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ABSTRACT
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Does College Selectivity Reduce Obesity? 
A Partial Identification Approach*

We use data from the National Longitudinal Study of Adolescent to Adult Health to 

investigate whether the quality of tertiary education -measured by college selectivity- 

causally affects obesity prevalence in the medium run (by age 24-34) and in the longer 

run (about 10 years later). We use partial identification methods, which allow us, while 

relying on weak assumptions, to overcome the potential endogeneity of college selectivity 

as well as the potential violation of the stable unit treatment value assumption due to 

students interacting with each other, and to obtain informative identification regions for 

the average treatment effect of college selectivity on obesity. We find that attending a 

more selective college causally reduces obesity, both in the medium and in the longer run. 

We provide evidence that the mechanisms through which the impact of college selectivity 

on obesity operates include an increase in income, a reduction in physical inactivity and in 

the consumption of fast food and sweetened drinks.
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1. Introduction 

In 2019, 42.8 percent of the US population was obese (OECD Health Statistics). 

Obesity is not only a health problem, as it also affects economic outcomes such 

as productivity, wages and skill formation (see for instance Böckerman et al. 

(2019); Brunello et al. (2009); Cawley (2004); Cawley (2013); Cawley (2015)). 

The negative correlation between education and obesity has been well 

documented: each additional year of schooling is associated with a two-

percentage point reduction in the probability of being obese. Evidence of a 

causal protective effect of education on obesity is, however, weak at best (see 

Galama et al. (2018); Lochner (2011)).  

Empirical research on the effects of education on obesity has mainly focused on 

years of schooling, a quantitative measure of education. Less has been done to 

investigate whether the quality of education matters.1 Education quality 

-measured for instance by college admission standards or by instructional 

expenditures per student (see Brewer et al. (1999); Dale and Krueger (2002))- 

may affect obesity because it influences income and earnings (Brewer et al. 

(1999); Dale and Krueger (2002); Hoekstra (2009)), years of education, 

cognition, marital status and the quality of peers (Fletcher and Frisvold (2011)).  

The small literature focusing on the effects of education quality on health 

outcomes includes Ross and Mirowsky (1999), who estimate the effects of 

attending a more selective college on physical functioning and self-rated health, 

and Fletcher and Frisvold (2014), who use data from siblings followed for over 

50 years in the Wisconsin Longitudinal Survey and show that graduating from 

a more selective college reduces overweight and tobacco use.  

 
1 The importance of education quality has been recognized in the growth literature. Hanushek and co-
authors have shown that —conditional on years of schooling— education quality, measured by attained 
test scores, significantly affects economic growth. In addition, years of schooling have no impact on 
growth once we condition on attained test scores (Hanushek and Kimko (2000); Hanushek and Wossmann, 
(2012)).  



2 
 

In the paper closest to ours, Fletcher and Frisvold (2011) use data from the 

National Longitudinal Study of Adolescent Health (Add Health) and present 

“suggestive” evidence2 that college selectivity reduces obesity both during 

college and almost a decade later. This evidence, as the one provided in the 

papers cited above, is based on selection on observables, and, as the authors 

admit, is not robust to selection on unobservables. In particular, the latter needs 

to be less than 0.3 times the amount of the former to eliminate the estimated 

reduction in obesity induced by higher college selectivity.   

Our paper contributes to this small literature in two ways. First, we use Add 

Health -the same data source used by Fletcher and Frisvold (2011)- and obtain 

causal estimates of the effects of college selectivity on obesity after college by 

implementing partial identification (PI) methods that locate non-parametrically 

these estimates in informative identification regions (Manski (1989) and (1997); 

Manski and Pepper (2000)). PI has several important advantages over selection 

on observables: i) it addresses the problem of selection on unobservables, both 

time-invariant and time-varying; ii) it relies on weak, and thus credible, 

assumptions (the price to pay being an increase in uncertainty); iii) it is 

completely transparent about how each assumption affects the results; iv) it 

makes no assumptions about preferences, functional forms, expectation 

formation, optimality of decision-making, or the joint distribution of errors and 

observable characteristics; v) it identifies the average treatment effect (ATE); 

vi)  it is robust to the violation of the stable unit treatment value assumption 

(SUTVA), which is likely to be a problem in the context of education due to 

peer effects.  

Second, from a policy perspective it is important to understand whether the 

causal effects of college selectivity persist or fade away as time goes by. We 

therefore estimate not only the medium-term causal effects of college 

 
2 The term “suggestive” is used by the authors. 
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selectivity on obesity (when individuals are aged 24 to 34) but also these effects 

in the longer term (when they are aged 33 to 44).3  

We find that the causal effect of attending a more selective college on individual 

obesity 2 to 12 years after the typical graduation age (22) amount to at least a 

2.0 percentage points reduction, which corresponds to a 7.7 percent of mean 

obesity (26.2%), a quantitatively important effect. The upper bound of the effect 

is less than half in absolute value than the estimate provided by Fletcher and 

Frisvold (2011) using the same dataset (-4.9), and significantly lower than the 

OLS estimate (-7.2 percentage points). About ten years later, when individuals 

are 11 to 22 years older than the typical age of graduation from college, the 

effect of attending a more selective college on obesity is still negative but 

slightly smaller (at least -1.6 percentage points, or a 4.4 percent reduction with 

respect to mean obesity).  

These results indicate that attending a more selective college causally reduces 

obesity both in the medium and in the longer run. We consider physical activity 

(the lack of which is measured by hours spent watching TV and by a binary 

variable for no physical activity) and the consumption of fast food and 

sweetened drinks as mechanisms that could explain our findings. We find that 

attending a more selective college improves physical activity both in the 

medium and in the longer run. There is also evidence of a reduction in fast food 

and sweetened drinks consumption, especially in the medium run. Higher 

selectivity also leads to higher income, which facilitates the adoption of 

healthier eating habits, including those that we cannot observe in our data (e.g., 

the consumption of fruit and vegetables). 

 
3 Using selection on observables, Fletcher and Frisvold (2011) focus on the medium term by using the 
fourth wave of Add Health, and Fletcher and Frisvold (2014) look at the longer run in a small sample 
drawn from the Wisconsin Longitudinal Survey.  
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The remainder of the paper is organized as follows: Section 2 describes the data, 

Section 3 introduces our methodology and Section 4 presents the results. 

Conclusions follow.  

