jaravel, and Spiess (2021), which is
the most efficient linear unbiased estimator of any pre-specified weighted sum of treat-
ment effects under the assumptions of parallel trends and homoskedasticity, and has at-
tractive efficiency properties under heteroskedasticity.50 This estimator recovers a well-
defined ATT even under arbitrary treatment-effect heterogeneity and dynamism.

Table 3 in Section 4.1 shows the results using the imputation estimator. The model in
column (1) omits all controls except CSst. Column (2) includes all control variables (Xi

and Zst). Column (3) omits never-treated units (all three columns omit always-treated
units) to test whether our results hinge on comparisons to states that are subject to differ-
ent trends than those that eventually adopt GDL laws. These estimates are nearly iden-
tical to the main results in Table 2. The standard errors, which are conservative under

49They also correspond to �1 + �3 when aggregated because �1 here is assumed to be zero.
50In our setting, this imputation estimator is more computationally robust than estimators that indi-

vidually estimate and aggregate all possible 2x2 difference-in-differences designs (such as Callaway and
Sant’Anna (2021)). Our data includes many individual 2x2 designs that are based on a small number of ob-
servations, and individual estimates from these designs are extremely noisy. The imputation approach uses
more information to estimate st-specific treatments (under a maintained assumption of parallel trends),
and so is more efficient.
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treatment effect heterogeneity but exact if treatment effects are homogenous, are actu-
ally slightly smaller.51 These results imply that our main results are robust to arbitrary
treatment effect heterogeneity and dynamics.

D District-Level Dropout Analyses

To support the findings on teen education outcomes shown in Section 4, we collect school-
district level data on high school dropouts from the National Center for Education Statis-
tics’ (NCES) Common Core of Data (CCD). This data covers school-years from 1994 to
2009 and includes the combined dropout rate for grades 9-12 as well as several time-
varying measures of district-level student demographics and other characteristics. For a
smaller set of years (1994-2001) dropout rates are also reported separately for each grade
9 through 12. Due to reporting inconsistencies, the data comprises an unbalanced panel
of 12,325 school-districts over 16 school-years.

Because this data is aggregated up to the district-by-grade level, we are not able to
implement our preferred triple-difference identification strategy. Each grade will include
individuals who are of varying ages, some of whom might be restricted by the state’s
compulsory schooling laws while others within the same grade are not. Thus, we analyze
the effect of teen driving restrictions on high school dropout rates using a difference-in-
differences strategy, which we estimate with two-way fixed effects:

DropoutRatedst = �GDLst +X 0
dt⌫ + Z 0

stµ+Dd +Dt + ✏dst, (D.1)

where DropoutRatedst 2 [0, 1] is the high school dropout rate for school district d in state s

in year t. Table D.1 shows that the overall average high school dropout rate in our sample
is 3.5%, ranging from an average of 2.6% for 9th graders to 4.3% for those in the 12th
grade.

The primary variable of interest is GDLst, which measures the minimum age at which
teens can obtain a full (unrestricted) driver’s license. The vector Xdt includes time-varying
school-district level controls: percent of students eligible for free lunch; percent of stu-
dents white; number of full-time equivalent teachers; log of total expenditures per stu-
dent; and urbanization indicators. The variable Zst includes the state’s minimum school-
leaving age, log minimum wage, and 3-month average unemployment rate. The model

51See Borusyak, Jaravel, and Spiess (2021) for discussion of inference.
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Table D.1: Summary Statistics on School Districts

Mean Std. Dev Min Max

High School Dropout Rates:

Grades 9-12 0.034 0.05 0 0.99
Grade 9⇤ 0.026 0.05 0 1
Grade 10⇤ 0.035 0.05 0 1
Grade 11⇤ 0.041 0.05 0 1
Grade 12⇤ 0.043 0.06 0 1

% of Students Free-Lunch Eligible 30.4 19.4 0 99.7
% of Students White 77.7 26.2 0 100
# of Full-time Equivalent Teachers 257 843 0 65,804
Expenditure per Pupil (in $1,000s) 10.1 5.71 0 283
Urbanization Category:

Large City 0.02 0.15 0 1
Mid-size or Small City 0.05 0.22 0 1
Suburb of Large City 0.16 0.37 0 1
Suburb of Mid-size or Small City 0.08 0.27 0 1
Large Town 0.02 0.15 0 1
Small Town 0.17 0.37 0 1
Rural - outside CBSA/MSA 0.39 0.49 0 1
Rural - inside CBSA/MSA 0.11 0.31 0 1

