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ABSTRACT
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A Complete Framework for Model-Free 
Difference-in-Differences Estimation
We propose a complete framework for model-free difference-in-differences analysis with 

covariates, where model-free means data-driven, in particular nonparametric estimation 

and testing, variable and scale choice. We start with searching for the preferred data 

setup by simultaneously choosing confounders and a scale of the outcome variable along 

identification conditions. The treatment effects themselves are estimated in two steps: 

first, the heterogeneous effects stratified along the covariates, then the average treatment 

effect(s) for the population(s) of interest. We provide the asymptotic statistics as well as 

the finite sample behavior of our methods, and suggest bootstrap procedures to calculate 

standard errors and p-values of significance tests. The pertinence of our methods is shown 

with a study of the impact of the Deferred Action for Childhood Arrivals program on human 

capital responses of non-citizen immigrants. We show that past results underestimated the 

positive impact on school attendance for individuals aged 14-18, and the positive impact on 

high school completion. Moreover, we find that the parametric methods fail to identify the 

negative impact on school attendance of college aged individuals. Practical issues including 

bandwidth selection, sample weights, and implementation are given in the supplement. 
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1 | INTRODUCTION

Arguably the most popular estimation technique to study treatment e�ects in a Rubin-Causal-Model (Holland, 1986)
is the so-called di�erence-in-di�erences (DiD) approach. This is feasible when via a panel or repeated cross-sections
of individuals are observed both before and after an intervention has taken place. Our methods are outlined for
repeated cross-sections (cohorts); balanced panels give simpli�ed versions. We call such intervention or similar event
a ‘treatment’. Although the basic concept for identifying the causal e�ect applies to more complex situations (Lechner,
2011), we limit our considerations to the case of a single treatment and two groups (treatment group,D = 1 and control
group, D = 0). The primary assumption behind this method for identifying the treatment e�ect on the treated is that
without such intervention, the (conditional) outcome of interestY experienced in both groups would have developed
similarly over time. This is also known as the ‘common trend’ or ‘parallel path’ condition. This insinuates that there is
only a constant di�erence between the two groups, disturbed by this treatment.

Often it is unlikely that this di�erence is independent of other factors (e.g., age distribution or infrastructure). The
fear is that, for instance, di�erences in age structure predict di�erent developments ofY , or that certain infrastructure
changes impact, while neither originate from treatment itself. In the former case you can think of an interaction
between a (pre-)condition and time, and in the latter of an exogenous change of conditions over time. These fears
can be mitigated by proper conditioning, say by including confounders X . While for identi�cation a common trend,
conditional or unconditional, is only required for a given period around treatment, it seems reasonable to assume that
this should also hold for the period(s) before the intervention. The same could be said about periods after treatment
only if the treatment simply shifts the development ofY by a constant.

For the considerations above, we focus on the di�erence in di�erences of means, namely

{E [Yt |x , d1 ] � E [Yt |x , d0 ] } � {E [Yt�1 |x , d1 ] � E [Yt�1 |x , d0 ] }, (1)

where in E [Ys |x , d ] := E [Ys |Xs = x ,Ds = d ], we condition the expectation of Y on a set of confounders X and
treatment status D in period s . For simplicity we consider d 2 {0, 1}, i.e. treated (d = 1) and controls (d = 0). When
treatment takes place between periods t �1 and t , (1) gives the conditional treatment e�ect on the treated fromwhich
we can obtain average e�ects.1 This is based on the assumption that (1) had been zero for all x without treatment.
Thus, to identify a causal e�ect, we work with a scale forY and a set X such that (1) is zero (noting that both choices
have consequences for the interpretation). Using this statistic can turn a bane into a boon: while it may be di�cult
to convince others that this assumption is ful�lled, an appropriate statistic can guide you data-adaptively. Assuming
data is available in at least one period prior to treatment (say, t = �1), we can check if (1) is zero for a given X prior to
treatment (say, the development between t = �1 and t = 0). We emphasize that while this is not the (non-testable)
identi�cation condition needed, it empirically supports its credibility.

Equation (1) is far more useful than being used to estimate an average treatment e�ect on the treated (TT). We
study its estimation, including heterogeneous TT, its sample average (i.e., the TT itself), and the analogue of its squares
(i.e., test statistics). In each case, we study the asymptotic and �nite sample properties. In practice, it is likely preferable
to rely on bootstrap methods than on estimates of complex asymptotics. For the test, a challenge is to �nd then
procedures that generate data under the null hypothesis.

Without confounders, the linear DiD estimator is identical to the nonparametric TT estimator. However, in the
presence of confounders, this need not be the case (Meyer, 1995). Nonparametric estimation is often avoided for
fear of the curse of dimensionality. While this curse can be real, in many situations, it is not an issue. For example, in

1For simplicity, we will consider three time periods t = �1, 0 and 1. The treatment will occur between periods 0 and 1.
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the presence of only discrete regressors, Ouyang et al. (2009) show that the nonparametric conditional expectation
estimator can be estimated at the parametric (i.e., root-n) rate without asymptotic bias. Unless the number of variables
increases with the sample size, only continuous confounders count for the curse. If the unconditional treatment e�ect
is of interest, you need to have more than three continuous variables to be a�ected asymptotically; else, often higher
smoothness conditions are assumed that allow for bias reduction to end up with the optimal rate. Many variables
are discrete, and many continuous variables are measured or recorded discretely (e.g., years of education), and a
nonparametric approach is reasonable even when all confounders are discretely measured. In our application we
show that this holds true even computationally.2 The case of mainly or even only discrete regressors is surprisingly
common. For example, in our data analysis, Kuka et al. (2020) examine human capital responses to the availability of
the Deferred Action for Childhood Arrivals (DACA) program. In addition to having all binary right-hand-side variables,
their outcome variables are binary. As authors usually have a mix of discrete and continuous variables, we consider
this general setting and argue that empirical researchers should be more concerned about systematic biases and
inconsistency due to model speci�cation than the curse of dimensionality in model-free estimation.

Our contribution is the introduction of a complete framework for model-free DiD based causal analysis under the
potential presence of confounders. We start by presenting a data-driven procedure to �nd an appropriate scale ofY
with a set of confounders compounded in a vector X that (both together) prove to have some credibility to identify
the treatment e�ects via the ‘parallel path’. As this cannot be done for the period of interest itself, we can study the
parallel path for previous periods (i.e., not the actual assumption but an indicator for its plausibility). We then estimate
the identi�ed e�ects on the treated. The procedure is concluded by the introduction of nonparametric tests for
signi�cant treatment e�ects. Modi�ed versions of the simultaneous test for signi�cance of conditional e�ects can be
used for testing heterogeneity of e�ects or the credibility of identi�cation assumptions. The analytical developments
(with technical details in the Supplement) are completed by simulations (deferred to the Supplement) which show the
usefulness of all methods even for very small samples.

One may ask about post-selection (or pretesting) inference as we propose a procedure that allows you to select
between di�erent covariates and scales of Y , or to test for bias stability before treatment started. However, our
problem di�ers from the post-selection inference typically considered (cf. Rolling and Yang (2014) for the treatment
e�ect estimation context). Speci�cally, Taylor and Tibshirani (2015) describe the standard problem as follows: “Having
mined a set of data to �nd potential associations, how do we properly assess the strength of these associations? The
fact that we have cherry-picked, i.e. searched for the strongest associations means that we must set a higher bar for
declaring signi�cant the associations that we see.” Our criterion is not the covariates contribution to a regression, but
themaximization of bias stability, i.e. checking the identifying assumptions necessary for causal conclusions. However,
as this is infeasible for the period of interest, it has to be done for a prior period. That is, there is no cherry-picking for
signi�cance or �nding the strongest treatment e�ect; we rather do the contrary, maximizing the conditional indepen-
dence. Doing this for periods prior to the one of interest suggests to apply a strategy equivalent to sample splitting.
The existing literature related to our context even advises against conditioning on such pretests (Roth, 2022).

To highlight usefulness and relevance of our approach, we re-examine the results of Kuka et al. (2020). We �nd
mixed evidence that their set of confounders satisfy the ‘parallel path’ assumption. Regarding their treatment e�ect
estimates, their models underestimate the positive impact that DACAhad on the rate at which 14-18 year old students
stayed in school and the positive impact of DACA on high school completion (either via graduation or obtaining a GED).
Moreover, they fail to identify the negative impact of DACA on school attendance of college aged individuals (19-22).
With respect to enrolling in college, we can con�rm that these e�ects are insigni�cant.

2It is relatively straightforward to employ parametric or semiparametric versions of our methods. However, these strict parametric assumptions may or may
not be validated by domain knowledge like economic theory, but the misspeci�cation of functional forms typically leads to biased and inconsistent estimates.
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Section 2 presents the basics of model-free conditional DiD analysis. Section 3 suggests a tool to evaluate the
choice of scale and confounders along the ‘parallel path’ assumption. Section 4 presents the estimator and its asymp-
totic properties. This is followed by a general format for nonparametric signi�cance tests in Section 5 together with
their bootstrap approximation. Section 6 contains our application, and Section 7 concludes. Technical details, simu-
lations, implementation with practical issues like bandwidth choice and sampling weights as well as details on the
procedure code can be found in the Appendix and Supplement.

2 | NONPARAMETRIC DIFFERENCE-IN-DIFFERENCES

Although our main contribution is not a new estimator, but the provision of a complete framework of the causal
analysis, we brie�y discuss some of the most related literature as long as it comes along with the corresponding
asymptotic theory. For amore general discussion, recalling ideas, de�nitions and assumptions ofDiDwith confounders
we refer to Frölich and Sperlich (2019). For a linear parametric DiD with confounders you can consult Sant’Anna and
Zhao (2020) who considered a so-called double robust version, i.e., using propensity score weighting and regression.3

In a fully parametric context, you get a consistent estimator of the treatment e�ect, if either the propensity score or
the regression function is correctly speci�ed. In nonparametric estimation, both functions are ‘correctly speci�ed’, and
it is not clear if doing both would result in an improvement in practice. However, Kennedy et al. (2017) introduced a
special nonparametric doubly robust matching estimator for continuous treatment whose extension to DiD could be
interesting. Abadie (2005) and Qin and Zhang (2008) proposed DiD with non- and semiparametric propensity score
weighting, respectively. Chan et al. (2016) proposed a more general weighting scheme for matching, but not the entire
DiD. As there is no general superiority of propensity score weighting over the matching, we stick to the latter (i.e., a
DiD regression approach). The advantage is that then we do not need to jump between nonparametric propensity
estimation to nonparametric regression and back. We also avoid numerical problems that occur when dividing by
nonparametric estimates of potentially small propensities.

Another reason is that for exploring potential heterogeneity of e�ects beyond confounders (variables that partly
predict both, D and Y ), you need to regress on these additional covariates in X anyhow, as (conditional on the con-
founders) the propensity score does not exhibit any variation on them. As Frölich and Sperlich (2019) discuss, there
are further reasons you might condition on certain covariates. One is to measure a direct or partial impact of D onY ,
controlling for certain covariates that are impacted by D ; another is to include covariates that are not impacted by D ,
but have predictive power for Y . Their inclusion can improve the statistical analysis by resting noise. Which covari-
ates to choose is seemingly the researcher’s choice, but this has implications for both, interpretation and assumptions.
As we condition on both, confounders and additional covariates, we will henceforth speak of ‘covariates’ in general.
Further, we use the notation thinking of cohorts where T stands for the random variable indicating the time period.
Where appropriate we will discuss the case of panel data explicitly.

2.1 | Di�erence-in-di�erences with covariates

Assuming that two groups have an unconditional common trend in their responses over a certain period of time might
be too strong of a restriction. Before estimating the treatment e�ect, we should have a closer look to the identi�cation
conditions. We need to observe a set of covariates X , and know the scale ofY , such that stochastically speaking, the

3This is not to be mixed up with double machine learning or double debiased methods. These are completely di�erent concepts, both designed to tackle
problems we don’t have.
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parallel path and a common support condition holds in the mean. However, as we need to assume the common trend
for the period in which the treatment takes place, we have to introduce the notion of ‘potential outcomes’ forY , where
Y d represents the response that would be obtained if treatment D = d had taken place. We further need to de�ne
the domain X ⇢ supp (X ) which is implicitly determined by the so-called common support condition (CSC) which
says that [x 2 X, [(t , d ) 2 { (0, 0), (1, 0), (0, 1) }

CSC P (T = 1 \ D = 1 |X = x , (T ,D ) 2 { (t , d ), (1, 1) } ) > 0,

where for the sake of notation time T is dealt with like a random variable. Loosely speaking, we assume that X
takes similar values for each group in each time period. There should be no value of X whereby we cannot �nd a
counterfactual match. This says little about the underlying distribution of X within each group in each time period. If
necessary, we can rede�ne the population of interest such that this holds. For identi�cation of the treatment e�ect,
observations before treatment (t = 0) are supposed to be free of anticipation e�ects; else you only measure the
treatment minus anticipation. Speci�cally:

Assumption I For all x 2 X the di�erence in potential outcomes under no treatment (Y 0) between the treatment
and control group is the same before and after treatment:

n
E

h
Y 0
t=1 |x , 1

i
� E

h
Y 0
t=1 |x , 0

io
=

n
E

h
Y 0
t=0 |x , 1

i
� E

h
Y 0
t=0 |x , 0

io
. (2)

We are no longer looking for a parallel path of the potential outcomes Y 0, but ofY 0 |x , an important distinction
when switching from unconditional to conditional DiD. Moreover, (2) highlights the link to matching estimators based
on a conditional comparison of treatment versus control groups after treatment (t = 1). In that setting, we assume
that the vector X accounts for all di�erences in Y 0 such that the left-hand-side of (2) is zero, and if not, its average
over all x is the bias of the well-known TT matching estimator. We only assume that this di�erence is the same before
treatment, suggesting that we can use pre-treatment data for bias correction. Therefore, calling Assumption I ‘bias
stability’ is perhaps more appropriate as it does not deceptively insinuate a parallel path ofY 0.