2. Data and Variables. 

2.1. The Add Health Dataset 

We use data from the National Longitudinal Study of Adolescent to Adult 

Health (Add Health). Add Health is a longitudinal school-based study of a 

nationally representative sample of the U.S. adolescents who were in 7th to 12th 

grades in 1994-95 and have been followed until 2016-18. The first wave of Add 

Health (1994-95) was drawn from a stratified sample of 142 schools. Within 

each school and grade, approximately 17 males and 17 females were randomly 

selected for a detailed in-home interview. This in-home sample was 

subsequently interviewed in 1996 (Wave II), 2001-02 (Wave III), 2008 (Wave 

IV), and 2016-19 (Wave V). The in-home survey contains detailed information 

on self-reported health and health related behaviours, such as eating habits and 

physical activity. Moreover, starting from Wave II, anthropometric 

measurements were collected, and we use them to construct objective measures 

of the body mass index (BMI), obesity indicators, and waist circumference.  

In Wave IV, when respondents were between 24 and 34 years old, they were 

asked if they had received a bachelor’s degree and the institution from which 

they had acquired the degree. Add Health assigned an Integrated Postsecondary 

Education Data System (IPEDS) code to each institution and matched college 

information in the year of graduation from the IPEDS database. Using these 

codes, data containing information on college selectivity from the Mobility 

Report Card: The Role of Colleges in Intergenerational Mobility (Chetty et al. 

(2017)) were matched to Add Health respondents.4  

 
4 For further details, see the Add Health documentation available at 
https://cdr.lib.unc.edu/downloads/bc386p66s and  
https://cdr.lib.unc.edu/downloads/kh04dv36s?locale=en. 
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Since we are interested both in the medium and in the long-term effects of 

college selectivity on obesity, we use outcomes measured in Waves IV (age: 

24-34) and V (age: 33-44) of Add Health. Hence, assuming that the usual age 

at college graduation is 22, we observe individuals between 2 and 12 years after 

graduation (the medium term) and between 11 and 22 years after graduation 

(the longer term).  

Our estimation sample is constructed by applying the following filters. We start 

with a sample of 18,910 Wave I respondents with valid age and cross-sectional 

sample weights. We select 14,790 respondents who were interviewed again in 

Wave IV and further restrict the sample to 4,734 respondents who had 

completed college by Wave IV. Furthermore, we eliminate 922 respondents 

who were not matched to the IPEDS database or whose colleges do not offer a 

four-year degree. Finally, we retain the 3,578 individuals for whom we have 

both valid college selectivity information and the score in the Peabody Picture 

Vocabulary Test (PPVT), which are required for our identification strategy, as 

we explain below. For Wave V, the analysis is based on 2,856 respondents who 

have valid cross-sectional weights. Table A.1 in the Appendix reports the 

summary statistics for our estimation sample.  

2.2. College Selectivity  

Following Deming et al. (2015) and Chetty et al. (2017), our measure of college 

quality is the Barron’s (2009) college selectivity index.  Based on this index, 

Add Health classifies colleges into four categories: (1) elite, (2) highly selective, 

(3) selective, (4) non-selective. We define a binary variable “highly selective or 

elite college” that takes the value one if a college is classified as elite or highly 

selective, and zero otherwise. Table A.1 in the Appendix shows that 20 percent 

of the respondents in our sample have attended a highly selective or elite 

college.  
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2.2. Outcomes 

2.2.1. Obesity 

We are interested in the effect of college selectivity -as a measure of college 

quality-  on obesity and health related behaviours. The body mass index (BMI) 

is defined as weight (kg.) divided by squared height (cm.), and obesity is defined 

as having a BMI of 30 or more. In Add Health, BMI is computed using 

anthropometric measures of weight and height collected in both waves IV and 

V. While anthropometric measures were collected from most respondents in 

Wave IV, they were collected in Wave V only for respondents who gave their 

consent to an in-home examination, which included taking measurements and 

collecting a blood sample. Because of this, BMI based on anthropometric 

measures is available in Wave V for only 1,548 respondents in our estimation 

sample.5 Table A.2 in the Appendix reports that 26.2% and 36.6% of the 

respondents in our sample were obese in waves IV and V, respectively. The 

average BMI was 27.4 in Wave IV and 29.0 in Wave V.  

An alternative measure of obesity is abdominal obesity, which is defined as 

having a waist circumference (in cm) above 88 cm for females and 102. cm for 

males.6 Average waist circumference in our sample is 94.1 in Wave IV, and 93.7 

in Wave V (see Table A.2 in the Appendix).  

2.2.2 Health-Related Behaviours 

Fast food consumption 

Respondents were asked the following question in both waves IV and V: “In the 

past 7 days, how many times did you eat food from a fast-food restaurant, such 

 
5 Protocols for the collection of anthropometrics in Wave IV are available at 
https://addhealth.cpc.unc.edu/wp-
content/uploads/docs/user_guides/Wave_IV_Cardiovascular_and_anthropometric_documentation.pdf, 
and in Wave V at https://addhealth.cpc.unc.edu/wp-
content/uploads/docs/user_guides/WaveVAnthropometricsUserGuide.pdf. 
6 https://www.cdc.gov/healthyweight/assessing/index.html. 
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as McDonald's, Burger King, Wendy's, Arby's, Pizza Hut, Taco Bell, or 

Kentucky Fried Chicken or a local fast-food restaurant?”. Using the answers to 

this question, we define a binary variable that takes the value one if respondents 

ate food from a fast-food restaurant more than once a week, and zero otherwise.  

Sweetened drinks consumption 

Using the answers to the following question in waves IV and V: “In the past 7 

days, how many regular (non-diet) sweetened drinks did you have? Include 

regular soda, juice drinks sweetened tea or coffee, energy drinks, flavored 

water, or other sweetened drinks?”, we define the variable “number of sugary 

drinks is the past 7 days”.  

Physical inactivity 

We define the binary variable “no bouts of physical activity” in both waves 

using the following questions:  (1) “In the past 7 days, how many times did you 

bicycle, skateboard, dance, hike, hunt, or do yard work?”, (2) “In the past 7 

days, how many times did you roller blade, roller skate, downhill ski, 

snowboard, play racquet sports, or do aerobics?”, (3) “In the past 7 days, how 

many times did you participate in gymnastics, weight lifting, or strength 

training?”, (4) “In the past 7 days, how many times did you participate in 

individual sports such as running, wrestling, swimming, cross-country skiing, 

cycle racing, martial arts, or in strenuous team sports such as football, soccer, 

basketball, lacrosse, rugby, field hockey, or ice hockey?”, (5) “In the past 7 

days, how many times did you play golf, go fishing or bowling, or play softball 

or baseball?”, (6) “In the past 7 days, how many times did you walk for 

exercise?”. The variable takes the value one if the respondent has not 

participated in any of these activities, and zero otherwise. 