Minimum Unrestricted Driving Age 16.7 0.71 15 18
Minimum School-Leaving Age 16.8 0.91 16 18

Source: NCES Common Core Data linked to GDL and CS data; see text
for more details. This data comprises an unbalanced panel of 12,149 school
districts over the 16 years spanning 1994-2009 with a total 114,414 district-
year observations. *Dropout rates for each grade are available for only a
subset of years (1994-2001) and are based on a smaller sample of 45,407
district-year observations.

also includes both district and year fixed effects. District fixed effects control for time-
invariant characteristics of a school, such as location and district membership. Because
schools typically stay relatively fixed in the income distribution of attendee families in
the short and medium term, these also control to some degree for socioeconomic differ-
ences in student populations. We estimate Equation D.1 as a linear model and estimate
standard errors clustered at the state level.

Column (1) of Table D.2 shows that a one year increase in the minimum unrestricted
driving age leads to a 0.42pp reduction in high school dropout rates. This is equivalent to
an 12% reduction in the dropout rate when evaluated at the mean. In Column (2), we re-
place the continuous measure of unrestricted driving age with an indicator variable equal
to one if the minimum unrestricted driving age is greater than 16. Increasing the unre-
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Table D.2: The Effect of Minimum Unrestricted Driving Age on High School Dropout
Rates

Dropout Dropout Dropout Dropout Dropout Dropout Dropout
Rate Rate Rate Rate Rate Rate Rate

Grades 9-12 Grades 9-12 Grades 9-12 Grade 9 Grade 10 Grade 11 Grade 12

(1) (2) (3) (4) (5) (6) (7)

Min. Unres. Driving Age -0.0042***
(0.0011)

Min. Unres. Driving Age >16 -0.0032* -0.0046** -0.0036 -0.0050** -0.0058** -0.0047*
(0.0017) (0.0021) (0.0024) (0.0021) (0.0025) (0.0026)

Years in Sample 1994-2009 1994-2009 1994-2001 1994-2001 1994-2001 1994-2001 1994-2001
Mean Dropout Rate 0.034 0.034 0.036 0.026 0.035 0.041 0.042
Obs 114,043 114,043 44,735 44,166 44,246 44,366 44,623

All specifications include: % of public school students in the district eligible for free lunch; % of public school students who
are white; # of full-time equivalent teachers; log of total expenditures per student; indicators for the district’s urbanization
level; the state minimum legal dropout age; state unemployment rate; state minimum wage; and district and year fixed-
effects. Standard errors are clustered at the state level. * p<0.10, ** p<0.05, *** p<0.01

stricted driving age, and thus restricting teen mobility, is then associated with a 0.32pp
reduction in the high school dropout rate (a 9% reduction from the mean).

In columns (4)-(7), we estimate the effect of teen driving restrictions on dropout rates
for each grade of high school separately. Because of reporting limitations, this restricts
our sample to years before 2002, limiting identifying variation to those states that were
relatively early adopters of GDL laws. Column (3) replicates the specification of Column
(2), but includes only years up to 2001 in the sample. The effect of raising the minimum
driving age to greater than 16 on overall high school dropouts is somewhat larger in
magnitude in this sub-sample, reducing dropouts by 0.46pp. Columns (4)-(7) show that
the effects of increasing the minimum driving age to over 16 are largest for 10th- and 11th-
grade dropout rates (a 14% reduction from the mean in both grades). It is during these
grades that many teenagers obtained full privilege licenses prior to GDL laws (as teens
generally turn 16 during the 10th or 11th grade). These results indicate that imposing
restrictions on teen mobility leads to a sizable reduction in high school dropout rates of
9-14%.

E Details of the Model-Based Analysis

In this Appendix, we detail additional comments about the model and its estimation that
are too lengthy to be included in the main text of Section 6.
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E.1 Identification

Model identification takes advantage of Assumption 1 (idiosyncratic preferences for work
and school are distributed bivariate normal). However, three facets of identification war-
rant additional discussion. First, both � and ⇢ reflect how likely both activities are to be
chosen and are not separately identified without further assumptions. However, activity-
specific utility shifters provide variation that disentangles these two parameters.52 A shift
in the utility of one activity only increases (decreases) the likelihood of choosing the other
activity if both activities are complements (substitutes). Thus comparing outcomes across
different values of the shifter identifies �, while ⇢ then reflects how correlated idiosyn-
cratic tastes are for the two activities.