The above assumptions allow for the inclusion of covariates changing over time. Assumption I is the usual ‘non-
testable identi�cation condition’. However, as said earlier, it is not very credible if it does not hold before treatment
as well. Consequently, we could apply this assumption to periods prior to treatment (t = �1 and 0) and use data from
those periods to evaluate its credibility, which is feasible because for t < 1,Y 0

t =Yt .

Denote the conditional expectations for each year and treatment group by

mdt (x ) = E [Y |X = x ,D = d ] , d = 0, 1, t = �1, 0, 1 . (3)

Obviously, under Assumptions I and CSC, the conditional TT for a given x is identi�ed by

TT x = {m11 (x ) � m01 (x ) } � {m10 (x ) � m00 (x ) }, (4)

and consequently also the unconditional TT for any (sub-)population, by integrating out x accordingly. Let nd t denote
the number of observations in group d at time t , and suppose that all nd t converge at the same rate to in�nity. Further,
denote TTa as the TT that results from integrating TTx over the distribution of x in the group with D = T = 1. We
will also comment on the TT that results from integrating over all individuals with D = 1 (TTb ). For balanced panels,
TTa and TTb are the same. We will speak of TT when we refer to both. Recall that we do not require a balanced
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panel. Consequently, we typically do not observe X for all people at all time points. All our methods and results are
applicable to the simpler case of balanced panels. A balanced panel from the onset does not lead to equivalent results
for repeated cross-sections, but it simpli�es the asymptotics as will be shown further below and in the supplement.

2.2 | Nonparametric conditional expectations

Most empirical papers use linear panel data methods to estimate the TT. While the linear speci�cation without co-
variates is equivalent to the method derived via conditional expectations, there is no such result here (Meyer, 1995).
Even if one had only discrete X which we would decompose into dummies; a saturated linear model would require
to include all these dummies together with all their interactions of any order.4 We are not aware of any practical
work having done this; such inclusion is usually arbitrary, guided by numerical convenience. Clearly, if just one covari-
ate is continuous or discrete with many values, this problem is heavily aggravated. Nonparametric methods remove
these concerns. Practitioners often ignore the use of these methods and use the curse of dimensionality as their
argument against them. Yet, in most common settings, the curse of dimensionality is not an issue as only very few of
the covariates are actually continuously measured. This is even more so for the DiD compared to all competitors for
nonexperimental data, as the di�erencing already accounts for many counfounders.

Now, suppose the scale of Y and the set of covariates are given. In a �rst step, for each group d and each time
point t , we can estimate their mean functionsmdt (x ) from the data set {Yi t ,Xi t }nd ti=1 |Di t = d . Let us split the vector of
covariates Xi t into a vector with p continuous variables entering the smoother, say X s

i t = (X s
i t ,1, ...,X

s
i t ,p ) and another

vector with k categorical variables X c
i t = (X c

i t ,1, ...,X
c
i t ,k ) . We use a multiplicative kernel K (Xi , x , h, � ) =W (X s

i , x
s , h ) ·

�dXi ,x where dXi ,x : =
Õk

l=1 1{X c
i t ,l , xcl } andW a product of p univariate continuous kernels w { (X s

i t ,l � xsl )h
�1}h�1,

l = 1, ..., p , where h and � are our bandwidths.5 Under standard regularization conditions outlined in Ouyang et al.
(2009) and (cf. also Li et al. (2009) for propensity score weighting), namely on the smoothness of mdt ( ·) and density
fd t ( ·) of X s , for �, h ! 0 when nd t ! 1, we have

p
nd t hp

� bmdt (x ) � mdt (x ) � Bdt (x , h, � )
 
! N (0,⌦d t (x ) ) (5)

where the conditional mean estimator, given by

bmdt (x ) =
nd t’
i=1

K (Xi , x , h, � )Yi /
nd t’
i=1

K (Xi , x , h, � ) (6)

is the local-constant least-squares estimator where xs is an interior point of X s . For boundary points, we need to take
boundary kernels to achieve this rate. The convergence rate, and thereby the curse of dimensionality, is only a�ected
by the continuous covariateswithout imposing any separability structure between continuous and discrete covariates.
Unless � = 0, this does not correspond to sample splitting, but it is more e�cient in practice. The bias equals

Bdt (x , h, � ) = h2
h
+t md t (x )+fd t (x )/fd t (x ) + t r {+2mdt (x ) }

i π
w (u )u2du (7)

4The common practice of splitting the sample to obtain heterogenous estimates in the parametric world is valid assuming the functional form is correct and
there is a su�cient number of observations in each cluster. This practice addresses parameter heterogeneity, it does not cure functional formmisspeci�cation.

5The notation for the bandwidths h and � are distinct because of the asymptotic properties for continuous vs discrete variables. We do not have a second set
of bandwidths (just one per covariate). In practice, one can use a separate bandwidth (i.e., hl , �k ) for each covariate. For notational convenience we treat
them as equal in our theory (hl [l , and �k = � [k ). The theoretical extension is straightforward.
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+�
’

x̃ ,dx̃ ,x=1

�
mdt (xs , x̃ c ) � mdt (x )

 
f (xs , x̃ c )f �1d t (x )

and ⌦d t (x ) = V ar (Y |x ,D = d ,T = t )
π

w 2 (v )dv f �1d t (x ), (8)

where +µ (x ) denotes the p-dimensional vector of �rst derivatives of the function µ ( ·) with respect to the continuous
covariates xs , and +2 is the corresponding Hessian. Equation (5) shows only the number of continuous covariates
(p) impedes the parametric rate (root-n) of convergence. By using local-polynomials, we could achieve a faster rate
for the bias (h2) as long as we are willing to accept higher smoothness conditions on mdt ( ·) and the densities of the
continuous covariates. In our application, however, all of our covariates are discrete and hence a local-polynomial
estimator is not only unnecessary, it is infeasible.

3 | COVARIATES AND SCALE

Before estimating the TT, we �rst need to decide on the set of covariates, and the scale of the response Y . While
domain knowledge like intuition or economic theory may tell you assuming a common trend is sensible, it does not
necessarily tell you the right scale nor the right set of covariates X S ✓ X for which it holds. One uses domain
knowledge to help specify the causality model, but allow the data to drive the set of confounders, scale ofY and the
form of the conditional expectations. For the ease of presentation, we only consider TTa ; modi�cations for TTb and
TTx are mostly evident.

The scale matters as it is well known that generally, if the common trend (2) holds for one scale ofY , it can hold
for a�ne, but not for nonlinear transformations due to Jensen’s Inequality. The scale ofY is obviously irrelevant for
Assumption I if there is no trend or if there is no selection bias (i.e. both sides of (2) are zero); Roth and Sant’Anna
(2021) discussed time invariant mixtures of these two cases. For all other situations the scale is important. Unless
the researcher has a strong opinion about it, this could be chosen data-adaptively. The covariates are often driven by
reasons of total versus partial TT estimation, the reduction of noise, and Assumption I. While the �rst is fully up to
the researcher’s interest, the second should be limited to a few cases (due to its implications for interpretation), the
third could be done data-adaptively.

Although we propose a feasible, computationally inexpensive procedure, both choice problems are theoretically
intertwined. Therefore, the data-adaptive choices should be based on the same objective function and be considered
as a simultaneous problem. The objective is to comply with Assumption I, but as all non-treatment outcomesY 0 are
observed only prior to the treatment, we consider periods prior to treatment, e.g.

1

n1•

’
i : Di•=1

�
m1t (xi• ) � m0t (xi• ) � m1(t�1) (xi• ) +m0(t�1) (xi• )

 2
, for t < 1, (9)

where the summation is over treated individuals in time period t (i.e., n1• = nd t , Di• = Di t and xi• = xi t ) if we are
interested in TTa (similarly, n1• = n1t + n1(t�1) , Di• = Di and xi• = xi if we are interested in TTb ). Here m ( ·) refers to
the conditional expectation of a potential transformation ofY , conditioned on di�erent subsets xS of the potential set
of covariates. One would choose a transformation and covariates that minimize (9). Alternatively, we could likewise
integrate (9) over the xi1 of the treated in t = 1.

As discussed, (9) does not fully correspond to Assumption I, it only gives credibility to it. This is the reason whywe
speak of evaluation, not of testing. It also has little to do with the typical variable selection problem, especially popular
in treatment e�ect estimation with LASSO. The target in that literature is e�cient estimation, while identi�cation is
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already taken as granted, and the objective function is a penalized least squares or moment condition for estimation.
It has nothing to do with our objective or procedure. Moreover, our above objective function is di�erent from the
one we will use below for estimation, as such, popular procedures for debiasing or post-selection inference have no
meaning here. Following Kuchibhotla et al. (2022), the only feasible way we see here for addressing the post-selection
problem is to perform an analogue to sample-splitting; either to use t < 0 in (9), or to split the samples of time point
0 when using t = 0 in (9). In the case of facing panel data we still need some orthogonality assumption for the
residuals. It is also the potential auto-correlation in the residuals that destroys selective inference in this situation (cf.
Roth (2022)). In our conclusions we discuss bootstrap based inference that could account for the variability of our
entire procedure. In practice, instead of doing post-section or selective inference, we could do a robustness check
by performing estimation and testing not only for the best scale-and-covariates combination found in the prior-to-
treatment periods, but also for the second and third best.

3.1 | Data-driven evaluation of potential scales

Finding a strictly monotonous transformation ofY that ful�lls (2) corresponds to �nding a proper scale. Consequently,
it must provide a reasonable interpretation as back-transformation gets a�ected by Jensen’s Inequality. Unless you
face one of the discussed situations in which the scale ofY is irrelevant for (2), asymptotically that transformation is
unique. For �nite samples, however, this does not need to be the case. In practice, this is not an issue as for inter-
pretation reasons we would only compare two to four di�erent scales. You may think of the Box-Cox transformation
which depends on a parameter ✓ givingY (✓ ) but you only consider ✓ 2 {0, 0.5, 1}, say from a set ⇥. For each set xS

of covariates, there exists a parameter value ✓Sopt that optimizes the common trend condition. Clearly, (9) looks at the
squared deviations from Assumption I in a prior period, and can thus be understood as a measure of variation. Since
variations are scale dependent, we propose to adapt the criterion by accounting for the variance ofY (✓ ) , and de�ne
for any given S and a �xed t < 1, the optimal transformation parameter forY by

✓Sopt =ar gmi n
✓ 2 ⇥

1

n1•

’
i : Di•=1

n bm1t (xS
i• ) � bm0t (xS

i• ) � bm1(t�1) (xS
i• ) + bm0(t�1) (xS

i• )
o2

/ öV ar• [Y (✓ ) ], (10)

where öV ar• [Y (✓ ) ] is a standard estimator of the unconditional variance of the transformed responses. As for n1• and
Di•, the • indicates if this variance refers to the (sub-)population of all subjects belonging to the treatment group or
only the treated in t .

As nonparametric conditional expectation estimators depend on bandwidths, it is worth mentioning that for this
step, we do not need optimal bandwidths for each ✓. It is su�cient to have a bandwidth for which the selection out-
come along the above criterion does not importantly change compared to the outcome based on an optimal bandwidth.
This statement can hardly be de�ned more precisely due to di�erent uncertainties we face, including the variance of
various estimators, and the question of how we de�ne ‘optimal bandwidth’ in our context. In practice, we ask that for
the grid of values over which we search for ✓, our working bandwidth picks the same ✓Sopt (or a very similar one) as the
optimal bandwidth would. We suggest using the computationally attractive plug-in bandwidths (see Henderson and
Parmeter (2015) and Chu et al. (2015)). For small samples, these tend to slightly oversmooth what would stabilize the
numerical performance of the selection procedure. You should not search for the optimal bandwidth using a criterion
like (9) or (10) as these criteria are supposed to be based on reasonable estimates of bm ( ·) , but not vice-versa.
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3.2 | Data-driven evaluation of confounder sets

While domain knowledge helps clarify which covariates to include, data-drivenmethods can help guide us by choosing
credible sets. It is often argued that the covariates should not be impacted themselves by the treatment, and therefore,
only time invariant covariates are considered, or only values ofX observed before treatment. In other �elds, people are
interested in direct or marginal e�ects and therefore include certain covariates because they are a�ected by treatment.
So both, the set of covariates you want to include, as well as the set of potential confounders you allow for, depend
on the parameter of interest. The correct interpretation hinges on your assumptions. These must be consistent with
your data, and that your interpretation with these assumptions (Kahn-Lang and Lang, 2019). This implies you may
not want to allow for any combination of covariates; instead you pre�x a set S of covariate sets S from which you
wish to choose the most appropriate one(s). We should not think here of a step-wise elimination of covariates but of
a ranking of all eligible sets regarding credibility. Then, for the ✓Sopt from above,

Sopt =ar gmi n
S 2S

1

n1•

’
i : Di•=1

n bm1t (xS
i• ) � bm0t (xS

i• ) � bm1(t�1) (xS
i• ) + bm0(t�1) (xS

i• )
o2

/ öV ar• [Y (✓Sopt ) ] (11)

de�nes the optimal set along the analogue to (10), i.e., you jointly calculate the same criterion for all (✓, S ) combina-
tions to obtain (✓Soptopt , Sopt ) which is the most credible regarding the DiD identi�ability assumption. In practice these
may not be unique for a given data set; then the practitioner may try both but should keep in mind that they may
de�ne somewhat di�erent treatment e�ects.

If initially there are too many sets, one can even perform pre-selection procedures. A simple method is a visual
check to see to what extent a covariate could be a confounder. When plotting the distribution of a potential con-
founder per group and year, these should exhibit di�erent features, either between groups or else between years;
otherwise they are not confounders. Certainly, pre-selection could also be based on variable selection in regression;
if they exhibit no impact onY , they are of no use. In the context of nonparametric estimation, however, those proce-
dures are more complex than directly applying (11) (Hall et al., 2007). Moreover, they are based on objective functions
di�erent fromminimizing the deviations in (9). Generally we would advise against mixing di�erent objective functions
when the objective is actually the same.