Hours spent watching TV  
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Using the following question asked in both waves: “In the past seven days, how 

many hours did you watch television or videos, including VHS, DVDs or music 

videos?”, we define the variable “number of hours spent watching TV in the 

past week”. 

3. Methodology7  

Attending a more selective college is the outcome of decisions by both 

individuals and colleges and therefore cannot be treated as exogenous with 

respect to individual obesity. In particular, the unobservable characteristics that 

affect the attendance of a highly selective college may be correlated with the 

individual propensity to obesity.  

For example, students attending a highly selective college may have higher 

earnings capacity, which could lead to better dietary habits and more exercising. 

They may also have higher human capital, which can be correlated with both 

college choice and dietary and exercise habits. And they could also be, on 

average, in better physical health, which again could affect both college choice 

and obesity later in life. Time varying un-observables may also matter (for 

instance, a shock that affects family income may affect both health and college 

choice). 

Previous literature has addressed the problem that selection into college type is 

non-random by comparing students of selective colleges and students admitted 

to these colleges who attended instead non-selective institutions (Dale and 

Krueger (2002)); by explicitly modeling high school students’ choice of college 

(Brewer et al. (1999)); by comparing twin pairs (Behrman et al. (1996)); or by 

exploiting discontinuities in admission rules and a regression discontinuity 

design (Hoekstra (2009); Zimmerman (2019)). These studies have focused 

mainly on labor market returns to college selectivity.  

 
7 The discussion in this section closely follows Christelis et al. (2020). 
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 In the absence of plausible sources of exogenous variation in our data, we 

estimate the causal effect of college selectivity on individual obesity by using 

partial identification (henceforth PI), a methodology introduced by Manski 

(1989), (1990), (1994). PI methods bound non-parametrically the average 

treatment effect (henceforth ATE), that is, they locate the ATE in an 

identification region instead of producing a point estimate. In what follows, we 

give a brief overview on how we implement PI in our context and provide 

additional details in the online Appendix. 

PI methods apply bounds to the counterfactual, and thus unobservable, average 

potential outcomes across sample units. For example, to estimate obesity 

prevalence when no individual in the sample has attended a more selective 

college, we need to calculate, keeping all other factors constant; i) the obesity 

prevalence in those who did not attend a more selective college, which is an 

observed magnitude; ii) the obesity prevalence in those who did attend a more 

selective college, had they not attended one. This latter term represents the 

counterfactual outcome. The endogeneity of attendance of a more selective 

college prevents us from replacing the counterfactual outcome with the 

observed obesity prevalence of those who did not attend a more selective 

college. This would have been possible, for example, if we had been conducting 

a randomized control trial. 

We use PI to bound the counterfactual outcome, and thus we also bound the 

average potential outcome, that is, the obesity prevalence when nobody attends 

a more selective college. In an analogous fashion, we bound the other potential 

outcome, namely obesity prevalence when everybody attends a more selective 

college. Bounding the average potential outcomes also implies bounding their 

difference, that is, the ATE of interest, or the difference between average obesity 

when everybody attends a more selective college and when nobody attends such 

a college, keeping all other relevant factors constant. The ATE upper bound is 

equal to the upper bound of average obesity when everybody attends a more 
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selective college minus the lower bound of average obesity when nobody 

attends a more selective college. On the other hand, the ATE lower bound is 

equal to the lower bound of average obesity when everybody attends a more 

selective college minus the upper bound of average obesity when nobody 

attends a more selective college. 

Without any assumptions, one can credibly use as the lower (upper) bound of 

counterfactual outcomes only the minimum (maximum) feasible values of the 

outcome, namely zero and one, given that obesity is a binary variable. As 

expected, these extreme values result in very wide and thus uninformative 

identification regions (we provide additional details on bounds using no 

assumptions in section A.2 of the online Appendix). Hence, to informatively 

bound unobserved counterfactual outcomes, PI uses assumptions that are, as we 

will see, much milder than those used in OLS and exogenous IV-based methods.  

The first assumption is that of monotone treatment response (MTR henceforth; 

see Manski (1997), which in our context states that obesity prevalence is, on 

average, weakly decreasing in attending a more selective college, keeping 

everything else constant. This average weakly monotonic relationship holds for 

potential outcomes, and thus is unverifiable. MTR is, however, a reasonable 

assumption in our context because attending a more selective college is, on 

average, likely to reduce the likelihood of obesity in most individuals (Ross and 

Mirowsky (1999); Fletcher and Frisvold (2011) and (2014)). First, higher 

quality education makes it easier for individuals to be better informed about the 

negative consequences of obesity (Lochner (2011)); second, it affects health 

behaviors by increasing cognitive ability and the ability to process relevant 

information (Cutler and Lleras Muney (2010)); last but not least, it is associated 

with higher earnings (Dale and Krueger (2002)), which in turn improves eating 

and exercise habits.  

We emphasize that the MTR assumption posits that the weakly negative 

relationship between attending a more selective college and obesity holds on 
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average. In other words, while there could be individuals who attend a more 

selective college but gain weight due to idiosyncratic reasons, the assumption 

postulates that these individuals are a minority in the population. Importantly, 

MTR posits a weakly negative association, and thus it is consistent with 

attendance of a more selective college to have, on average, no effect on obesity 

whatsoever.  

Hence, this assumption does not guarantee that college selectivity negatively 

affects individual obesity, as will be shown in Table 1 below. To illustrate how 

the MTR assumption works, we would like to bound the counterfactual obesity 

prevalence in those who did not attend a more selective college, had they 

attended one. Under MTR, an upper bound of this counterfactual outcome is the 

actual obesity prevalence in those who did not attend a more selective college. 

Given that observed obesity prevalence is less than one, the MTR assumption 

leads to narrower identification regions compared to those obtained under no 

assumptions.  

Under MTR, the upper bound of the average potential outcome, that is, obesity 

prevalence when everybody attends a more selective college is the observed 

obesity prevalence in the whole sample. This happens because in the whole 

sample we observe both individuals who have attended a more selective college 

and individuals who have not. Hence, MTR implies that in a situation in which, 

counterfactually, everybody has attended a more selective college, obesity 

prevalence would have been weakly lower than the observed one. 