Second, while the parameters of multinomial probit models are theoretically identified
from choice data, Keane (1992) shows that this identification is weak even in datasets
with reasonable numbers of observations. Stronger identification can be obtained with
activity-specific characteristics, and many applications of multinomial probit exploit such
exclusion restrictions (e.g., Goolsbee and Petrin 2004). Assumption 2 assigns restrictions
on the parameters that serve as coefficients for zst. These become activity-specific utility
shifters, in that two components of zst can only shift the utility of work and the other two
components of zst can only shift the utility of school. As with instrumental variables, the
exclusion restriction alone may not aid estimation. It is also useful for at least one of the
activity-specific utility shifters to have a non-zero effect on the activities they shift. This
relevance condition is likely satisfied, given the ⇡ coefficients in Table 7.

The third identification challenge is to ensure that �k+ reflect the effects of GDL poli-
cies and not other factors that may be correlated with GDL policies. In linear settings,
state and year fixed effects would control for many of these potentially confounding fac-
tors. In non-linear settings, the inclusion of fixed effects can create estimation challenges
(if there are large number of effects) and induce bias in parameter estimates (the “inciden-
tal parameters problem”). Correlated random effects models share many of the benefits
of fixed effects models but are more amenable to non-linear settings. In fact, estima-
tors using fixed effects and correlated random effects are numerically equivalent in linear
models (Mundlak 1978). We therefore assume correlated random effects (Assumption 3)
and include in fk(s, ⇠) a vector with the average value of each x and z for each state. The
model also includes a vector of time dummies (omitting the first sample year to avoid

52Gentzkow (2007) discusses this possibility at length, though instead uses repeated observations per
individual in his model to separate � and ⇢.
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collinearity).53

E.2 GHK Simulator

Our model is similar—but not identical—to a four-choice multinomial probit model. The
fundamental difference is that the idiosyncratic component of the AB choice (choosing
both work and school) is simply a sum of eA and eB. While this is a seemingly minor
change, it has one important consequence. As presented in Assumption 1, ⌦ is positive
definite matrix, therefore allowing for a Cholesky factorization of ⌦ (a Cholesky factor
is a lower triangular matrix L such that LL0 = ⌦). However, if we were to represent
the (normalized) covariance matrix of idiosyncratic preferences in the usual way for a
multinomial probit, we would have:

⌦Extended =

0

B@
1 ⇢� 1 + ⇢�

· �2 �2 + ⇢�

· · �2 + 1

1

CA .

Unfortunately, ⌦Extended is not generally positive definite and so Cholesky factorization of
⌦Extended may not be possible.

The positive definiteness of the covariance matrix of idiosyncratic preferences has im-
portant implications for estimation. Lemma 1 shows that even though the implicit co-
variance matrix is ⌦Extended, we can instead rely just on ⌦ and thus the model can be
estimated using a GHK (Geweke, Hajivassiliou, and Keane) simulator.54 This simulator
is advantageous because it is both fast and reasonably easy to implement, and results in
much smoother likelihood functions than accept-reject simulators. These properties are
computationally useful and also help ensure convergence.

Lemma 1. Under Assumption 1, the model (Equations 7–10) can be estimated with a GHK sim-
ulator.

Proof. To show that the model can be estimated with a GHK simulator is to show that the
model’s choice probabilities can be expressed in the following form

Pr(⌘k < k)⇥ Pr(⌘k0 < k0(⌘k) | ⌘k = x) for k0 6= k,

53Our correlated random effects model has 104 parameters to estimate instead of the 182 required in a
fixed effects specification, saving computational time, improving the likelihood of convergence, and reduc-
ing concerns about incidental parameters.

54For a detailed description of the GHK simulator, see Train (2009).
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where ⌘k and ⌘k0 are random variables distributed i.i.d. standard normal and  are con-
stants that potentially depend upon realizations of ⌘. The key feature is that each choice
probability can be written as multiplicatively separable probabilities in which the first
probability evaluates the unconditional probability of a single, i.i.d. random variable.
The proof will thus proceed in two steps, first showing that the model can be expressed
in terms of i.i.d. standard normal random variables, and second, showing that the choice
probabilities then take the above form.