In practice, we suggest using a penalty factor to account for too many covariates. We tried several alternatives,
but found that a simple AIC factor worked well in simulations. Considering our criterion in (11), we propose to add

⇣
2(k + p )2 + 2(k + p )

⌘
/(n1• � (k + p ) ) , (12)

to penalize against including too many covariates. In our simulations (Supplement), this factor helps correctly identify
models with irrelevant covariates even for small samples.

It is possible to formally conduct a nonparametric signi�cance test to see if Assumption I is rejected for any given
pair (✓, S ) for the period before treatment (in practice, you would test this at the “optimal set”). This can be done by
taking (9) as the test statistic (for t = 0), see Section 5 and the Supplement. However, note that you can only test the
credibility of Assumption I, not the assumption itself.
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4 | TREATMENT EFFECT ESTIMATORS

4.1 | Conditional treatment e�ect on the treated

To simplify notation, letY and X now denote the adequately scaled response and the chosen covariates. De�ne the
DiD estimators of conditional TT

dTT x =
� bm11 (x ) � bm01 (x )

 
�

� bm10 (x ) � bm00 (x )
 
. (13)

Recalling Section 2.2, we immediately obtain

Proposition 1 Under the assumptions (A1) and (A2) of Racine and Li (2004), extended to the four groups, and assuming
independence of errorsui t :=Yi t �mdt (Xi t ) for all groups, for all x being interior points for each group,dTT x has a smoothing
bias which is the di�erence of di�erences of the corresponding individual biases given in (7), i.e., {B11 (x ) � B01 (x ) } �
{B10 (x ) � B00 (x ) }. Similarly, its asymptotic variances are the sum of their asymptotic variances, i.e., ⌦11 (x )/(n11hp11 ) +
⌦01 (x )/(n01hp01 ) + ⌦10 (x )/(n10hp10 ) + ⌦00 (x )/(n00hp00 ) . The biases and variances resulting from the smallest nd t will
dominate the others. Following (5), dTTx converges at this rate to a normal distribution.
It is well known that the assumptions could be modi�ed, but for simplicity, we stick with the work of Racine and
Li (2004). We allow each bias term to have its own set of bandwidths (hd t , �d t ) . As sign and smoothness of the
mdt ( ·) should not change over d and t , equation (7) suggests that the di�erencing has not only a bias reducing e�ect
regarding identi�cation (i.e., a potential speci�cation bias), but also regarding smoothing.

In the popular setting of balanced panels (n1 = n11 = n10, n0 = n01 = n00) and conditioning only on covariates
from t = 0, assuming ui0 ? ui1 for all i becomes less credible.6 However, the asymptotics simplify nonetheless, as
now we have for d = 0, 1

bmd1 (x ) � bmd0 (x ) =
Õnd

Di =d :i=1
K (Xi0, x , hd , �d ) (Yi1 �Yi0 )Õnd

Di =d :i=1
K (Xi0, x , hd , �d )

. (14)

Corollary 2 For balanced panels with �̃2
d (x ) = V ar (ui1 � ui0 |Xi0 = x ,D = d ) , and conditioning only on covariate values

observed in t = 0, but else the same assumptions as in Proposition 1, the bias expression remains the same, whereas the
variance is now �̃2

1 (x )/(n1h
p
1 )

Ø
w 2 (v )dv f �110 (x ) + �̃2

0 (x )/(n0h
p
0 )

Ø
w 2 (v )dv f �100 (x ) .

Unfortunately, the asymptotics of the unconditional TT are not that straightforward, see below. In practice, no
one would try to estimate the bias and variance of dTT x , especially not for all potential x . Even the estimation of the
variance of dTT a or dTT b can hardly be recommended. Instead, we use a wild bootstrap procedure (see Appendix).

Before we turn to the unconditional treatment e�ects, it is worth recalling two points. First, looking at conditional
treatment e�ects may be the most insightful way to study (potential) heterogeneity of treatment e�ects. Therefore
we consider the above results not just as an intermediate step for the main result. Second, in the next subsection
we directly integrate over all covariates x to obtain TTa and TTb . To further explore the heterogeneity of treatment
e�ects, you may integrate only over a subset of x , say x1 with x := (x1, x2 ) , to study the heterogeneity over di�erent
groups de�ned by x2. For example, if x2 is a binary variable for sex, you obtain TT (x2 ) to study TT for males and
females separately.

6In the case of repeated cross-sections, we typically observe ui0 and uj 1 , where i , j , in general. In other words, dependencies in errors over time are unlikely
as we have cohorts.
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4.2 | Unconditional treatment e�ect on the treated

Given the estimator in (13), it is straightforward to obtain a model-free DiD estimator for the unconditional TT by
integrating dTT x . For the sake of brevity, we considerTTa , estimated by averaging over the (n11) xi observed in group
d = 1 at time period t = 1:

dTT a =
1

n11

n11’
i : Di1=1

n bm11 (xi1 ) � bm01 (xi1 ) � bm10 (xi1 ) + bm00 (xi1 )
o
. (15)

This estimator is equal to dTT b in a balanced panel where all covariates Xi t are kept �xed over time. This does not
imply that these variables are indeed time invariant, but that one only considers x -values observed at t = 0 (i.e., before
treatment started).

At this stage, it is worthwhile recalling the common support condition. In practice, this is achieved for the con-
tinuous covariates by rede�ning the population of interest such that CSC is ful�lled, which typically corresponds to
trimming at the boundaries. This is convenient for other reasons, like avoiding the necessity of boundary corrections
for the estimator bmdt (x ) . To avoid complicating our formulas, we continue with the above notation, assuming that in
(15), we only average over interior points.

For the asymptotics, we refer to the fact that in case of independent residuals, statistic (15) can be viewed as an
extension of the kernel based matching estimator. It is feasible then to replicate the calculations for nonparametric
matching estimators in the existing literature to obtain the bias and variance, and invoke the central limit theorem.
The convergence of bmdt (x ) imply we can choose �d t and hd t for d im (X s ) = p  3 such that B = o (n�1/2d t ) andq
nd t h

p
d t = o (1) . To achieve this for more than three continuous covariates, we could invoke higher-order kernels or

local-polynomial estimators, both based on higher-order smoothness assumptions for mdt ( ·) and the distributions of
X .7 Asymptotically, for d im (X c ) = k , we have no such restriction unless k increases with the sample size.

Proposition 3 For p  3 such that h2d t and n�2d t h
�p
d t are of order o (n�1 )

p
n11

8>><
>>:

1

n11

’
i : Di1=1

dTT a (Xi1 ) � TTa

9>>=
>>;
! N (0,Va ), (16)

where for d t = lim(nd t /n11 ) , �2
d t (x ) =V ar [Y |x ,D = d ,T = t ], and

Va = E
h
{m11 (X ) � m10 (X ) � m01 (X ) +m00 (X ) � TT }2 |D = T = 1

i
(17)

+E
h
�2
11 (X ) |D = T = 1

i
+ E

"
�2
10 (X )f 211 (X )
10f 210 (X )

|D = 1 � T = 1

#

+E
"
�2
01 (X )f 211 (X )
01f 201 (X )

|D = 1 � T = 0

#
+ E

"
�2
00 (X )f 211 (X )
00f 200 (X )

|D = T = 0

#
.

Uniform rates of convergence could be obtained by following results similar to Racine and Li (2004). In the
Appendix we give the in�uence function (IF) to deriveVa andVb , i.e., the analogous variance for dTT b (Xi1 ) . If X does
not change over time, the resulting simpli�ed formula for dTT b (Xi1 ) coincides with the e�ciency bounds derived in
Sant’Anna and Zhao (2020), though in a quite di�erent context (they introduce fully parametric doubly robust DiD

7As we mentioned in the introduction, this is not a restrictive assumption for many data sets. Extensions to larger numbers of continuous variables is still
feasible, but requires additional assumptions.



12 Daniel Henderson, Stefan Sperlich

estimation for time invariant X , where D ? T , and D ? T |X ). From their paper you can also see how our result
simpli�es for balanced panels.

As the bootstrap inference for these estimators is relatively straight-forward given the existing literature, we
deferred it to the Appendix, whereas bootstrap inference for testing is more involved, see below.

5 | TESTING

To complete the cycle of a DiD analysis, we consider some testing problems of interest. We �rst brie�y discuss how
to test for signi�cance of an unconditional treatment e�ect. We then introduce a nonparametric test that can be
used to jointly test for the signi�cance of conditional treatment e�ects as well as for checking if treatment e�ect
heterogeneity is large. It can also be used for supporting Assumption I, recall Section 3.2.

5.1 | Signi�cance of treatment e�ects

To test for signi�cant treatment e�ectsTTz of type z = x , a or b , we consider hypotheses

H z
0 : TTz = 0 vs . H z

1 : TTz , 0 . (18)

Exploiting (16), we can construct an asymptotic or bootstrap con�dence interval (Section 5.4) to see if it includes zero.

5.2 | Composite signi�cance testing in model-free DiD

While Assumption I cannot be directly tested, its credibility can. We can essentially use the same statistic as we did
for the selection procedures, namely (9),8 applied to the pre-treatment period (from t = �1 to 0), where by de�nition,
Yi =Y 0

i for all subjects i .

Tt :=
1

n1t

n1t’
i :D1t =1

� bm1t (xi t ) � bm0t (xi t ) � bm1(t�1) (xi t ) + bm0(t�1) (xi t )
 2
, (19)

which can be used to test several hypotheses of the general form:

H t
0 : Mt (x ) := m1t (x ) � m0t (x ) � m1(t�1) (x ) +m0(t�1) (x ) = 0 [x 2 supp (X |D = 1,T = 0) .

A bootstrap will require us to resample the data under the null.
Joint signi�cance of heterogeneous e�ects When heterogeneity in treatment e�ects is important, it is much

more sensible (from a statistical point of view) and interesting (from an interpretation point of view) to test all TTx
jointly over the sample of interest.

T1 :=
1

n11

n11’
i :D11=1

� bm11 (xi1 ) � bm01 (xi1 ) � bm10 (xi1 ) + bm00 (xi1 )
 2
, (20)

8A rescaling by the response variance estimate is not needed.
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is the appropriate test statistic for such null hypothesis (i.e., M1 (x )).9

Homogeneous treatment e�ects You can extend the idea for testing the null H z
0 : TTz = c for z = a, b, x , with c

being a constant. The interesting case is when you apply this to test all TTx jointly over the sample of interest. The
resulting test statistic is

TH := 1

n11

n11’
i :D1t =1

� bm11 (xi1 ) � bm01 (xi1 ) � bm10 (xi1 ) + bm00 (xi1 ) � c
 2
. (21)

For example, this can be employed to test for signi�cant heterogeneity of treatment e�ects overX by setting c := dTT a .
If d im (x ) = 1, we could alternatively construct bootstrap con�dence intervals and bands aroundTTx for all x .

Bias stability condition To test if the bias stability (parallel path) in the period(s) prior to treatment (e.g., from
t = �1 to t = 0) as an additional check of Assumption I’s credibility, we consider the statistic

T0 :=
1

n10

n10’
i :D10=1

� bm10 (xi0 ) � bm00 (xi0 ) � bm1(�1) (xi0 ) + bm0(�1) (xi0 )
 2
, (22)

checks the credibility of (2) by considering the null hypotheses

H 0
0 : M0 (x ) := m10 (x ) � m00 (x ) � m1(�1) (x ) +m0(�1) (x ) = 0 [x 2 supp (X |D = 1,T = 0) .

5.3 | Asymptotic behavior

In what follows, we study the asymptotic behavior of T1. For T0 and TH , the derivations follow analogously, noting
that dTT a converges faster than bmdt ( ·) such that its randomness is negligible in (21). To simplify notation, consider
the case of a single continuous covariate x 2 [0, 1]. We later discuss the case of p = d im (x ) > 1, the inclusion of
discrete covariates and the behavior of the test statistic with a balanced panel.

Theorem 4 De�ne the four one-dimensional densities fd t (x ) implicitly by
Ø xi t
0 fd t (x )dx = i /nd t for all observed xi t with

Di t = d .10 Assume all mdt ( ·) and fd t ( ·) are r � 2 times continuously di�erentiable on [0, 1], and kernelW (X , x , h ) being
of order r . For the optimal testing rate h = O (n�2/(4r+1)11 ) with n11h

2 ! 1, and d t as de�ned after (16), we have

n11
p
h

(
T1 �

1

n11h

π
W 2

1’
d ,t=0

π �2
d t (x )f

2
11 (x )

d t fd t (x )
dx

)
�! N (0,V) as all nd t ! 1, (23)

under H0, where the variance V/(n211h ) of our statistic T1 is

2

n211h

π
(W ⇤W )2 ©≠

´
1’

d ,t=0

π �4
d t (x )f

2
11 (x )

2d t f
2
d t (x )

dx + 2
’

mi x (d t ,k s )

π �2
d t (x )�

2
k s (x )f

2
11 (x )

d t k s fd t (x )fk s (x )
dx

™Æ
¨
, (24)

for which
Õ

mi x (d t ,k s ) runs over the six combinations of (d t ) , (k s ) , d , t , k , s 2 {0, 1}.