Correspondingly, under MTR, the lower bound of the other average potential 

outcome, namely obesity prevalence when nobody has attended a more selective 

college, is again the observed obesity prevalence in the whole sample. This 

happens because MTR implies that in a situation in which nobody attended a 

more selective college, obesity prevalence would have been higher than in the 

actually observed sample, in which at least some individuals have attended a 
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more selective college. We further discuss the MTR assumption in section A.3 

of the online Appendix. 

The above discussion indicates that the upper bound of the ATE under MTR is 

equal to zero, as both potential outcome bounds are equal to the observed 

prevalence of obesity in the whole sample. This result is consistent with Manski 

(1997), who shows that the ATE identification region under MTR always 

includes zero.8 Importantly, this upper bound shows the maximum change in 

the prevalence of obesity when everybody attends a more selective college, 

compared to when nobody does. Since in our context MTR implies a weakly 

negative treatment effect, we can equivalently state that the ATE upper bound 

under MTR denotes the minimum reduction in the prevalence of obesity when 

everybody attends a more selective college compared to when nobody does. 

Therefore, the ATE upper bound is the most important one we estimate, as it 

represents the most conservative acceptable estimate of the ATE. On the other 

hand, the ATE lower bound under MTR denotes by at most how much obesity 

prevalence changes from a situation in which nobody attends a more selective 

college to when everybody does.   

The second assumption we use is the monotone instrumental variable (MIV 

henceforth) one, which was introduced by Manski and Pepper (2000) and serves 

to further narrow ATE identification regions. This assumption posits that, given 

the value of the treatment, the instruments are weakly monotonically associated 

with the average potential outcome, namely the prevalence of obesity. More in 

detail, it posits that both average potential outcomes are weakly decreasing for 

those with observed higher MIV values. This is a much milder assumption than 

that of exogeneity in a standard IV setup, and it is made even milder by the 

allowed possibility (under weak monotonicity) that the average potential 

outcomes (i.e., obesity prevalence) do not differ in subsamples defined by 

 
8 Manski (1997) discusses a setting in which the MTR assumption implies a weakly positive treatment 
effect, and thus zero is the lower bound of the ATE identification region. In our context, the treatment 
effect is assumed to be weakly negative, and thus zero is the upper bound of the identification region. 
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different values of the score. Crucially, the MIV assumption identifies the ATE 

and not the local average treatment effect (i.e., the effect for those whose 

attendance of a more selective college changes due to a change in the 

instrument). In fact, this assumption is silent about its association with the 

treatment. Given that MIV bounds the ATE, we can interpret PI results as 

applying to the whole population (see section A.4 of the online Appendix for 

further discussion of MIV). 

We select as MIV the score in the Peabody Picture Vocabulary Test (PPVT 

hereafter), an age-specific test used to assess verbal ability and receptive 

vocabulary9 administered in high school. We posit that individuals who have a 

higher cognitive ability (as indicated by a higher score in the test) are weakly 

less likely, on average, to be obese, given the value of the treatment (college 

selectivity). This assumption is consistent with previous empirical studies on 

the relationship between cognition and obesity. Cutler and Lleras Muney 

(2010), for instance, show that knowledge and measures of cognitive ability 

explain about 30 percent of the positive relationship between education and 

favorable health outcomes, known as the education gradient (see also Galama 

et al. (2018); Lochner (2011)). Smith et al., (2011) review the evidence on the 

relationship between adiposity and cognitive performance and conclude that 

obesity is associated with cognitive deficits in children, adolescents and adults. 

One reason for the importance of cognition is that a higher cognitive ability 

makes it weakly easier to realize the negative consequences of obesity in their 

fullness.10  

 
9 The PPVT (Dunn and Dunn (2007)) is often considered as a measure of verbal intelligence and scholastic 
aptitude and is strongly correlated with the Wechsler Intelligence Test (Anderson and Flax (1968)) and 
the Armed Forces Qualifying Test. Amin et al. (2022) use maternal education as an MIV in their recent PI 
investigation of the effect of schooling on cognition later in life.  
10 The relationship between cognitive ability and health is reflected at the genetic level. For example, 
intelligence has a positive genetic correlation with longevity and a negative genetic correlation with 
various indicators of suboptimal lifestyle and physical health, such as hypertension, type 2 diabetes, body 
mass index (BMI) and smoking status (Deary et al., 2019). 
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Importantly, as for MTR, the MIV assumption needs to hold only on average, 

that is, it allows for the possibility that a minority of individuals with a high 

PPVT score are more obese than some of their counterparts with a lower score. 

This assumption (like the MTR) refers to potential outcomes, and thus is 

unverifiable (as is the case of the exclusion restriction in standard IV estimates). 

In Add Health, as shown in Table A.3, there is a negative association between 

obesity and the PPVT score, which is precisely what the MIV assumption 

entails. Although this is no proof that the MIV assumption holds because this 

estimated negative association refers to observed data and not to potential 

outcomes, the observed association points to the same direction as the MIV 

assumption. 

The identification of treatments such as college selectivity requires that the 

possible violation of the stable treatment unit value assumption (SUTVA) be 

considered. Such violation can happen because the obesity status of an 

individual’s college peers -who attend the same selective/non-selective 

college- could also influence whether this individual becomes obese or not. The 

existing literature on peer effects in obesity indicates that they are indeed 

relevant both in high school (Trogdon et al. (2008), Brunello et al. (2020)) and 

in college (Yakusheva et al. (2011), (2014)). The influence of an individual’s 

peers on his/her obesity status can operate through the social interactions that 

arise naturally from attending the same college, and can be due, among other 

things, to students trying to emulate each other or fit-in socially via their 

physical appearance (Carrell et al. (2011)).   

A violation of the SUTVA would be a serious problem for identification, as it 

would invalidate results obtained using standard estimation methods such as 

OLS, panel data, propensity score matching or IV. An advantage of our 

approach is that we can address the SUTVA violation problem using PI. In 

particular, we can use the assumption of reinforcing interactions (Manski 

(2013)), which states that non-individualist treatment responses (which occur 
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when the SUTVA is violated) reinforce each other in terms of the outcome 

response. In our context, this implies that, for example, all students in a 

selective/elite college influence each other with respect to obesity in such a way 

that the prevalence of obesity is weakly lower than the prevalence that would 

have been obtained if the same students had been attending a less selective 

college. The reinforcing interactions (RI) assumption is plausible because the 

relatively lower prevalence of obese peers in very selective colleges is likely to 

induce individuals, through emulation and the desire to fit in socially, to take 

actions that reduce the risk of becoming obese. This happens over and above 

any negative influence other than through social interactions that a more 

selective education has on the likelihood to become obese. Analogously, in less 

selective colleges, reinforcing interactions are likely to increase obesity 

prevalence compared to very selective colleges, as the higher observed obesity 

prevalence in these colleges is likely to make obesity less of a problem when 

trying to fit in socially, and thus less of a taboo.11 Once more, this happens over 

and above any positive influence other than through social interactions that a 

less selective education has on the likelihood to become obese. 