Step 1: The Cholesky factorization of ⌦ is a matrix L such that LL0 = ⌦. This gives

L =

 
1 0

c d

!
,

where c = ⇢� and d =
p

�2(1� ⇢2). Thus, (eA, eB) d
= (⌘1, c⌘1 + d⌘2), where ⌘1 and ⌘2

represent i.i.d. standard normal variables. Rewrite the model in light of this equivalence
in distribution (suppressing notation denoting individual i):

V (0, 0) = 0

V (1, 0) = V1 + ⌘1

V (0, 1) = V2 + c⌘1 + d⌘2

V (1, 1) = V1 + V2 + �12 + (1 + c)⌘1 + d⌘2. (i.i.d. normal model)

Straightforward substitution of data and coefficients for V1, V2, and � show equivalence to
the primary model (Equations 7–10). Specifically, if V1 = ↵A+ �AGDLA

st+x0
ist�

A+ z0st⇡
A+

fA(s, ⇠)+ �At , V2 = ↵B + �BGDLB
st+x0

ist�
B + z0st⇡

B + fB(s, ⇠)+ �Bt , and �12 = �+ ��GDL�
st,

then the models are equivalent.
Step 2: We now show that the choice probabilities from this i.i.d. normal model can

be derived in order to take advantage of the i.i.d. nature of the ⌘1 and ⌘2 variables. We
show this sequentially for each choice in the choice set. First, the probability of choosing
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neither activity is:

Pr(;) = Pr (V1 + ⌘1 < 0 \ V2 + c⌘1 + d⌘2 < 0 \ V1 + V2 + �+ (1 + c)⌘1 + d⌘2 < 0)

= Pr(⌘1 < �V1) · Pr (V2 + c⌘1 + d⌘2 < 0 \ V1 + V2 + �+ (1 + c)⌘1 + d⌘2 < 0 | ⌘1 < �V1)

= Pr(⌘1 < �V1) · Pr
✓
⌘2 <

min {0,�(V1 + �+ ⌘1)}� V2 � c⌘1
d

| ⌘1 < �V1

◆

= �(�V1)

Z �V1

�1
�

✓
min {0,�(V1 + �+ ⌘1)}� V2 � c⌘1

d

◆
�(⌘1)d⌘1,

where � and � represent the standard normal p.d.f. and c.d.f., respectively, and � = �12

for ease of exposition. Next, the probability of choosing work only is:

Pr(A) = Pr (0 < V1 + ⌘1 \ V2 + c⌘1 + d⌘2 < V1 + ⌘1 \ V1 + V2 + �+ (1 + c)⌘1 + d⌘2 < V1 + ⌘1)

= Pr(⌘1 > �V1)

· Pr (V2 + c⌘1 + d⌘2 < V1 + ⌘1 \ V1 + V2 + �+ (1 + c)⌘1 + d⌘2 < V1 + ⌘1 | ⌘1 > �V1)

= Pr(⌘1 > �V1) · Pr
✓
⌘2 <

min {V1 + ⌘1,��}� V2 � c⌘1
d

| ⌘1 > �V1

◆

= (1� �(�V1))

Z 1

�V1

�

✓
min {V1 + ⌘1,��}� V2 � c⌘1

d

◆
�(⌘1)d⌘1.

Next, the probability of choosing the school activity only is:

Pr(B) = Pr (0 < V2 + c⌘1 + d⌘2 \ V1 + ⌘1 < V2 + c⌘1 + d⌘2

\V1 + V2 + �+ (1 + c)⌘1 + d⌘2 < V2 + c⌘1 + d⌘2)

= Pr (0 < V2 + c⌘1 + d⌘2 \ V1 + ⌘1 < V2 + c⌘1 + d⌘2 \ V1 + �+ ⌘1 < 0)

= Pr(⌘1 < �V1 � �) · Pr (0 < V2 + c⌘1 + d⌘2 \ V1 + ⌘1 < V2 + c⌘1 + d⌘2 | ⌘1 < �V1 � �)

= Pr(⌘1 < �V1 � �) · Pr
✓
⌘2 >

max{0, V1 + ⌘1}� V2 � c⌘1
d

| ⌘1 < �V1 � �

◆

= �(�V1 � �)

Z �V1��

�1

✓
1� �

✓
max{0, V1 + ⌘1}� V2 � c⌘1

d

◆◆
�(⌘1)d⌘1.
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And, finally, the choice probability for both activities is:

Pr(AB) = Pr (0 < V1 + V2 + �+ (1 + c)⌘1 + d⌘2\

V1 + ⌘1 < V1 + V2 + �+ (1 + c)⌘1 + d⌘2\

V2 + c⌘1 + d⌘2 < V1 + V2 + �+ (1 + c)⌘1 + d⌘2)

= Pr (0 < V1 + V2 + �+ (1 + c)⌘1 + d⌘2\

V1 + ⌘1 < V1 + V2 + �+ (1 + c)⌘1 + d⌘2\

0 < V1 + �+ ⌘1)

= Pr(⌘1 > �V1 � �)·

Pr (0 < V1 + V2 + �+ (1 + c)⌘1 + d⌘2\

V1 + ⌘1 < V1 + V2 + �+ (1 + c)⌘1 + d⌘2 | ⌘1 > �V1 � �)

= Pr(⌘1 > �V1 � �) · Pr
✓
⌘2 >

max{�(V1 + ⌘1), 0}� V2 � �� c⌘1
d

| ⌘1 > �V1 � �

◆

= (1� �(�V1 � �))

Z 1

�V1��

✓
1� �

✓
max{�(V1 + ⌘1), 0}� V2 � �� c⌘1

d

◆◆
�(⌘1)d⌘1.

Thus, the choice probabilities can be written as multiplicatively separable probabilities
in which the first probability evaluates the unconditional probability of a single, i.i.d.
random variable.

Although the algebra is somewhat cumbersome, there is no significant additional
computational cost beyond what is used when estimating a typical (normalized) trino-
mial probit model. The primary differences with a trinomial probit are that (i) there is
one additional choice probability and that (ii) the conditional probabilities contain non-
linear functions of the conditioning random variable.

The advantage of the GHK simulator over simply estimating directly from draws of
(eA, eB) is that the GHK simulator preserves continuity in one of the dimensions of the
random variable. That is to say, the unconditional probability in the above choice proba-
bilities need not be simulated, and so can be smoothly evaluated via standard numerical
means. Simulation needs to be undertaken only for the conditional probabilities. This
smoothing greatly enhances the performance of optimization routines at finding maxima.
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E.3 Estimation Details

To simulate ⌘2, we use Halton draws. We then estimate the model by maximum simulated
likelihood. Specifically, we code the model in Julia using the L-BFGS optimization routine
in the Optim package (Mogensen and Riseth 2018). Because ⇢ and � cannot take on all
real values, we transform them as:

⇢̃ =
1

2
ln

✓
1 + ⇢

1� ⇢

◆
and �̃ = ln(�).

We use ⇢̃ and �̃, along with all the other coefficients (as is) for unconstrained optimization.
Our optimization procedure consists of several steps:

1. Maximize the simulated likelihood of a variant of the model where �At and �Bt are
replaced with linear time trends with 100 draws of ⌘2 for each observation, using
starting values of ⇢̃ = �0.2 and �̃ = �0.5 and all other coefficient at zero (experi-
mentation showed that these starting values improved convergence).

2. Maximize the simulated likelihood of a variant of the model where �At and �Bt are
replaced with linear time trends with 250 draws of ⌘2 for each observation, using
the optimum from Step 1 for starting values.

3. Maximize the simulated likelihood of the full model with 100 draws of ⌘2 for each
observation, using the optimum from Step 2 for starting values and extrapolating
the linear time trends to create starting values for individual year dummies.

4. Maximize the simulated likelihood of the full model with 250 draws of ⌘2 for each
observation, using the optimum of Step 3 for starting values.

E.4 Model Fit

Table E.1 assesses how well our estimated model explains the data by showing how often
a simulated choice matches the observed choice (averaged over 100 draws of (eAi , eBi ) for
each individual). The model slightly overestimates the probabilities of choosing neither
work nor school (0,0) and school only (0,1), while it slightly underestimates the proba-
bilities for work only (1,0) and the both work and school choice (1,1). Overall, summing
the diagonal components of Table E.1, the model correctly classifies those in the sample
62.3% of the time. Given the large number of individual characteristics that we do not
observe, we believe this to be a reasonable approximation.
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Table E.1: Model Fit

True P(0,0) True P(1,0) True P(0,1) True P(1,1)

Totals 2.454% 1.329% 74.271% 21.946%
Model P(0,0) 2.470% 0.084% 0.040% 1.911% 0.435%
Model P(1,0) 1.309% 0.037% 0.020% 0.935% 0.317%
Model P(0,1) 74.282% 1.877% 0.972% 56.188% 15.245%
Model P(1,1) 21.939% 0.455% 0.296% 15.238% 5.949%

Shows the shares of each observed and simulated outcome of the model using
parameters shown in Table 7 averaged over 100 draws of errors from a bivariate
normal with a standard generator. The top row shows the observed share of
the population choosing each outcome, whereas the right column shows the
average simulated shares that choose each outcome. The other cells show the
average shares of the population for each observed and simulated outcome
combination. Observations are weighted using sample weights.