For the case where the statistic T1 averages over the n1 = n11 + n10 treated, replace n1 for n11 and f1 ( ·) for f11 ( ·)

9As you may preferTTb overTTa , you can also average in (20) over all treated (n11 + n10 ).
10We could assume all samples have asymptotically regular designs with respect to their density fd t ( ·) .
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in (23), (24), and in the de�nition of d t . Its extension to allow for the inclusion of weights and trimming (Supplement).
The same calculations can be done for higher dimensions (p = d im (x ) > 1) using multivariate kernels. For

simplicity, assume we take the same bandwidth h for all covariates; we only have to replace h by hp in (23) and adjust
its rate accordingly. Again, for p > 3, this requires bias reducing methods like the use of higher-order kernels or local-
polynomials. Similarly, the inclusion of discrete covariates with smoothing parameter � does not change our result,
but renders the expressions more complex. Asymptotically, as in estimation, their inclusion does not change the rate.
Due to (14), for balanced panels we get

Corollary 5 Consider a balanced panel taking all covariate values from t = 0 with �̃2
d (x ) = V ar (ui1 � ui0 |x ,D = d ) , and

let f1 ( ·) de�ne the density of X for the treated, f0 ( ·) for the controls. Then, along with the assumptions from Theorem 4,

n1
p
h

(
T1 �

Ø
W 2

h

π
�̃2
1 (x )f1 (x )

n1
+
�̃2
0 (x )f 21 (x )
n0f0 (x )

dx

)
�! N (0, Ṽ ), (25)

under H0, for d = lim(nd /n1 ) , and with

Ṽ = 2

π
(W ⇤W )2

 
1’

d=0

π �̃4
d (x )f

2
1 (x )

2d f
2
d (x )

dx + 2

π �̃2
1 (x )�̃2

0 (x )f1 (x )
10f0 (x )

dx

!
. (26)

5.4 | Feasible bootstrap tests

Arguments in favor of using a bootstrap for testing are as strong as for estimation. We need large samples before the
�rst-order terms fully dominate the second and third-order terms. Even if the samples were large enough to trust the
normal approximation, estimation of the �rst-order terms would still remain a non-trivial problem. The challenge is
to simulate the distribution of the statistic, say T1, under the null hypothesis. We need to produce bootstrap samples
that come from a data generating process similar to the observed data, but under which H 1

0 : M1 (x ) = 0 for all x
of interest. Our proposal follows ideas of the related literature, namely Dette and Neumeyer (2001) and Vilar and
Vilar (2012). The latter provides a consistency proof for our procedure. Their context is more complex regarding the
correlation structure of the errors as they test several di�erences at a time. However, they only check di�erences
of pairs of nonparametric functions whereas we are looking at the di�erence of di�erences. Only the latter has a
consequence for the bootstrap. Di�erent scenarios are conceivable to comply with H 1

0 . For that reason, we need
to take the residuals from the alternative (as proposed by Vilar and Vilar (2012)) instead of from the null model (as
proposed by Dette and Neumeyer (2001)). This has consequences for the calibration (Sperlich, 2014). The steps are:

1 Pool data (over treated and control groups) within each year t , (t � 1) , and estimatemt=1 (x ) := E [Y |t = 1,X = x ]
for all x observed in t = 1. Analogously, mt=0 (x ) := E [Y |t = 0,X = x ] for all x observed in t = 0.

2 Generate B � 100 bootstrap samples {Y ⇤b
i t , (Di t = d ), t ,Xi t }nd ti=1 , b = 1, ...,B , for each of the four (d , t ) groups

by setting Y ⇤b
i t = bmt (Xi t ) + u⇤bi t , for given d , t , i = 1, ..., nd t , where u⇤bi t might be generated by bui t times an

independent N (0, 1) variable.
3 From these samples, calculate B estimators T⇤b

1 which are calculated as in (22), but with the bmdt ( ·) replaced by
their bootstrap analogues bm⇤b

d t ( ·) estimated at {xi t }n11i :D=1.
4 From the B bootstrap estimates T⇤b

1 , obtain the p-value for the test statistic by counting how often the bootstrap
statistics are larger than T1.

The key is the pooling in step 1, which guarantees that the null hypothesis (2) will be ful�lled in the bootstrap samples.
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It is, however, possible that within a year, the di�erences between groups are so severe that the pooling seriously
diminishes power. For a robustness check, we could then switch the pooling and consider md ( ·) , d = 0, 1. This
has the tendency to su�er from size distortions in the sense of over-rejection. A reason why our proposal generally
outperforms the latter is the following: D is de�nitely a function of X (by the de�nition of confounders),T should not
be. Consequently, under the null hypothesis of no treatment e�ect, a response prediction based on mt (x ) , ignoring
d , should outperform a prediction based on md (x ) , ignoring t . This was con�rmed by many simulations.

It is obvious how tomodify this procedure for T0, butwemust be careful; its consistency does not necessarily carry
over to all kind of modi�cations or generalizations. Neumeyer and Sperlich (2006) studied a similar test, comparing
marginal impacts. In their paper, this bootstrap procedure was not only inconsistent, but divergent.

6 | APPLICATION: HUMAN CAPITAL RESPONSES TO DACA

On June 18th, 2020, the Supreme Court of the United States ruled that the president could not immediately end
DACA. As any attempts to strike down the program will need additional study, it is important to carefully examine
the evidence both for and against the program. One potential bene�t is that the rules in place to qualify for DACA
require schooling. Additional units of education should lead to increased human capital and bene�ts to society. Kuka
et al. (2020) examine human capital responses to the availability of the DACA program and (using a DiD approach)
�nd that DACA signi�cantly increased high school attendance and completion rates. They further �nd positive, but
insigni�cant, impacts on college attendance. These results rely on restrictive parametric assumptions and hence are
subject to misspeci�cation bias and potential inconsistency. Moreover, we show that for their set of covariates, there
are serious issues with the underlying identi�cation assumption.

Prior to discussing the application, we mention that we performed intensive simulations beforehand. The perfor-
mance was checked for all our above presented methods. All details and results are given in the Supplement. We
recommend and use practical bandwidth choice procedures, typically plug-in methods, and complete them with im-
plementation instructions and R code. Even for very small data sets, all procedures worked surprisingly accurate and
robust in all our simulations. Only for some special situations we found - as expected - problems with the size in more
complex testing problems.

6.1 | Data

The data come directly from Kuka et al. (2020) and we only discuss them brie�y (the data are freely available on
). Kuka et al. (2020) use the Integrated Public Use Microdata Series (IPUMS) Ameri-

can Community Survey (ACS) (Ruggles et al., 2018) over the period 2005–2015. They focus on (a sample of) immigrant
youth aged 14 to 22 during the time of the survey such that they arrived on US soil by the age of 10 in 2007. The
sample from 14–18 is used to study high school attendance, while the sample from age 19–22 is used to study high
school completion (including those who graduated from high school as well as those who earned a passing grade on
the General Educational Development test) and post-secondary attendance (three di�erent binary left-hand-side vari-
ables). Recall that with a binary outcome, linear DiD estimators do not guarantee the predicted outcome lies between
zero and one. Our nonparametric estimator guarantees this support condition.

The ACS includes a large amount of demographic variables which are exploited by Kuka et al. (2020) to attempt
to make Assumption I hold. Speci�cally, they account for �xed individual characteristics by including controls for sex,
year of immigration and birth region. Given the nature of parametric models, they also include interactive dummies
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for age of immigration-by-eligibility and age-by-eligibility �xed e�ects.11 They include state-by-year, race-by-year
and age-by-year �xed e�ects. Our nonparametric methodology does not require arbitrary interactions (even if based
on sound logic), but does include these as special cases. We have seven di�erent potential variables for X in each
regression. Each are discretely measured. The potential unordered variables include sex, race, birthplace and current
U.S. state, while the potential ordered variables include age, year, year of immigration and age at time of immigration.12

It is important to note that the ACS is a representative sample of those living in the United States, regardless of
their citizenship or legal status. The Census Bureau encourages responses to ACS and is not allowed to share the
personal information with other government agencies, and it also makes the survey available in Spanish.

Kuka et al. (2020) note that their measure of eligibility is measured with noise as it includes non-citizens who may
have green cards or may be temporary visa holders (i.e., not eligibile for DACA). The estimated e�ect of DACA is likely
a “scaled-down” estimate of the true intent-to-treat e�ect. Their Appendix B estimates that their estimated e�ects
are likely to underestimate the true e�ect by roughly 45 percent.

6.2 | Empirical results

The parametric results can be found in Tables 1 and 2. These correspond to their model

Yidast = ↵0 + ↵1E l i g i bl ed + ↵2 (E l i g i bl ed ⇥ P ost t ) + ↵3Xid + �st + �r t + �at + ui dast ,

whereY is the outcome of interest (in school, completed high school or some college) for individual i , who has eligibility
status d , who is aged a and living in state s at time t . Given the sample selection (age and year of immigration), E l i g i bl e
is a dummy variable that equals 1 if the immigrant is not a citizen and zero otherwise. The variable P ost is a dummy
variable that equals one on or after 2012. Xid includes the dummies for sex, year of immigration and birth region,
while each of the � terms represent the interactive �xed e�ects. The treatment e�ect estimate is captured by ↵2. It is
interpreted as the average e�ect of DACA after 2012 (the analysis covers four “treated” years: 2012–2015).

Parametric estimation is performed via least-squares dummy-variable techniques and requires a relatively large
memory to construct (not to mention invert) such a data matrix. The authors cluster their standard errors at the state
level. The nonparametric estimates (TTb ) are listed below their parametric counterparts. Estimation of our treatment
e�ect is described above (Section 4), we use cross-validated bandwidths (see the Supplement) and use our bootstrap
procedure (with B = 999) to calculate our standard errors.

The �nal three values associated with each sample in Tables 1 and 2 are the sample size, the mean of the outcome
variable and the p-value associated with our bias stability test. The latter shows mixed results.13 In Table 1, we �rmly
reject the null that the BSC (“parallel path”) holds in our sample for 14-18 year olds, but are unable to reject it for each
case for 19-22 year olds. Table 2 shows four cases where we fail to reject the null and �ve cases where we reject the
null. As we are simply looking to replicate the results of their paper, we proceed as if we were unable to reject the
null hypothesis in each scenario.14 We therefore should be careful about the interpretation of each treatment e�ect
as identi�cation is in question for several of them. In practice, we would suggest that more potential covariates be
tracked down in order to satisfy the identi�cation condition.

11In econometrics, those �xed e�ects are used to control for unobserved time-invariant heterogeneity which may be correlated with the error term.
12In the Hispanic sample and in the high-take up sample, we exclude the variable for race.
13As all variables are discrete, there is no need to oversmooth bandwidths in the bootstrap routine.
14The usual caveat applies: a failure to reject the null hypothesis is not an acceptance of the null.
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6.2.1 | School attendance

The results for school attendance are found in Table 1. For individuals aged 14-18, the parametric models show
positive and signi�cant estimates for each grouping (all, hispanic and high take-up sample). These results suggest
that DACA led to an increase in school attendance of 1.2 percentage points among all immigrants with 2.2 and 2.9
percentage point increases for Hispanic and high take-up sample immigrants.

If we look to the nonparametric results for those aged 14-18, they are larger (albiet not statistically larger). The
nonparametric point estimates are 0.022, 0.033 and 0.034 and the standard errors are similar (0.005, 0.008 and
0.008 versus 0.007, 0.012 and 0.012 for the parametric and nonparametric models, respectively). This bodes well
for the results in Kuka et al. (2020). The nonparametric models relax restrictive assumptions and the conclusions are
statistically similar. Ignoring other potential issues, these results should be considered to be robust.

TABLE 1 E�ect of DACA on school attendance

All Hispanic High take-up All Hispanic High take-up

Age 14-18 Age 19-22

Parametric 0.012 0.022 0.029 0.019 0.020 0.005

(0.005) (0.008) (0.008) (0.012) (0.014) (0.012)

Nonparametric 0.022 0.033 0.034 -0.047 -0.034 -0.051

(0.008) (0.012) (0.012) (0.015) (0.021) (0.021)

AverageY 0.921 0.891 0.889 0.5467 0.405 0.401

Sample size n 114,453 54,015 48,359 82,077 38,704 34,768

BSC p-value 0.000 0.000 0.000 0.317 0.191 0.524

Table 1 also gives the results for 19-22 year olds. While this group was primarily used to examine later schooling
outcomes, it is interesting to see these impacts. The parametric model gives positive, but insigi�cant estimates. The
nonparametric model gives negative and signi�cant estimates for each sample. There is substantial evidence in the
literature to suggest that the impact of DACA on college age enrollment is in fact negative. Hsin and Ortega (2018)
found that DACA increased dropout rates by 7.3% in 2018. Amuedo-Dorantes and Antman (2017) found that DACA
reduced the probability of school enrollment of eligible higher-educated individuals as it increased the likelihood of
employment of men. The lack of authorization led individuals to enroll in school whenworking legally was not feasible.
While the di�erences in point estimates with respect to 14-18 year olds is interesting, the ability of our method to
identify the negative impact on college-aged individuals shows the downsides of relying on parametric assumptions.

6.2.2 | High school completion and college enrollment

The e�ects of DACA on high school completion and college enrollment can be found in Table 2. The �rst three
columns represent the e�ect on high school completion (GED or diploma) for all immigrants, Hispanic immigrants and
immigrants from high take-up countries, respectively. These results are broken down by age (19, 19-22 and 23-30).
Similarly, the fourth through sixth columns give the impact of DACA on the completion of some college (more than
12 years of education completed) for each of the groups (all, Hispanic, and high take-up) for each age group.
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Beginning with the parametric high school completion regressions, completion rates for all 19 year old immigrants
increased by 4.6 percentage points. The e�ects for 19 year old Hispanics and immigrants from high take-up countries
experienced increases of 6.5 and 8.5 percentage points, respectively. The impact for 19-22 year olds is smaller: 3.8,
5.9 and 6.4 percentage point increases for all, Hispanic and high take-up sample immigrants, respectively. For those
individuals 23-30 years old, the impacts are either marginally signi�cant or insigni�cant. The impact appears to be
stronger for younger individuals.