In general, the violation of the SUTVA increases the width of the identification 

regions, thus making results more uncertain. This can be seen easily when 

evaluating the mean potential outcome under a treatment value for the 

subsample of the individuals who are observed having this particular value (e.g., 

the mean potential outcome of attending a more selective college for those who 

actually do so). When the SUTVA holds, this mean potential outcome can be 

consistently estimated using its sample analogue, that is, the observed mean 

outcome of those who are in this subsample. There is thus no need to examine 

what happens to those not in this subsample. On the other hand, when the 

 
11 Carrell et al. (2011), find that a one standard deviation increase in the high school fitness scores of all 
peers in a group raises the individual’s college fitness score by 0.165 of a standard deviation, a large effect. 
Brunello et al. (2020), find that, in the short-run, a one standard deviation increase in peers’ average BMI 
polygenic scores –which are a good predictor of peers’ average BMI– raises the probability of obesity for 
females by 2.8% points. No significant effect is found for males. In the long-run, however, the social-
genetic effect fades away.  
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response is non-individualistic, the treatment values of individuals outside this 

subsample potentially affect the outcome of those inside it. This is crucial 

because the definition of the mean potential outcome involves everybody (i.e., 

inside and outside of this subsample) taking the same treatment value. Hence, 

when the SUTVA is violated, the mean potential outcome in this subsample will 

be generally different when everybody outside this subsample has the same 

treatment value compared to when individuals outside this subsample have a 

variety of treatment values. Since the latter is what generally happens in 

actuality, one cannot use the observed mean outcome in this subsample to 

estimate the corresponding mean potential outcome. In other words, when the 

SUTVA is violated, one needs to bound a quantity for which one could obtain 

a consistent point estimate when response is individualistic.  

However, there are some cases for which the assumption of reinforcing 

interactions produces the same bounds as those under MTR. This can be easily 

seen, for example, for the upper bound of the average potential outcome (i.e., 

the prevalence of obesity) when everybody goes to a more selective college. 

This upper bound, under MTR, is equal to, as already discussed, the observed 

prevalence of obesity in the whole sample. Given that the definition of the 

unobserved potential outcome entails everybody going to a very selective 

college, in this situation there are more students in such colleges compared to 

the number actually observed. Hence, the reinforcing interactions assumption 

implies that in the former situation each student can be influenced into not being 

obese by more individuals attending very selective colleges than in actuality. 

This should make the prevalence of obesity when everybody attends a very 

selective college weakly lower than the observed one. In other words, even 

when the SUTVA is violated, it is still the case that the observed obesity 

prevalence in the whole sample is an upper bound of the average potential 

obesity when everybody attends a more selective college, provided one uses the 

reinforcing interactions assumption. 
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Analogously, when the SUTVA is violated, the lower bound of the average 

potential outcome of a less selective college education, is, under the reinforcing 

interactions assumption, the same as the one obtained under MTR with the 

SUTVA holding, that is, the observed prevalence of obesity in the whole 

sample. This is so because the prevalence of obesity when everybody attends 

less selective colleges should be weakly higher than the actual one, as 

reinforcing social interactions when all students attend less selective colleges 

make it more likely for any student to be obese compared to when only some 

students go to such colleges. The bounds produced by the reinforcing 

interactions assumption are further discussed in section A.5.1 of the online 

Appendix. 

In our empirical analysis, we always contrast the PI estimates with those 

obtained under exogenous treatment selection (ETS henceforth), which posits 

that respondents receiving different treatments are not systematically different 

from one another. In other words, ETS implies that college selectivity is as good 

as randomly assigned to individuals. Under ETS, the ATE is equal to the 

difference in the observed prevalence of obesity, conditional on the two 

different values of the college selectivity variable.  

In conclusion, we stress that the advantages of using PI are considerable, as 

discussed in further detail in section A.6 of the online Appendix. First, it 

addresses the problem of selection on un-observables, both time-invariant and 

time-varying. Second, it relies on weak, and thus credible, assumptions, namely 

MTR, MIV, and that of reinforcing interactions, in contrast to the strong 

assumptions needed in OLS, panel data or IV estimation using exogenous 

instruments. Third, it is completely transparent about how each assumption 

affects results. Fourth, it makes no additional assumptions about preferences, 

functional forms, expectation formation, optimality of decision-making, or the 

joint distribution of errors and observable characteristics. Fifth, it identifies the 

average treatment effect (ATE) rather than the local average treatment effect 
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(LATE), while allowing for unlimited heterogeneity of the treatment effect 

across sample units. Sixth, it is robust to the violation of the stable unit treatment 

value assumption (SUTVA), which is likely to be a problem in our context due 

to peer effects.  

The price to pay for these advantages is an increase in the uncertainty affecting 

results, as PI can sometimes lead to identification regions that are wide. As 

Manski (1994) notes, however, the point identification obtained using the 

assumptions of exogeneity in OLS and panel data may give false confidence 

about empirical results, because the reduction in uncertainty is obtained through 

strong and untestable assumptions that might not hold in the real world. 

 

4. Results 

4.1. OLS Results 

Table A.4 in the Appendix shows the OLS estimates of the association between 

college selectivity, obesity and health behaviors. In each regression we control 

for age, gender, race, and PPVT. The results in columns (1) to (3) indicate that 

college selectivity is associated with a 7.2 percentage points reduction in the 

prevalence of obesity (both for waves IV and V), with a 1.2 to 1.3 points 

reduction in BMI, which corresponds to a 4.5 to 4.7 percent decline with respect 

to the mean, and with a reduction of 2.7 to 3.8 centimeters in waist 

circumference. The results in columns (4) to (7) suggest that individuals who 

went to a more selective college engage less in unhealthy behaviors associated 

with a higher risk of obesity. For instance, highly selective college graduates 

are less likely to consume fast food and sugary drinks.  