E.5 Counterfactuals: Decompositions and Invariance

To decompose total treatment effects into their direct and indirect components, first let Pc

be functions of the data and estimated parameters that explicitly take the four vectors of
GDL variables and the auxiliary parameter as arguments:

Pc(GDL0
st, GDLA

st, GDLB
st,GDL�

st, �̃
0) =

n�1
X

i

Ee1[Vi(c) � Vi(c
0)|GDL0

st, GDLA
st, GDLB

st, GDL�
st, �̃

0],

where n is the total number of observations. The right hand side captures the average
probability of an activity choice, given the GDL variables and �̃0. In a slight abuse of
notation, let 0 or 1 be admissible arguments to the GDL arguments of Pk that reflect
setting all values to 0 or 1, e.g., P (0,1)(0, 0, 0, 0, �̃0) The total shares of the population that
choose each activity are:

QA(·) = P (1,0)(·) + P (1,1)(·), QB(·) = P (0,1)(·) + P (1,1)(·), and Q?(·) = P (0,0)(·)

for work, school, and neither work nor school, respectively.
The total effect of GDL laws captures the overall effect on each activity of increasing

the minimum unrestricted driving age from 16 or less to greater than 16. In the model, this
is captured by the differences in choices when GDLk

st = 1 compared to when GDLk
st = 0,
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8k, s, t:
✓kTot(�̃

0) = Qk(1, 1, 1, 1, �̃0)�Qk(0, 0, 0, 0, �̃0), 8k 2 {?, A,B}.

The total effect is invariant to the value �̃0, so ✓kTot = ✓kTot(�̃
0), 8�̃0, though this will not be

generally true for the decompositions. We simulate these model-based treatment effects
(and their decompositions) to reflect the triple-difference design described in Section 3.
That is, for these simulations we set CS = 1 and thus CS ⇥GDL = GDL.

We next use the model to decompose each of the three total effects into their direct
and indirect channels. The direct effects reflect how each GDL component affects its
own activity, e.g., the effect of GDLA on working and of GDLB on school. As such, it is
governed by �̃A for work, �̃B for school, and �̃0 for neither. Because GDL laws restrict
mobility, we expect that they will weakly reduce the value of each activity and that direct
effects will therefore be weakly negative. The indirect effects capture the consequences of
the GDL components on the other activities, i.e., of GDL0, GDLB, and GDL� on working,
or GDL0, GDLA and GDL� on school-going.

We define these effects in a consistent manner that additively decomposes the total
effects into the two types of channels.55 Specifically:

Neither activity effects
✓?Dir = Q?(1, 0, 0, 0, �̃0)�Q?(0, 0, 0, 0, �̃0) Direct effect on “neither” activity
✓?Ind = Q?(1, 1, 1, 1, �̃0)�Q?(1, 0, 0, 0, �̃0) Indirect effect on “neither” activity

Employment effects
✓ADir = QA(0, 1, 0, 0, �̃0)�QA(0, 0, 0, 0, �̃0) Direct effect on employment
✓AInd = QA(1, 1, 1, 1, �̃0)�QA(0, 1, 0, 0, �̃0) Indirect effect on employment

Schooling effects
✓BDir = QB(0, 0, 1, 0, �̃0)�QB(0, 0, 0, 0, �̃0) Direct effect on school-going
✓BInd = QB(1, 1, 1, 1, �̃0)�QB(0, 0, 1, 0, �̃0) Indirect effect on school-going

Table 8 includes in italics additional terms that focus on specific indirect channels to aid
interpretation. For example, the indirect effect of GDL laws on schooling decisions con-
sists of a component stemming from reduced access to employment and a component
stemming from reduced access to leisure (represented by the neither option).

55There are several reasonable ways to define these effects to reflect slightly varied counterfactuals. This
definition has the advantage of additivity.
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