TABLE 2 E�ect of DACA on high school completion and college enrollment

High-School College

Age All Hispanic High take-up All Hispanic High take-up

19 Parametric 0.046 0.065 0.085 0.003 0.034 0.057

(0.016) (0.026) (0.027) (0.025) (0.029) (0.028)

Nonparametric 0.096 0.128 0.152 0.010 0.046 0.077

(0.022) (0.031) (0.032) (0.028) (0.040) (0.040)

AverageY 0.824 0.747 0.741 0.468 0.350 0.343

Sample size n 22,153 10.252 9,173 22,153 10,252 9,173

BSC p-value 0.000 0.007 0.000 0.000 0.232 0.288

19-22 Parametric 0.038 0.059 0.074 0.017 0.013 0.011

(0.007) (0.010) (0.011) (0.009) (0.010) (0.011)

Nonparametric 0.013 0.020 0.019 -0.012 -0.022 -0.015

(0.011) (0.016) (0.016) (0.015) (0.021) (0.021)

AverageY 0.858 0.781 0.775 0.544 0.407 0.399

Sample size n 82,077 38,704 34,768 82,077 38,704 34,768

BSC p-value 0.000 0.000 0.000 0.181 0.000 0.000

23-30 Parametric 0.013 0.015 0.013 0.008 -0.001 -0.000

(0.005) (0.008) (0.008) (0.009) (0.010) (0.010)

Nonparametric -0.008 -0.007 -0.014 0.005 -0.007 -0.009

(0.009) (0.011) (0.011) (0.011) (0.016) (0.015)

AverageY 0.862 0.0767 0.761 0.613 0.443 0.435

Sample size n 133,576 61,210 54,110 133,576 61,210 54,110

BSC p-value 0.000 0.000 0.996 0.000 0.000 0.000

The nonparametric results are equally interesting. Here we �nd the impact of DACA on high school completion to
be larger than that found in Kuka et al. (2020). For 19 year olds, the nonparametric model suggests that the increase
was 9.6 percentage points for all immigrants, 12.8 percentage points for Hispanic immigrants and 15.2 percentage
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points for immigrants from high take-up countries. That being said, these point estimates are not statistically di�erent
from their corresponding parametric counterparts.

While the point estimates for 19 year olds were larger for the nonparametric model, those same results for 19-22
and 23-30 years olds are often smaller in the nonparametric model. The parametric model appears to underestimate
the impact of DACA for 19 year olds, but exaggerates it for older individuals.

A similar patter occurs for the impact of DACA on some college. The fourth through sixth columns of Table 2
show higher impacts of DACA in the nonparametric setting (except for the high take-up sample) for 19 and 19-22 year
olds and lower impacts of DACA for 23-30 year olds. However, the majority of point estimates here are insigni�cant.
While the nonparametric model removes restrictive assumptions, it is unable to conclude that DACA has a signi�cant
impact on college enrollment.

In summary, our model was able to con�rm the parametric result of increased schooling in individuals aged 14-
18. This result is important as we can have more faith in the impact of such policies on high school aged students.
As for completion of high school, the impact was stronger than previously thought for individuals aged 19-22. This
result suggests the program is more e�ective than previously thought. However, high school completion is de�ned as
earning a GED or a diploma and we are unable to disentangle the two.15 At the same time, our nonparametric model
was able to accurately uncover the negative impact of DACA on school attendance of college aged immigrants, which
the parametric model could not (positive and insigni�cant).

7 | CONCLUSIONS AND DIRECTIONS FOR FURTHER EXTENSIONS

We suggest a complete framework for causal analysis (with covariates) via model-free DiD estimation and testing. We
show how to automatically select confounders and the scale of the outcome variable, estimate TTs, choose band-
widths and construct standard errors and con�dence intervals. We also present model-free testing for signi�cance
and heterogeneity of treatment e�ects. Importantly, we also provide a bootstrap test for credibility of the identi�ca-
tion assumptions. These results can be used in many common situations and result in robust analysis. We provide
asymptotic theory for both cohorts and panels, for time-varying and for time constant covariates. The �nite sample
performance has been veri�ed by simulation studies under rather complex designs.

We apply our techniques to study the impact of DACA on human capital decisions. We compare our results to
Kuka et al. (2020). If their models were correctly speci�ed, we would expect that we get similar results. As in their
paper, we �nd a positive (but larger) impact of DACA on high school attendance and high school completion, but
we also �nd that they were unable to identify the negative impact of DACA on school enrollment of college aged
individuals. Our �ndings are closer to what intuition suggests.

We proposed a selection of scale and covariates along (9), (10) and (11) in the spirit of the non-testable identifying
Assumption I. If one wants to address the post-selection inference problem, we suggested an equivalent to the sample
splitting approach (Kuchibhotla et al., 2022). Alternatively, to account for all variation of the entire statistical analysis,
we could apply an outer bootstrap loop that runs over all steps of the analysis until the �nal estimate. In practice
this would be extremely costly and may also give unreasonably large standard errors. In our context (i.e. given the
objective of the �rst steps), it is questionable if the practitioner should be interested in such variance.

15Pope (2016) �nds suggestive evidence that DACA pushed individuals to obtain their GED certi�cate.
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A | APPENDIX

A.1 | Proof for the asymptotics of the test statistics

Here we give all the main steps of the technical proof. For calculation of the bias and variance, we partly follow
Vilar-Fernández and González-Manteiga (2004) and Dette and Neumeyer (2001). They consider the problem of non-
parametric comparisons of regression curves, say H0 : m1 = m2 = · · · = mK for mk (x ) = E [Y |X = x ], k = 1, . . . ,K

which correspond to di�erent populations. The former considered this for autocorrelated data, while the latter con-
sidered this for independent data, but with di�erent statistics. We decompose

T1 =
1’

d ,t=0

�d t + 2
’

mi x (d t ,k s )
(�1)d+k+t+s�d t ,k s + oP

✓
1

n11
p
h

◆
, (27)
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where forWdt (xi t ) := 1
nd t h

W { (xi t � x )/h}/fd t (x )

�d t =
nd t’

Di =d :i=1

nd t’
Dj =d :j=1

π
Wdt (xi t )Wdt (xj t )dF11 (x ) ui t uj t (28)

�d t ,k s =
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nk s’
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π
Wdt (xi t )Wks (xj s )dF11 (x ) ui t uj s , (29)

where we �rst interchanged the sums, and then approximated the average 1
n11

Õn11
Di =1:i=1

by
Ø
dF11 (x ) . Due to the

independence of the ui t , an assumption we reconsider below for balanced panels, the expectation of �d t ,k s is zero, and
so is the expectation of all mixed terms of �d t . Taking the expectation of the remaining

Õnd t
Di =d :i=1
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W 2
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leads us (after some calculations that are standard in kernel regression) to the stated bias.

To obtain the variance, we need to consider the expectation of the square (27), but suppressing in �d t theÕnd t
Di =d :i=1

Ø
W 2

d t (xi t )dF11 (x ) u
2
i t . That is, we consider the � : d t , k s and

�0d t = 2
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’
Dj =d :j<i

π
Wdt (xi t )Wdt (xj t )dF11 (x ) ui t uj t .

The independence of these terms follows from the independence of the ui t (as we consider cohorts of independent
observations), so that we can calculate the variance of each term separately. From the related literature on nonpara-
metric testing, it is well known that the variance of the �0d t gives the �rst part of V/(n211h ) with the sum over the four
groups. The errors ui t belonging to group (d t ) are independent not only within this group, but also from those of any
other group (k s ) ; all additive terms in �d t ,k s are independent from each other. Taking expectation, the second part of
V/(n211h ) containing all mixtures mi x (d t , k s ) is
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which gives us the second part of the variance. The central limit theorem follows directly from Vilar-Fernández and
González-Manteiga (2004) or Dette and Neumeyer (2001).

A.2 | In�uence functions of estimators

In�uence functions forTTa (for pd t (x ) = P r (D = d ,T = t |x )) can be written as

'a (X ) = DT
E [DT ] [m11 (X ) � m10 (X ) � {m01 (X ) � m00 (X ) } � TTa ] + DT

E [DT ] {Y � m11 (X ) }

� D (1�T )
E [DT ]

p11 (X )
p10 (X ) {Y � m10 (X ) } � (1�D )T

E [DT ]
p11 (X )
p01 (X ) {Y � m01 (X ) } + (1�D ) (1�T )

E [DT ]
p11 (X )
p00 (X ) {Y � m00 (X ) } + Rh,n11 (X ),
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where Rh,n11 (X ) is a remainder term due to the nonparametric estimates bmdt ( ·) . Note that we used E [D (1 �
T )p11 (X )p�110 (X ) ] = E [ (1 � D )T p11 (X )p�101 (X ) ] = E [ (1 � D ) (1 � T )p11 (X )p�100 (X ) ] = E [DT ]. Noting that
n11 = n E [DT ], we immediately get the seemingly simpler variance representation

Va =
1

E [DT ] E
h
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2
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2
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2
00 (X )

i
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It is not very hard to see how this changes when we consider TTb . In that case it is helpful to de�ne the propensity
score p (x ) = P r (D = 1 |x ) . Then the in�uence function for (TTb ) can be written as

'b (X ) = D
E [D ] [m11 (X ) � m10 (X ) � {m01 (X ) � m00 (X ) } � TT ] + DT

E [DT ] {Y � m11 (X ) }

� D (1�T )
E [D (1�T ) ] {Y � m10 (X ) } � (1�D )T

E [DT ]
p (X )

1�p (X ) {Y � m01 (X ) } + (1�D ) (1�T )
E [D (1�T ) ]

p (X )
1�p (X ) {Y � m00 (X ) } + Rh,n1 (X ) .

Consequently, n1 = n11 + n10 replaces n11 and the variance becomes
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where n = n11 + n10 + n01 + n00. As n1 = n E [D ], we see how the convergence rate of the variance changes from
n�111 to (n11 + n10 )�1. It should be clear that (30) simpli�es if D ? T or/and D ? T |X . Furthermore, if X does not
change over time, then X ? T and D ? T |X follows from D ? T . To see how much this simpli�es (30), note that
p1t (x ) = p (x ) P r (T = t |D = 1, x ) and p0t (x ) = {1 � p (x ) }P r (T = t |D = 0, x ) . Note that the resulting simpli�ed
formula of (30) coincides with the e�ciency bounds derived in Sant’Anna and Zhao (2020).

A.3 | Bootstrap inference for treatment e�ect estimator

Asymptotic results for nonparametric statistics are rarely used directly for inference. Estimating any of the above vari-
ances is a nontrivial task that involves several bandwidth choices, with the challenge that there hardly exist bandwidth
selectors for such variance estimators. Even if you succeed to estimate these expressions, in practice, the suppressed
remainder terms may still play a role, not to mention the slow convergence to normality. In cases such as ours, boot-
strap is a widely accepted remedy. It is well known (Mammen, 1992), for nonparametric methods, that the naive
bootstrap is insu�cient (yields inconsistent estimators for most situations), while the wild bootstrap works. Abadie
and Imbens (2008) con�rmed the failure of naive bootstrap for kNN matching. Politis (2013) emphasized the supe-
riority of nonparametric (which can be seen as a particular version of the wild) bootstrap for model-free prediction.
Bodory et al. (2020) studied explicitly the consistency of the wild bootstrap for nonparametric matching estimators.

Given consistent nonparametric estimators for the mdt (x ) , our residuals are given by bui t =Yi t � bmdt (Xi t ) , i =

1, ..., nd t , d = 0, 1, t = 0, 1.Generate B � 100 bootstrap samples {Y ⇤b
i t , (Di t = d ), t ,Xi t }nd ti=1 , b = 1, ...,B , for all groups

Y ⇤b
i t = bmdt (Xi t ) + u⇤bi t , d = 0, 1, t = 0, 1, i = 1, ..., nd t , (31)

where u⇤bi t can be generated by bui t multiplied by an independent N (0, 1) variable (which performed best in our simu-
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lations).16 From these B tuples of the four samples, we calculate B estimators of dTT ⇤b
x , dTT ⇤b

a and/or dTT ⇤b
b , which are

calculated as described in the main document, except that bmdt ( ·) is replaced with their bootstrap analogues bm⇤b
d t ( ·) .

From the B bootstrap estimates dTT ⇤b
z (for z = x , a, b), we obtain the bootstrap variance and con�dence interval

estimates for the corresponding dTT z .
For discreteY , several scenarios are feasible. If you use the local-constant version and face binary responses, as

we do in our application, you can generate bootstrap replicates

Y ⇤b
i t : = 11{ bmdt (Xi t ) > vb } , b = 1, ...,B (32)

with randomly drawn vb ⇠ U [0, 1]. In our application, we received essentially the same standard errors when applying
bootstrap versions of (31) and (32). In more complex cases, a link function is recommended. Then a semiparametric
bootstrap can be applied to draw from the conditional distribution de�ned by this link: De�ne a distribution with
Y |X = x ⇠ G{⌘ (x ) }; estimate the index function ⌘ (x ) and its conditional expectation by local-likelihood, and draw
the bootstrap responsesY ⇤

i t from G{b⌘ (Xi t ) }.

16Other authors favor the Radamacher distribution, though in a quite di�erent context.
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And it �nally includes a description of functions for our R
code.

1 | BOOTSTRAP INFERENCE FOR TREATMENT EFFECT ESTIMATOR

Asymptotic results for nonparametric statistics are rarely used directly for inference. Estimating any of the above vari-
ances is a nontrivial task that involves several bandwidth choices, with the challenge that there hardly exist bandwidth
selectors for such variance estimators. Even if you succeed to estimate these expressions, in practice, the suppressed
remainder terms may still play a role, not to mention the slow convergence to normality.

In cases such as ours, bootstrap is a widely accepted remedy. It is well known (Mammen, 1992), for nonparametric
methods, that the naive bootstrap is insu�cient (yields inconsistent estimators for most situations), while the wild
bootstrap works. Abadie and Imbens (2008) con�rmed the failure of naive bootstrap for kNNmatching. Politis (2013)
emphasized the superiority of nonparametric (which can be seen as a particular version of the wild) bootstrap for
model-free prediction. Bodory et al. (2020) studied explicitly the consistency of the wild bootstrap for nonparametric
matching estimators.