4.2. PI Results 

4.2.1. Statistical considerations 

Our magnitude of interest, for which we estimate identification regions, is the 

ATE of attending a more selective college on the probability of being obese. 
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Each set of results shown below corresponds to a particular combination of 

assumptions. For each such combination, we report the ATE lower and upper 

bounds (or, in the case of exogenous treatment selection, ETS, the point 

estimate), as well as the 95% confidence intervals (CIs) for the lower and upper 

ATE bounds.  

Following Kreider and Pepper (2007) and Manski and Pepper (2009), we show 

bias-corrected bootstrap estimates of the bounds (CIs are the same for both bias-

corrected and bias-uncorrected bound estimates). The difference between bias-

uncorrected and bias-corrected estimates is non-trivial only for the results that 

use the MIV assumption, as the latter uses minimization and maximization 

operators (this is further discussed in section B.4 of the online Appendix), which 

can induce bias when combined with the bootstrap.12  

On the one hand, the estimate of the bias can be volatile, which is why Efron 

and Tibshirani (1993) recommend using bias-uncorrected estimates, especially 

when the bias is small (they suggest a 25% threshold) compared to the standard 

error. This volatility can also occasionally make the bias-corrected estimates fall 

outside the CI, which is not the case with bias-uncorrected estimates. When this 

problem occurs, a more reliable estimate of the ATE bound can be obtained by 

using the CI boundary.   

On the other hand, we uniformly obtain bias-corrected estimates of the most 

important ATE bound, namely, the upper bound (denoting the minimum 

reduction in the probability of obesity induced by attendance of a more selective 

college), that are closer to zero, and thus more conservative, than bias-

uncorrected ones. Hence, to be on the conservative side, we consider bias-

corrected estimates as the preferred ones. 

4.2.2. PI estimates for obesity 

 
12 As Manski and Pepper ((2009), p. S211) point out, Imbens-Manski (2004) confidence intervals are not 
applicable when using MIVs. 
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In Table 1 we report our findings for the probability of being obese. Results for 

waves IV and V are shown in Panel A and B respectively. We first examine the 

ETS estimates, which are equal to those obtained by running a weighted OLS 

regression on a constant and a dummy variable denoting the attendance of a 

more selective college. For Wave IV we find that this attendance reduces the 

prevalence of obesity by 7.81 percentage points, a precise effect, as documented 

by the relatively narrow CIs. 

PI relaxes the assumption of exogeneity of attending a more selective college, 

under which ETS estimates are consistent. When using no assumptions 

whatsoever, and thus bounding counterfactual outcomes with the minimum and 

maximum feasible outcome values (equal to 0 and 1, respectively), we 

predictably obtain very wide and uninformative ATE identification regions: the 

lower bound implies that attending a more selective college decreases the 

probability of being obese by 38.3 percentage points, while the upper bound 

denotes an increase of this probability by 61.7 percentage points. We report 

these results only to illustrate the point that one cannot draw any useful 

conclusions about causal effects without any further identifying assumptions.  

When we introduce the MTR assumption, the upper ATE bound becomes zero, 

while the lower ATE bound remains uninformative. Hence, MTR on its own 

does not allow us to reject the null hypothesis that attendance of a more selective 

college has no effect on the probability of being obese. We also note that the CI 

of the ATE lower bound has both its upper and lower bound equal to zero, which 

implies that the constraint that the ATE is non-positive, imposed by the MTR 

assumption, is binding in at least 95% of the bootstrap runs. 

When we add the MIV to the MTR assumption, the ATE upper bound declines 

below 0, and is equal to about -2.0 percentage points (95% CI: -6.9, -1.1). In 

other words, attending a more selective college reduces the probability of being 

obese by at least about 2 percentage points. This result is quantitatively 

important, given that the prevalence of obesity in our sample is about 26.2 
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percent. On the other hand, the ATE lower bounds remain uninformative. In the 

absence of an informative lower bound one could use the ETS estimate of -7.81 

percentage points as a substitute, under the assumption that it overestimates (in 

absolute value) the ATE.  

To gauge how a lower ATE bound of -2 percentage points compares with the 

OLS results shown in Appendix Table A.4, we first note that the OLS point 

estimate is equal to -7.2, very close to the ETS estimate, and outside the CI of 

the ATE upper bound under MTR+MIV. Second, since the ATE lower bound 

under MTR+MIV is uninformative, the OLS estimate is included in the ATE 

identification region under MTR+MIV. We note, however, that this ATE 

identification region is robust to treatment selection when the maintained 

assumptions are valid, while the OLS estimate is not, and thus it is not clear how 

to interpret it.  

Importantly, we note that the ATE upper bounds using MTR and MTR+MIV 

are, as already discussed in Section 3, robust to the violation of the SUTVA, 

when one uses the RI assumption instead of MTR.13 This implies that the most 

important result, namely by at least how much attending a more selective 

college reduces the prevalence of obesity, is robust to the violation of the 

SUTVA due to students influencing other fellow students’ eating habits. On the 

other hand, as discussed in appendix A.5.1, the ATE lower bound when the 

SUTVA is violated is equal to -100 percentage points, that is, completely 

uninformative. 

When comparing the identifying power of the MTR assumption (or of the RI 

assumption, for the ATE upper bound under the violation of the SUTVA) with 

that of the MIV assumption, it is clearly the case that the former assumption 

 
13 The RI assumption, as discussed in Section 3, states that non-individualist treatment responses reinforce 
each other in terms of the outcome response. In our context, this implies that all students in a highly 
selective (less selective) college influence each other with respect to obesity in such a way that the 
prevalence of obesity is weakly lower (higher) than the prevalence that would have been obtained if the 
same students had attended a less selective (more selective) college. See section A.5.1 of the online 
Appendix for further details on the definition of the RI assumption and the bounds it produces.  
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shrinks the identification region from above by far more than the latter. 

However, without the MIV assumption it is not possible to obtain an ATE upper 

bound that is lower than zero, and thus both assumptions are needed to obtain 

statistically significant results. We also note that the bias-uncorrected ATE 

upper bound under MTR+MIV is equal to about -5.6 percentage points, and thus 

much more negative than the bias-corrected one. 

The finding that college selectivity causally reduces obesity prevalence could 

be a temporary effect that fades away in the longer run. We investigate whether 

this is the case by using data from Wave V and considering individuals who are 

11 to 22 years older than the typical age of graduation from college. As reported 

in Panel B of Table 1, we find that results for Wave V are quite similar to those 

for Wave IV. The bias-corrected estimate of the ATE upper bound under 

MTR+MIV is equal to about 1.6 percentage points reduction, showing that the 

effects of attending a more selective college on obesity are almost unchanged at 

least a decade after college graduation. 