The distinction between wild and nonparametric bootstrap often reduces to the question of how many moments
are asymptotically matched. While asymptotic theory tells us that, the higher the bootstrap residuals match the
moments of the original residuals, the more e�cient is the procedure, Davidson and Flachaire (2008) argue that you
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need quite large samples before this �nding becomes e�ective. Following their recommendations, we propose a
simple version (modi�cations towards higher-moment matching bootstraps are straightforward), �rst for continuous
responses, then for discrete ones.

Given consistent nonparametric estimators for the mdt (x ) , our residuals are given by

bui t =Yi t � bmdt (Xi t ) , i = 1, ..., nd t , d = 0, 1, t = 0, 1. (1)

Generate B � 100 bootstrap samples {Y ⇤b
i t
, (Di t = d ), t ,Xi t }nd ti=1 , b = 1, ...,B , for all groups

Y
⇤b
i t

= bmdt (Xi t ) + u
⇤b
i t
, d = 0, 1, t = 0, 1, i = 1, ..., nd t , (2)

where u
⇤b
i t

can be generated by bui t multiplied by an independent N (0, 1) variable (which performed best in our simu-
lations).1 From these B tuples of the four samples, we calculate B estimators of dTT ⇤b

x , dTT ⇤b
a and/or dTT ⇤b

b , which are
calculated as described in the main document, except that bmdt ( ·) is replaced with their bootstrap analogues bm⇤b

d t
( ·) .

From the B bootstrap estimates dTT ⇤b
z (for z = x , a, b), we obtain the bootstrap variance and con�dence interval

estimates for the corresponding dTT z .
For discreteY , several scenarios are feasible. If you use the local-constant version and face binary responses, as

we do in our application, you can generate bootstrap replicates

Y
⇤b
i t

: = 11{ bmdt (Xi t ) > v
b } , b = 1, ...,B (3)

with randomly drawn vb ⇠ U [0, 1]. In our application, we received essentially the same standard errors when applying
bootstrap versions of (2) and (3).

In more complex cases, a link function is recommended. Then a semiparametric bootstrap can be applied to draw
from the conditional distribution de�ned by this link: De�ne a distribution with Y |X = x ⇠ G{⌘ (x ) }; estimate the
index function ⌘ (x ) and its conditional expectation by local-likelihood, and draw the bootstrap responses Y ⇤

i t
from

G{b⌘ (Xi t ) }.

2 | INFLUENCE FUNCTIONS

In�uence functions forTTa (for pd t (x ) = P r (D = d ,T = t |x )) can be written as

'a (X ) = DT

E [DT ] [m11 (X ) � m10 (X ) � {m01 (X ) � m00 (X ) } � TTa ] (4)

+ DT

E [DT ] {Y � m11 (X ) } � D (1�T )
E [DT ]

p11 (X )
p10 (X ) {Y � m10 (X ) }

� (1�D )T
E [DT ]

p11 (X )
p01 (X ) {Y � m01 (X ) } + (1�D ) (1�T )

E [DT ]
p11 (X )
p00 (X ) {Y � m00 (X ) } + Rh,n11 (X ),

where Rh,n11 (X ) is a remainder term due to the nonparametric estimates bmdt ( ·) . Note that we used E [D (1 �
T )p11 (X )p�110 (X ) ] = E [ (1 � D )T p11 (X )p�101 (X ) ] = E [ (1 � D ) (1 � T )p11 (X )p�100 (X ) ] = E [DT ]. Noting that

1Other authors favor the Radamacher distribution, though in a quite di�erent context.
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n11 = n E [DT ], we immediately get the seemingly simpler variance representation (cf., Proposition 2)

Va =
1

E [DT ] E
h
p11 (X ) {m11 (X ) � m10 (X ) � m01 (X ) +m00 (X ) � TT }2 (5)

+p11 (X )�2
11 (X ) +

p
2
11 (X )

p10 (X ) �
2
10 (X ) +

p
2
11 (X )

p01 (X ) �
2
01 (X ) +

p
2
11 (X )

p00 (X ) �
2
00 (X )

i
.

It is not very hard to see how this changes whenwe considerTTb . In that case it is helpful to de�ne the propensity
score p (x ) = P r (D = 1 |x ) . Then the in�uence function for (TTb ) can be written as

'b (X ) = D

E [D ] [m11 (X ) � m10 (X ) � {m01 (X ) � m00 (X ) } � TT ] (6)

+ DT

E [DT ] {Y � m11 (X ) } � D (1�T )
E [D (1�T ) ] {Y � m10 (X ) }

� (1�D )T
E [DT ]

p (X )
1�p (X ) {Y � m01 (X ) } + (1�D ) (1�T )

E [D (1�T ) ]
p (X )

1�p (X ) {Y � m00 (X ) } + Rh,n1 (X ) .

Consequently, in Proposition 2, n1 = n11 + n10 replaces n11 and the variance becomes

Vb = V ar (dTT b ) =
1

n
E

h
p (X )
E 2 [D ]

{m11 (X ) � m10 (X ) � m01 (X ) +m00 (X ) � TT }2 (7)

+ p11 (X )
E 2 [DT ]

�
2
11 (X ) + p10 (X )

E 2 [D (1 � T ) ]
�
2
10 (X )

+ p01 (X )
E 2 [DT ]

p
2 (X )

{1 � p (X ) }2
�
2
01 (X ) + p00 (X )

E 2 [D (1 � T ) ]
p
2 (X )

{1 � p (X ) }2
�
2
00 (X )

i

where n = n11 + n10 + n01 + n00. As n1 = n E [D ], we see how the convergence rate of the variance changes from
n
�1
11 to (n11 + n10 )�1. It should be clear that (7) simpli�es if D ? T or/and D ? T |X . Furthermore, if X does not

change over time, then X ? T and D ? T |X follows from D ? T . To see how much this simpli�es (7), note that
p1t (x ) = p (x ) P r (T = t |D = 1, x ) and p0t (x ) = {1 � p (x ) }P r (T = t |D = 0, x ) . The resulting simpli�ed formula of (7)
coincides with the e�ciency bounds derived in Sant’Anna and Zhao (2020).

3 | PROOF FOR THE ASYMPTOTICS OF THE TEST STATISTICS

Here we give all the main steps of the technical proof. For calculation of the bias and variance, we partly follow
Vilar-Fernández and González-Manteiga (2004) and Dette and Neumeyer (2001). They consider the problem of non-
parametric comparisons of regression curves, say H0 : m1 = m2 = · · · = mK for mk (x ) = E [Y |X = x ], k = 1, . . . ,K

which correspond to di�erent populations. The former considered this for autocorrelated data, while the latter con-
sidered this for independent data, but with di�erent statistics. We decompose

T1 =
1’

d ,t=0

�d t + 2
’

mi x (d t ,k s )
(�1)d+k+t+s�d t ,k s + oP

✓
1

n11
p
h

◆
, (8)

where forWdt (xi t ) := 1
nd t h

W { (xi t � x )/h}/fd t (x )

�d t =
nd t’

Di =d :i=1

nd t’
Dj =d :j=1

π
Wdt (xi t )Wdt (xj t )dF11 (x ) ui t uj t (9)



4 Daniel Henderson, Stefan Sperlich

�d t ,k s =
nd t’

Di =d :i=1

nk s’
Dj =k :j=1

π
Wdt (xi t )Wks (xj s )dF11 (x ) ui t uj s , (10)

where we �rst interchanged the sums, and then approximated the average 1
n11

Õn11
Di =1:i=1

by
Ø
dF11 (x ) . Due to the

independence of the ui t , an assumption we reconsider below for balanced panels, the expectation of �d t ,k s is zero, and
so is the expectation of all mixed terms of �d t . Taking the expectation of the remaining

Õnd t

Di =d :i=1
Ø
W

2
d t
(xi t )dF11 (x ) u2i t

leads us (after some calculations that are standard in kernel regression) to the stated bias.

To obtain the variance, we need to consider the expectation of the square (8), but suppressing
Õnd t

Di =d :i=1
Ø
W

2
d t
(xi t )dF11 (x ) u2i t

in the �d t . That is, we consider the � : d t , k s and

�0
d t

= 2
nd t’

Di =d :i=1

’
Dj =d :j<i

π
Wdt (xi t )Wdt (xj t )dF11 (x ) ui t uj t .

The independence of these terms follows from the independence of the ui t (as we consider cohorts of independent
observations), so that we can calculate the variance of each term separately. From the related literature on nonpara-
metric testing, it is well known that the variance of the �0

d t
gives the �rst part of V/(n211h ) with the sum over the four

groups. The errors ui t belonging to group (d t ) are independent not only within this group, but also from those of any
other group (k s ) ; all additive terms in �d t ,k s are independent from each other. Taking expectation, the second part of
V/(n211h ) containing all mixtures mi x (d t , k s ) is

E [�2
d t ,k s ] =

1

n
2
d t
n
2
k s
h4

E

266664
nd t’

Di =d :i=1

nk s’
Dj =k :j=1

⇢π
Wdt (xi t )Wks (xj s )dF11 (x )

�2
u
2
i t
u
2
j s

377775
=

1

n
2
d t
n
2
k s
h2

E

266664
nd t’

Di =d :i=1

nk s’
Dj =k :j=1

⇣
K ⇤ K

⇣ xi t � xj s

h

⌘⌘2 f11 (xi t )f11 (xj s )u2i t u
2
j s

f
2
d t
(xi t )f 2k s (xj s )

377775
=

1

nd t nk sh
2
E

"⇣
W ⇤W

⇣ xi t � xj s

h

⌘⌘2 f11 (xi t )f11 (xj s )�2
d t
(xi t )�2

k s
(xj s )

f
2
d t
(xi t )f 2k s (xj s )

#
,

which gives us the second part of the variance. The central limit theorem follows directly from Vilar-Fernández and
González-Manteiga (2004) or Dette and Neumeyer (2001).

4 | SIMULATIONS

In this section, we show our theoretical results hold with simulated data. We focus our attention on three sets of
simulations. First, we see how well our method picks the correct set of covariates. Second, we examine the nominal
size and power of our test for violation of the bias stability condition. Finally, we examine the performance of our
estimate of the TT and its variance.

We begin with this basic data generating process and speci�cally mention where it is modi�ed below. We keep it
simple and only look at two covariates, no time correlation, continuousY , and no interactions. We generate our two
covariates via Xi t ⇠ U [0, 2]2, and our random errors via ✏i t ⇠ N (0, 1.5) , and ui t ⇠ N (0,�2

u ) for t = �1, 0, 1. We obtain
the treatment status and outcome values as:

Di t = 1{0.75Xi t ,1 � 0.5X 2
i t ,2 > ✏i t } (11)
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Yi t = 1 + t (2 + Xi t ,1 + X
2
i t ,2 ) + Di t + Di t 1{t � 1} + ui t (12)

where the treatment e�ect on the treated is the coe�cient on the interaction term (i.e.,TT = 1.0) in (12).2 In (12) this
starts from period t = 1 onward. We consider samples of size n = ⌃1

t=�1nt = ⌃1
d=0⌃

1
t=�1nd t = 100, 200, 400 and 800

where n is the total number of observations of all individuals in all time periods, nt is the number of individuals in time
period t (3 total time periods are observed) and nd t is the number of individuals in group d in time period t . We are
creating a repeated cross-section whereby each sample produces roughly an equal number of treated and controlled
observations.

We emphasize here, while we choose n = 100, 200, 400 and 800, the e�ective sample sizes are much smaller. The
last two columns of numbers in Table 1 give the average sample size (to the nearest integer) for n10 (the number
of observations we sum over in our criterion function), and the smallest sample size over all nd t (d 2 {0, 1}, t 2
{�1, 0, 1}).3 For example, for n = ⌃1

t=�1nt = ⌃1
d=0⌃

1
t=�1nd t = 100, the average number of observations in n10 = 18 and

min(nd t ) = 12. This is unheard of in nonparametric kernel estimation, yet we will see that our methods still perform
admirably.

Given that we only consider continuous outcome variables and covariates, we use Gaussian kernel functions.
Adding additional discrete covariates or having a binary outcome variable does not signi�cantly impact the results of
the simulations. In each exercise, we use 999 Monte Carlo simulations. For cases that require bootstrap replications,
we use B = 999 bootstrap replications.

We do not consider linear parametric models as our data are generated nonlinearly and standard linear models will
produce biased estimates in this setting (i.e., stickman comparison models). Further, should the parametric models be
correctly speci�ed, we would expect similar results from both approaches. Given our theoretical results and potential
parametric functional form misspeci�cation, we feel the comparison is unnecessary in this simulated setting.4

4.1 | Choice of the confounder set

To see if our method appropriately picks the correct set of covariates, we generate our data as in (12). However, we
also generate irrelevant covariates (from the same distributions as our relevant covariates). In each case, we include
both the correct covariates and then add either all irrelevant or some irrelevant covariates to determine if we can
identify the correct set. We present the results for moderate (�2

u = 1.0) and a low signal-to-noise ratio (�2
u = 2.0). In

each case, each of our (three separately simulated) irrelevant covariates come from a uniform distribution from zero
to two. In other words, we generate each Xi t ,j ⇠ U [0, 2] separately for j = 1, 2, . . . , 5. More formally, we consider the
following sets: S1,2 = {Xi t ,1,Xi t ,2}, S1,3 = {Xi t ,1,Xi t ,3}, S2,4 = {Xi t ,2,Xi t ,4}, S3,4 = {Xi t ,3,Xi t ,4}, S4,5 = {Xi t ,4,Xi t ,5},
S1,3,4 = {Xi t ,1,Xi t ,3,Xi t ,4}, S2,4,5 = {Xi t ,2,Xi t ,4,Xi t ,5}, S1,2,3 = {Xi t ,1,Xi t ,2,Xi t ,3}, S1,2,4 = {Xi t ,1,Xi t ,2,Xi t ,4}, S1,2,3,4 =

{Xi t ,1,Xi t ,2,Xi t ,3,Xi t ,4}, and S1,2,3,4,5 = {Xi t ,1,Xi t ,2,Xi t ,3,Xi t ,4,Xi t ,5}. We consider the following comparisons against
S1,2 (i.e., the correct set of covariates): versus S1,3 and S2,4, versus S3,4 and S4,5, versus S1,3,4 and S2,4,5, versus S1,2,3
and S1,2,4, and �nally, versus S1,2,3,4 and S1,2,3,4,5. The �rst comparison is the hardest as each time just one relevant
covariate was replaced. We do not know in advance which is the second most di�cult, as this depends on how well
the penalty factor

⇣
2(k + p )2 + 2(k + p )

⌘
/(n1• � (k + p ) ) does its job.

If we choose at random, then the fraction correctly speci�ed should be approximately 1/3 and if we choose

2While our simulations have to be generated by a speci�c parametric model, our nonparametric model does not include a treatment times post-time variable
as our estimation strategy focuses on four conditional expectations.

3The e�ective sample sizes are nearly identical in the remaining tables of this section.
4We will compare our methods to linear parametric methods in our empirical application.
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correctly each time, then the fraction correct should be 1. Table 1 gives the results of our simulations. The top panel
is for the moderate signal-to-noise ratio and the lower panel is for the low signal-to-noise ratio. As expected, we
perform better when the signal-to-noise ratio is higher. It is clear that larger sample sizes are needed when more
noise is present in the model.

As expected, the �rst column of numbers represent the hardest case. With n = 100 (i.e., some nd t only above 10),
we are roughly at or above random choice. For n > 100, it improves even for low signal-to-noise ratios.5 If we move
to the second column, the procedure already works for n = 100, and quite rapidly improves for increasing samples or
higher signal-to-noise ratios.

TABLE 1 Fraction correctly choosing S1,2 versus alternative sets of covariates: AIC penalty factor included,
average sample size (to the nearest integer) for n10 and min(nd t ) given for each overall sample size
(n = ⌃1

t=�1nt = ⌃1
d=0⌃

1
t=�1nd t )

�
2
u n S1,3, S2,4 S3,4, S4,5 S1,3,4, S2,4,5 S1,2,3, S1,2,4 S1,2,3,4, S1,2,3,4,5 n10 min(nd t )

1.0 100 0.376 0.593 0.893 0.975 0.998 18 12

200 0.411 0.654 0.897 0.976 0.999 35 27

400 0.491 0.812 0.907 0.985 0.999 71 57

800 0.577 0.912 0.921 0.990 0.999 140 119

2.0 100 0.320 0.493 0.864 0.971 0.996 18 12

200 0.381 0.541 0.888 0.973 0.999 35 27

400 0.403 0.713 0.896 0.982 1.000 70 57

800 0.522 0.804 0.918 0.987 1.000 141 119

The third column of numbers add an additional irrelevant covariate. Here, with help of the penalty factor, we
easily distinguish the correct set of covariates from those with one relevant covariate. For a more fair comparison,
we include both relevant covariates and one irrelevant covariate in the fourth column of numbers. Here we actually
do better. Even for sample sizes as small as n = 100, we correctly predict over 0.97 for both the low and moderate
signal-to-noise settings. Finally, we add two and three irrelevant covariates to the two correct covariates in the �fth
column. These fractions are near one in every setting.

In summary, we were generally able to identify the correct set of covariates. In practice, we expect a mix of
relevant and irrelevant covariates in each set. Given that we have very small sample sizes here, we have faith in
practice that our method will choose the correct set of covariates with standard sample sizes in the applied literature.

4.2 | Test

Here we check the performance of our second primary contribution, nonparametric tests for the credibility of bias
stability, joint signi�cance of heterogeneous e�ects, and homogeneous treatment e�ects, respectively. Recall that
studying the unconditional TT is much easier (Section 1). We conduct our simulations along the problem of studying

5We continued to raise the sample size to ensure that these fractions tended towards 1.000. When doubling the sample size, this occurred by n = 3200

(approximately n10 = 575) for the case where �2
u = 2.0.
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the bias stability (‘parallel path’) condition.6 We generate our data as in (12) to determine the size of the test. To
determine the power, we change the indicator function to 1 (t � 0) in (12) as this will generate a situation in which
the bias stability condition is violated. We again use n = ⌃1

t=�1nt = ⌃1
d=0⌃

1
t=�1nd t = 100, 200, 400, and 800 total

observations and estimate the size (and power) of the test at each of the common (arbitrary) values (1, 5, and 10%).
Inference with nonparametric estimation methods can be notoriously di�cult. Using the asymptotic variances

of tests are often useless and bootstrap procedures can bring large improvements. That being said, it is common to
oversmooth with such tests when using the bootstrap. As we mentioned in the main document, we recommend a
common approach of oversmoothing when calculating the residuals which are used in the bootstrap procedure (Vilar
and Vilar, 2012). We calculate the test statistic (T0) as outlined in the main document, but calculate the residuals
using the bandwidth procedure of Vilar and Vilar (2012).7 In short, we obtain the bootstrap residuals by adding the
�tted values (using the standard bandwidth) to the resampled residuals (using the larger bandwidth). Using the smaller
bandwidth leads to too little variation in the data (and would result in an improperly sized test).

Remark: For nonparametric analysis of continuous covariates, Faraway (1990) and Härdle and Marron (1991) no-
tice that those bootstrap procedures do not consistently capture the smoothing bias. They propose to �x this problem
by using di�erent bandwidths for estimation (bandwidth h) and bootstrap sample generation (call this bandwidth g ),
see Sperlich (2014) for details. The same occurs for the smoothed bootstrap of Cao-Abad and González-Manteiga
(1993). A less commonly used alternative is to explicitly correct for the smoothing bias, may it be by bias estimates,
bias reduction or a double bootstrap. Neumann and Polzehl (1998) show that asymptotically, using local-polynomials
with undersmoothing h works as well, as the bias converges faster.

The results for both the size and power of our test (T0) can be found in Table 2. The test seems to be correctly
sized starting with relatively small samples (say n > 200). As expected, the size of the test improves with the number of
observations and is better in the moderate signal-to-noise ratio. This is impressive given the history of nonparametric
kernel based tests. We do feel the need to mention that the oversmoothing here is necessary. When we perform the
test without a bandwidth g , the test is not properly sized (even for relatively large samples).

As for the power of the test (again in Table 2), the power is relatively low for small sample sizes, but improves
quickly as n increases. For example, when �

2
u = 1.0, by the time n = 800, the percent of time the test correctly rejects

the null is in excess of 85% at the 1% level and in excess of 97% at the 5 and 10% levels. The results for �2
u = 2.0 are

also strong, but require about twice as many observations when compared to the moderate signal-to-noise ratio.
In conclusion, the test is easy to use and works well. Power decreases for increasing dimensions (especially when

bias reducing techniques are needed: p > 3). We also studied in detail the e�ect when the true data generating
process deviates from the bootstrap generating process in di�erent ways. While certainly the p-value estimate is
a�ected, the test generally detected violations of the parallel path.

4.3 | Performance of treatment e�ect estimator

Finally, we move to estimates of the TT itself as well as its variance. Our estimators are consistent, but we provide a
brief set of results here forTTb to con�rm (i.e., integrateTTx over all treated individuals).8 While consistency should
not be in question, the ability of nonparametric estimators to produce correct results for the variance are less reliable.
The asymptotic results are not useful for �nite sample sizes and so we employ our bootstrap procedure outlined in

6We focus our attention on this particular test statistic as it is the most di�cult and maybe most interesting one.
7We tried the generic approach of multiplying the bandwidth by a constant (Härdle and Marron (1991, pp. 791)). Speci�cally, we set g = 1.5h, where h

is obtained from plug-in methods (only necessary for continuous variables). The size of the test for this approach is better than what we present. As the
multiple (1.5) is arbitrary, we prefer the automated approach in Vilar and Vilar (2012). These results are available upon request.

8The results for each of our treatment e�ect estimators are similar. Simulations forTTa orTTx (at a given x ) are available upon request.
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TABLE 2 Size and power of our bias stability (‘parallel path’) condition test (T0): The probability of rejection at
each signi�cance level (1, 5 and 10%) using B = 999 bootstrap replications in each of our 999 simulations, average
sample size (to the nearest integer) for n10 and min(nd t ) given for each overall sample size
(n = ⌃1

t=�1nt = ⌃1
d=0⌃

1
t=�1nd t )

size power

�
2
u n 1% 5% 10% 1% 5% 10% n10 min(nd t )

1.0 100 0.006 0.036 0.070 0.067 0.212 0.326 18 13

200 0.009 0.055 0.086 0.190 0.401 0.531 35 28

400 0.011 0.054 0.121 0.488 0.743 0.837 71 58

800 0.010 0.049 0.109 0.870 0.971 0.987 140 119

2.0 100 0.006 0.026 0.083 0.030 0.127 0.213 18 12

200 0.012 0.042 0.128 0.074 0.222 0.332 35 27

400 0.009 0.056 0.125 0.212 0.420 0.573 71 58

800 0.011 0.053 0.110 0.517 0.724 0.823 140 119

Section 1. We do not require a bandwidth g and use h for both estimation and in our bootstrap.9

It should be emphasized here again, with TTb , we are integrating over all treated individuals. In other words, we
are summing over n11 and n10. What this implies is that we are using roughly twice the number of observations as
compared to the previous two sub-sections. The results for TTa would use roughly half as many observations (i.e.,
solely n11).

TABLE 3 Performance of nonparametricTTb estimator: Average bias and MSE over the simulations and average
variance (calculated via B = 999 bootstraps over each of the 999 simulations), average sample size (to nearest integer)
for n11 and min(nd t ) given for each overall sample size (n = ⌃1

t=�1nt = ⌃1
d=0⌃

1
t=�1nd t )

n Bias AMSE Var(TTb ) n11 min(nd t ) Bias AMSE Var(TTb ) n11 min(nd t )

�
2
u = 1.0 �

2
u = 2.0

100 -0.190 0.434 0.182 18 12 -0.190 0.782 0.353 18 12

200 -0.140 0.190 0.111 35 27 -0.140 0.351 0.218 35 28

400 -0.106 0.100 0.065 71 57 -0.102 0.185 0.128 71 58

800 -0.089 0.049 0.036 140 119 -0.087 0.088 0.071 140 119

Table 3 gives the results from our simulations. We again choose a moderate (upper panel) and a low (lower panel)
signal-to-noise ratio. In each case, the �nite sample bias exists and tends towards zero as n increases. Again, larger
biases are a function of using plug-in bandwidths which tend to oversmooth (LSCV bandwidths leads to much smaller
average biases).10 The average mean square error (AMSE) also tends towards zero (evidence that our estimator is

9We again use plug-inmethods here, but note that the bias is much smaller for cross-validated bandwidths as plug-inmethods tend to oversmooth. Speci�cally,
for the cross-validated bandwidths, by the time n = 400 (n11 = 71, n10 = 84), our average (over the 999 simulations) biases are zero to two decimal places.

10We advocate for using cross-validated bandwidths in practice when estimating the TT. The sign of the bias is not random, but why it is negative can only be
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consistent). As expected, the moderate signal-to-noise ratio results in smaller AMSE values for any given sample size
(it does not signi�cantly impact the bias). The third column of numbers give the average variance of theTTb estimator
over each of the 999 simulations. Recall that we calculate the variance in each of those 999 simulations via 999
bootstrap replications. We are able to see the variance of the estimator converges as the sample size increases.

The performance of our estimator is impressive given its nonparametric nature. Overall, our simulations suggest
that our covariate selector, test and estimator are reliable and match our asymptotic developments. Next, we discuss
the use of these methods with empirical data.

5 | IMPLEMENTATION

In this section, we discuss four critical issues surrounding the practical use of our procedures, namely the data-driven
choice of bandwidths, how to incorporate sample weights, implementation in publicly available software, and poten-
tially useful alternatives to kernel smoothing.

5.1 | Bandwidth selection

Bandwidth selection has a long history in nonparametric econometrics and it is a common view that they should be
selected automatically via the data. Cross-validation (CV) routines are commonly performed and can be found in many
texts (e.g., Henderson and Parmeter (2015)). Plug-in bandwidth selectors for both continuous (Silverman, 1986) and
discrete (Chu et al., 2015) data are feasible and less computationally intensive.

Data driven methods are attractive, but it is unclear what objective function the CV procedure should attempt to
minimize. It can be argued that the �nal objective is not the optimal estimation of theTTx , but ofTTa orTTb . From a
theoretical, asymptotic point of view, for those kind of semiparametric estimators, the optimal bandwidth must be of
a faster rate than the usual optimal one or else its choice has only higher-order e�ects. This is in line with the �ndings
of Frölich (2005) whose simulations show that CV bandwidths perform well in this respect. This occurs because CV
bandwidths tend to undersmooth, but still keep the variance under control.

In our settings, we need bandwidths for at least four di�erent nonparametric estimators. A computationally
intensive method would be to use CV on each of the conditional expectations.11 As most averages will only be made
over the treated in t = 1, we propose to use least-squares cross-validation (LSCV) to estimate the bandwidths for the
�rst conditional expectation, i.e.,

LSCV (h, � ) =
n11’

i :Di1=1

⇣
Yi � bE�i [Yi |X = xi ]

⌘2
, (13)

where bE�i [Yi |X = xi ] is the leave-one-out estimator of E [Yi |X = xi ] for the treatment group in time period 1 (i.e.,
m11 ( ·)). The CV procedure picks the bandwidths (h, �) which lead to the best out-of-sample prediction of the data
(i.e., minimize the CV criterion). The bandwidths for the other conditional expectations can then be corrected by the
sample size (the other three conditional expectations will share the same smoothness as the �rst).

If the set of potential sets of covariates, the number of potential transformations ofY , or sample size is too large
for running the CV for all potential models, we can �rst resort to plug-in methods and apply (13) once the selection

deduced from the average over the linear combinations of individual biases Bdt (x , �, h ) , which in turn depends on the particular bandwidth choices, true
densities and functions. Importantly, it is minor in size and rapidly converges to zero.