4.2.3. Robustness checks 

We examine the robustness of our results by using abdominal obesity, based on 

waist circumference (the threshold for being considered obese is 102 cm for 

men and 88 cm for women). The results in Table 2 are in line with those for 

BMI based obesity. We find that the bias-corrected ATE upper bound under 

MTR+MIV is about -3.1 percentage points in Wave IV, and 0 percentage points 

in Wave V. In the latter case, we encounter the aforementioned problem of the 

bias-corrected estimate falling outside the bias-corrected CI. In this 

circumstance, the upper boundary of the CI, equal to about -1 percentage point, 

is a more reliable estimate of the ATE upper bound .   

As an additional check, we re-estimate the ATE identification regions using the 

subsample of individuals in Wave IV for whom we have an objective 

measurement of obesity in Wave V. Notice that PI estimates are consistent in 

the presence of sample selection because a maintained assumption in PI 
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estimation is that of treatment endogeneity for any reason. Our results, shown 

in Appendix Table A.5, are quite similar to those obtained using the larger Wave 

IV sample. In particular, the bias-corrected estimate of the ATE upper bound 

under MTR+MIV in Wave IV is equal to -2.1 percentage points. 

4.2.4. Mechanisms  

In this section we discuss the effects of attending a more selective college on 

health behaviors that can affect obesity. We consider: i) eating fast food more 

than once in the last 7 days; ii) watching TV in the last 7 days; iii) the number 

of sweetened drinks respondents had in the last 7 days; iv) being physically 

inactive in the last 7 days. All these behaviors are expected to increase obesity 

either because they increase calorie intake or because they reduce calorie 

consumption. We also consider the effects of college selectivity on income 

(transformed using the inverse hyperbolic sine transformation, which still 

allows the interpretation of results as semi-elasticities) because a higher income 

makes it easier to buy healthier foods, which are on average more expensive. 

Our estimates are reported in Table 3. Here, we discuss only the ATE upper 

bounds, which denote the minimum change in outcomes induced by attending 

a more selective college. These bounds are the most informative once we 

introduce the MTR assumption, which posits that attending a more selective 

college weakly decreases the probability of frequently eating fast food, the 

hours spent watching TV, the number of sweetened drinks, and the probability 

of being inactive. We consider this assumption to be reasonable, as a more 

selective education should make individuals more conscious of the negative 

consequences of unhealthy habits and physical inactivity, as well as lead to 

higher incomes.   

For all outcomes, we select the PPVT score as a MIV, the reasonable 

assumption being that a higher score -or a higher human capital- is negatively 

associated with outcomes i)-iv), and positively associated with income. 

Considering Wave IV, we generally find non-trivial effects of attending a more 
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selective college on all health behaviors. The ATE upper bounds suggests that 

the probability of eating fast food more than once is reduced by at least about 

1.9 percentage points, watching TV declines by at least about 0.3 hours, the 

number of sweetened drinks falls by at least 0.4 and the probability of being 

physically inactive is reduced by at least 2 percentage points.  Moreover, a more 

selective college education increases income by at least 6.5 percent.  

For Wave V, our results are generally a bit weaker for outcomes i)-iii), while 

for physical inactivity we still find a quantitatively important ATE upper bound 

of -2 percentage points. We also find that a more selective education 

considerably increases income, by at least 10 percent. 

These results indicate that attending a more selective college improves physical 

activity both in the medium and in the longer run. By increasing calorie 

consumption, physical activity is expected to reduce obesity. There is also 

evidence of a reduction in fast food and sweetened drinks consumption, 

especially in the medium run. The associated reduction in calorie consumption 

should also reduce obesity. The observed effects of college quality on health 

behaviors could be both direct and indirect. For instance, we find that higher 

selectivity increases income, and higher income is typically associated with 

more physical activity (Kari et al. (2015)).14 Higher income also facilitates the 

adoption of healthier eating habits, including those that we cannot observe in 

our data (e.g., the consumption of fruit and vegetables).15  

 

5. Conclusions 

We have presented evidence that education quality -measured by college 

selectivity- causally reduces individual obesity. We have shown that the size of 

 
14 In contrast, the variation in adult fast-food consumption across income and wealth groups is small 
(Zagorsky and Smith (2017)). 
15 Low income is associated with lower food expenditures, low fruit and vegetable consumption, and 
lower-quality diets (Drewnowski et al., 2004). A higher intake of fruit and vegetables typically reduces 
obesity. See for instance He et al. (2004). 
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the effect -at least a 2.0 percentage points reduction in the medium term and a 

1.6 percentage points reduction in the longer term– is far from negligible, 

although smaller than the non-causal estimates found in the literature.  

Our study has several potential important implications. First, finding a causal 

effect of college selectivity on obesity suggests that, when measuring the returns 

to an elite college, it is important to consider non only monetary returns but also 

non-monetary ones. Second, the relationship between education and obesity 

may be more complex than it is often considered as it involves not only the 

quantity but also the quality of education. Third, the effects of college quality –

measured by college selectivity– on obesity decline in size but do not fade away 

as time goes by.  

In the US, children from low-income families have on average worse health 

outcomes than those from wealthier families (Case et. al. (2002)). Chetty et. al 

(2017) show that access to colleges varies substantially across the income 

distribution, so children whose parents are in the top of the income distribution 

are much more likely to attend an Ivy League college than those whose parents 

are in the bottom of the income distribution. If college quality has a positive 

impact on health, unequal access to elite or more selective colleges may 

reinforce health inequalities in the US. Moreover, to the extent that obesity 

hampers productivity, unequal access to elite colleges may exacerbate 

socioeconomic inequalities as well. Therefore, increasing access to such 

colleges for children from low-income families may contribute to the reduction 

of health and economic inequalities.  
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Table 1. PI lower and upper bounds of the effect of college selectivity on obesity. Waves IV and V of Add Health 

Assumptions 
Estimates Lower 

Bound 
Low      

95% CI 

Lower 
Bound 
Upper 

95% CI 

Upper 
Bound 
Low     

95% CI 

Upper 
Bound 
Upper 

95% CI 
Lower 
bound 

Upper 
bound 

Panel A. Wave IV 
Exogenous treatment selection -0.0781 -0.1233 -0.0297 
No assumptions -0.3831 0.6169 -0.4223 -0.3490 0.5777 0.6510 
MTR -0.3831 0.0000 -0.4223 -0.3490 0.0000 0.0000 
MTR + MIV (bias-corrected) -0.3088 -0.0196 -0.3175 -0.2247 -0.0688 -0.0112 
MTR + MIV (bias-uncorrected) -0.2485 -0.0556 -0.3175 -0.2247 -0.0688 -0.0112 
              