11We tried this in our application and found similar results.
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of covariates and transformation is concluded. This is based on the assumption that the ranking of models along the
selection criterion is robust within a reasonable range of bandwidths. For the continuous covariates, we may take a
simple plug-in bandwidth developed only for densities because (i) it does not depend on the transformation ✓ and (ii)
depends on the set of further covariates only via the rate. For discrete covariates, we could choose � such that about
p
nd t observations are included in each estimation.

As we explain in more detail, in Section 5.3, for estimation, as we have done in our application, we suggest the
method above. We use CV to select the bandwidths for m11 ( ·) and modify that bandwidth (via the relevant sample
size) for the other three cases. For testing, given the results in Parmeter et al. (2009) that suggest employing CV in
nonparametric tests causes size distortions, we use the plug-in bandwidths to calculate the relevant test statistics.

In the case of testing with continuous covariates, as discussed in the main document, we suggest an approach
analogous to that in Vilar and Vilar (2012), whereby they search for the bandwidth over the set of covariates X that
is the largest (h), and use that bandwidth to smooth the remaining covariates (g ). This is simple, but works well in
simulations and is preferable to the common practice of multiplying h by a �xed constant (e.g., g = 1.5h). Note that
as we only have discrete data in our application in the main document, we do not face the choice of h versus g in our
test statistics.

5.2 | Sampling weights

In our application, sample weights are used. This can be implemented in the most generic setting of our estimator
bmdt (x ) . Our objective function for a given conditional expectation can be written as

nd t’
i=1

wibu2i K (Xi , x , h, � ) =
nd t’
i=1

wi [Yi � bmdt (x ) ]2K (Xi , x , h, � ),

where wi is the sample weight for observation i . This leads to the (weighted) estimator

bmdt (x ) =
Õ

n

i=1Yiwi K (Xi , x , h, � )Õ
n

i=1wi K (Xi , x , h, � )
,

which, unfortunately, is not common in canned statistical packages. One way to implement this is via the
tool in the in (Hay�eld and Racine, 2008). This allows us to calculate

Õ
n

i=1Yiwi K (Xi , x , h, � ) and/orÕ
n

i=1wi K (Xi , x , h, � ) and taking the ratio of these two sums gives us the local-constant estimator. Certainly, the same
approach works with other weighting schemes researchers may want to include (e.g., for scenario predictions).

5.3 | Algorithm and coding

Wehave produced three procedures that can be implemented in (http://www.r-project.org). There are three separate
procedures, namely covariate/scale selection, estimation, and testing, as it may be desirable to disentangle them in
an application. The algorithm is as follows:

1 Use both intuition and statistical analysis to suggest sets of potential confounders. It is important to pick the set of
confounders that minimize the bias stability condition Assumption I of the main document. Possible suggestions
include plotting the densities separately between groups and either visually con�rming or statistically con�rming
the di�erence between densities.
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2 Suggest possible strictly monotone transformations of the outcome variableY . Two common cases in the contin-
uous setting are in levels and logs.12

3 For each combination of transformations ofY and setsX S of covariates forX , use plug-in bandwidths to calculate
the conditional expectationmdt ( ·) for the setting d = 1 and t = 0. Use the scale factors from this setting to select
the plug-in bandwidths for the conditional expectations for the other three cases (d = 1, t = �1, d = 0, t = 0 and
d = 0, t = �1).13

4 For each combination listed in the previous step, calculate the bias stability condition in Assumption I - but for
the period before treatment started. The combination that makes this condition closest to zero is our candidate
set.

5 Run the bias stability test for the set X S identi�ed in step (4). If you reject the null, consider adding additional
confounders and running steps (3) and (4) again.

6 For the combination of (transformation of)Y and (set of covariates) X S that minimizes the bias stability condition,
use a CV routine to best estimate the conditional expectation mdt ( ·) for the setting d = 1 and t = 1. Use the
scale factors from this setting to select the bandwidths for the conditional expectations for the other three cases
(d = 1, t = 0, d = 0, t = 1 and d = 0, t = 0).14

7 Estimate each of the four conditional expectations and evaluate each TT of interest.
8 Obtain the standard errors via the bootstrap procedure outlined in Section 1 and perform the tests of interest.

The�rst two procedures require data prior to period 0whereas the third does not. The�rst procedure ,
identi�es the set of covariates and scale of the outcome variable that minimize the objective functions in Section 3 of
the main document to select or rank the scales (or transformations) ofY and the sets of covariates X . The procedure

, tests if the bias stability condition is violated. The procedure , estimates the treat-
ment e�ects. can be used again to test for signi�cant treatment e�ects. All procedure code is described
in greater detail in Appendix 6.

5.4 | Parametric and semi-parametric alternatives

It is feasible to use parametric or semi-parametric methods with our approach. We could replace the conditional
expectations with parametric or semiparametric versions. However, we still suggest that our method be �rst. Our
methods do not have to be the last step, instead, they can guide the practitioner to �nd appropriate models and avoid
wrong conclusions based on results which are strongly model-dependent. A compromise could be the use of splines
which simplify modeling, but still provide important �exibility.15

12In our application,Y is binary and hence is our only suggestion.
13For the continuous founders, we suggest using the Silverman (1986) rule-of-thumb and for the discrete confounders we suggest using the methods discussed
in Chu et al. (2015). These were designed for density estimation, but avoid the large computational burden with multiple combinations and CV (in the �fth
step, we use CV to obtain more accurate estimates). This step requires that past information is available, notably at least t = �1.

14For continuous variables, hj = cj b�xj n�1/(4+q ) , where cj is the scale factor and b�xj is the sample standard deviation of the j th continuous covariate. For

discrete variables, �j = cj n
�2/(4+q ) , where cj is the scale factor for the j th discrete covariate.

15Typically splines do not include all possible interactions among the covariates. This would be analogous to an additively separable nonparametric (kernel
estimated) model, which would not be subject to the p  3 restriction.
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6 | PROCEDURE CODE

In this section, we detail three procedures that can be implemented in the programming language (http://www.r-
project.org). We decided to present them as three separate procedures as it may be desireable to disentangle them in
an application. Note that the �rst two procedures require data prior to the treatment whereas the third does not. The
�rst procedure , identi�es the set of confounders and scale of the outcome variable that minimize the
objective function(s) in Section 3 of the main document. The second procedure , tests if the bias stability
condition is violated via test statistic Tt of the main document (Section 5). The �nal procedure ,
estimates the treatment e�ect dTT a . All code can be requested from the authors upon publication of the article.

| Description of the function bsc.choice()

The main purpose of this function, , is to suggest a set of confounders amongst a set of potential
confounders.16 The function can be called with,

The function has six main arguments where the �rst four are obligatory. These are

: The outcome variable, which is a n ⇥ 1matrix. It contains the outcome variable for each individual in each time
period. It may be discrete or continuous.
: The sets of potential confounders, which is a list. It requires multiple data frames, each consisting of sets

of potential confounders. The number of rows of each confounder must be of dimension n . The number of
confounders and types of variables (discrete or continous) can vary with each data frame. It is feasible to have
some of the confounders in a given set to be in competing sets.
: The treatment status. This is a binary variable of dimension n ⇥ 1.
: The time period. This is a discrete variable which must be equal to zero in the period where the treatment was
administered.17 This variable of dimension n ⇥ 1.
: These are the sample weights. It must be a n ⇥ 1matrix. If no sample weights are needed, it should be set equal
to a column of ones.

: This asks whether or not the outcome variable (y) is continuous. If set equal to “continuous", it will evaluate
the function for both the level and the log of the outcome variable.18

The function consists of several steps. It �rst determines the type of variable (ordered, factor or continuous) from
each data frame. It then calculates plug-in bandwidths for each regressor type. For continuous variables it uses the
Silverman (1986) bandwidth and for the discrete variables it uses the plug-in bandwidths from Chu et al. (2015). To
equate the amount of smoothing across each functional, it calculates the scale factors for the treatment group in
period 0 and then adjusts for the rate of convergence of the other three groups (treated before period 0, control in

16It also checks for the level versus the log ofY if the outcome variable is continuous.
17We only consider treatment occurring in a single period. Extensions to treatments conducted in di�erent time periods for di�erent individuals is left for
future research.

18Note that you must ensure that the outcome variable can be logged. Also, it is feasible to include alternative transformations of the outcome variable within
the section of the code as desired.
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period 0 and control before period 0). Once these are obtained for each set of confounders,

1

n1•

’
i : Di•=1

�
m1t (xi• ) � m0t (xi• ) � m1(t�1) (xi• ) +m0(t�1) (xi• )

 2
, (14)

is calculated for each set of confounders. The procedure then determines the set which minimize (14).
The function then returns six objects. Each object of interest can be called via :

: The outcome variable associated with the smallest value for (14).
: The set of confounders that minimize the objective function.19

: The value produced for each set of confounders of (14).
: The minimum value of produced amongst the set of confounders of (14).

: The number of discrete regressors in the chosen set of confounders.
: The number of continuous regressors in the chosen set of confounders (should be three or less).

At this point, the user should take the resulting outcome variable and set of confounders and conduct the
with those variables. We discuss this function in the next subsection.

| Description of the function bsc.test()

The main purpose of this function, , is to test if there is a violation of the bias stability condition. The
function can be called with,

The function has six main arguments where the �rst four are obligatory. These are

: The outcome variable, which is a n ⇥ 1matrix. It contains the outcome variable for each individual in each time
period. It may be discrete or continuous.
: The set of confounders, which is a data frame. This is a n ⇥ q matrix where q refers to the total number of
confounders.
: The treatment status. This is a binary variable of dimension n ⇥ 1.
: The time period. This is a discrete variable which must be equal to zero in the period where the treatment was
administered. This variable of dimension n ⇥ 1.
: These are the sample weights. It must be a n ⇥ 1matrix. If no sample weights are needed, it should be set equal
to a column of ones.
: The number of bootstrap replications. This must be an integer value. If not speci�ed, 399 bootstrap replica-

tions will be run.

The function consists of several steps. It �rst determines the type of variable (ordered, factor or continuous) from
the data frame. It then calculates plug-in bandwidths for each regressor type. For continuous variables it uses the
Silverman (1986) bandwidth and for the discrete variables it uses the plug-in bandwidths from Chu et al. (2015). To
equate the amount of smoothing across each functional, it calculates the scale factors for the treatment group in

19The function scales each of the continuous variables to have variance 1. This improves estimation in practice and does not impact the ranking of sets of
confounders nor does it impact the estimated treatment e�ect.
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period 0 and then adjusts for the rate of convergence of the other three groups (treated before period 0, control in
period 0 and control before period 0). Once this is obtained for the set of confounders, Tt is calculated. A bootstrap20

is used to them produce the sampling distribution of the test statistic.
The function then returns four objects. The �rst object, a �gure, will automatically be produced. The remaining

three objects of interest can be called via :

: The value produced by Tt .
: The standard deviation (standard error of the test statistic) of the bootstrapped estimates of the test

statistic.
: The p-value associated with the test statistic. This is calculated as the percentage of bootstrapped test

statistics which are larger than the original test statistic.

The �gure plots the estimated density of the bootstrapped test statistics21 along with the value of the test statistic
itself as a vertical line. If the vertical line does not appear present in the �gure, it is likely far to the right which would
suggest rejecting the null hypothesis (i.e., a p-value near zero).

| Description of the function npdid.estimation()

The �nal function, , is designed to estimate the treatment e�ect and its standard error. The
function can be called with,

The function has six main arguments where the �rst four are obligatory. These are

: The outcome variable, which is a n ⇥ 1matrix. It contains the outcome variable for each individual in each time
period. It may be discrete or continuous.
: The set of confounders, which is a data frame. This is a n ⇥ q matrix where q refers to the total number of
confounders.
: The treatment status. This is a binary variable of dimension n ⇥ 1.
: The time period. This is a discrete variable which must be equal to zero in the period where the treatment was
administered. This variable is of dimension n ⇥ 1.
: These are the sample weights. It must be a n ⇥ 1matrix. If no sample weights are needed, it should be set equal
to a column of ones.
: The number of bootstrap replications. This must be an integer value. If not speci�ed, 399 bootstrap replica-

tions will be run.

The function consists of several steps. It �rst determines the type of variable (ordered, factor or continuous)
from the data frame. It then calculates plug-in bandwidths for each regressor type to be used as starting values for
the cross-validation function. Again, for continuous variables it uses the Silverman (1986) bandwidth and for the
discrete variables it uses the plug-in bandwidths from Chu et al. (2015). To equate the amount of smoothing across
each functional, it calculates the scale factors for the treatment group in period 1 and then adjusts for the rate of

20The code can automatically detect if the outcome variable is binary. If so, then a bootstrap procedure which ensures the bootstrap outcome is binary, is
applied.

21The Sheather and Jones (1991) bandwidth is used to produce this kernel density. It is available in the base package of via .
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convergence of the other three groups (treated before period 0, control in period 0 and control before period 0). The
LSCV procedure de�ned in (13) is minimized using the function in the package in . We calculate the
scale factors from the CV function for the treatment group in period 1 and then adjust for the rate of convergence of
the other three groups (treated in period 0, control n period 1 and control in period 0).

The TT is then estimated as outlined in the main document (dTT a ). A bootstrap22 is used to them produce
the sampling distribution of the TT. We use the sample standard deviation of the bootstrapped values of TT as the
standard error of the treatment e�ect.

The function then returns six objects. Each object of interest can be called via :

: The cross-validated bandwidths for the treatment group in period 1.
: The convergence rate adjusted bandwidths for the treatment group in period 0.
: The convergence rate adjusted bandwidths for the control group in period 1.
: The convergence rate adjusted bandwidths for the control group in period 0.
: The estimated value of theTT

: The estimated standard error of theTT

These three functions together can be used to reproduce any of the nonparametric results in the paper. They can
be used to replicate the simulations or the empirical application. The �les that we used to construct any of these
results are also available upon request after publication of the article.
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