Number of observations 3,525 

Panel B. Wave V 
Exogenous treatment selection -0.0973 -0.1783 -0.0162 
No assumptions -0.4503 0.5497 -0.4942 -0.4138 0.5058 0.5862 
MTR -0.4503 0.0000 -0.4942 -0.4138 0.0000 0.0000 
MTR + MIV (bias-corrected) -0.3601 -0.0159 -0.4145 -0.2632 -0.0867 -0.0081 
MTR + MIV (bias-uncorrected) -0.3013 -0.0688 -0.4145 -0.2632 -0.0867 -0.0081 
              
Number of observations 1,520 
Note:  MTR: monotone treatment response, MIV: monotone instrumental variable (Peabody Picture Vocabulary Test score).  
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Table 2. PI lower and upper bounds of the effect of college selectivity on abdominal obesity 

Assumptions 
Estimates Lower 

Bound 
Low      

95% CI 

Lower 
Bound 
Upper 

95% CI 

Lower 
Bound 
Low      

95% CI 

Upper 
Bound 
Upper 

95% CI 
Lower 
bound 

Upper 
bound 

Panel A. Wave IV 
Exogenous treatment selection -0.0970 

 
-0.1593 

No assumptions -0.4832 0.5168 -0.5102 -0.4565 0.4898 0.5435 

MTR -0.4832 0.0000 -0.5102 -0.4565 0.0000 0.0000 

MTR + MIV (bias-corrected) -0.3055 -0.0306 -0.3710 -0.2284 -0.0837 -0.0254 

MTR + MIV (bias-uncorrected) -0.3151 -0.0709 -0.3710 -0.2284 -0.0837 -0.0254 

              
Number of observations 3,547 

Panel B. Wave V 
Exogenous treatment selection -0.1085 

 
-0.1855 

No assumptions -0.4914 0.5086 -0.5302 -0.4535 0.4698 0.5465 

MTR -0.4914 0.0000 -0.5302 -0.4535 0.0000 0.0000 

MTR + MIV (bias-corrected) -0.4110 0.0000 -0.4275 -0.3228 -0.0683 -0.0096 

MTR + MIV (bias-uncorrected) -0.3444 -0.0578 -0.4275 -0.3228 -0.0683 -0.0096 

              
Number of observations 1,537 
Note:  MTR: monotone treatment response, MIV: monontone instrumental variable (Peabody Picture Vocabulary Test score). 
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Table 3. Mechanisms 

Outcomes 
Estimates Lower 

Bound 
Low      

95% CI 

Lower 
Bound 
Upper 

95% CI 

Lower 
Bound 
Low      

95% CI 

Upper 
Bound 
Upper 

95% CI Lower 
bound 

Upper 
bound 

Panel A. Wave IV 
Eaten fast food (bias-corrected) -0.3456 -0.0186 -0.4029 -0.2610 -0.0753 -0.0182 
Eaten fast food (bias-uncorrected) -0.3209 -0.0615 -0.4029 -0.2610 -0.0753 -0.0182 
Hours spent watching TV (bias-corrected) -9.8746 -0.2808 -11.2038 -8.3985 -1.0435 -0.1111 
Hours spent watching TV (bias-uncorrected) -9.7400 -0.7407 -11.2038 -8.3985 -1.0435 -0.1111 
Number of sweet drinks (bias-corrected) -8.2882 -0.4022 -9.9039 -6.5639 -1.2377 -0.2565 
Number of sweet drinks (bias-uncorrected) -7.6330 -1.0451 -9.9039 -6.5639 -1.2377 -0.2565 
Being physically active (bias-corrected) -0.1278 -0.0208 -0.1777 -0.0737 -0.0611 -0.0206 
Being physically active (bias-uncorrected) -0.1107 -0.0524 -0.1777 -0.0737 -0.0611 -0.0206 
Log of income (bias-corrected) 0.0652 1.5779 0.0748 0.2055 1.3438 1.7568 
Log of income (bias-uncorrected) 0.1742 1.4887 0.0748 0.2055 1.3438 1.7568 

Panel B. Wave V 
Eaten fast food (bias-corrected) -0.3262 -0.0039 -0.3828 -0.2405 -0.0565 -0.0092 
Eaten fast food (bias-uncorrected) -0.3037 -0.0496 -0.3828 -0.2405 -0.0565 -0.0092 
Hours spent watching TV (bias-corrected) -11.1460 -0.1734 -13.0552 -9.3666 -1.0683 0.0000 
Hours spent watching TV (bias-uncorrected) -11.1184 -0.5067 -13.0552 -9.3666 -1.0683 0.0000 
Number of sweet drinks (bias-corrected) -5.0991 0.0000 -5.8405 -4.2930 -0.3522 -0.0191 
Number of sweet drinks (bias-uncorrected) -4.8462 -0.2930 -5.8405 -4.2930 -0.3522 -0.0191 
Being physically active (bias-corrected) -0.1003 -0.0198 -0.1552 -0.0491 -0.0581 -0.0119 
Being physically active (bias-uncorrected) -0.0944 -0.0419 -0.1552 -0.0491 -0.0581 -0.0119 
Log of income (bias-corrected) 0.1034 1.0242 0.0278 0.2809 0.8270 1.1988 
Log of income (bias-uncorrected) 0.1620 1.0132 0.0278 0.2809 0.8270 1.1988 
Note: MTR (monotone treatment response) and MIV (monotone instrumental variable using the Peabody Picture Vocabulary Test 
score as an instrument) assumptions are imposed. 
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Online Appendix 
A. Partial identification16 

A.1. Bounds on potential outcomes 

As in Manski (1997), let every individual ! have a response function "!(•): ' →

) that maps mutually exclusive and exhaustive treatments * ∈ ' into outcomes "!(*) ∈

).    Importantly, the response functions "!(•) can differ across individuals in arbitrary 

ways, thus allowing for unlimited response heterogeneity. Let ,! denote the realized 

treatment received by !, and "! ≡ "!(,!) the associated observed outcome. In our case, 

the main outcome is obesity, while the treatment variable is a binary variable denoting 

attendance of a more selective college, with the value one denoting attendance of elite 

and very selective colleges, and zero attendance of selective and non-selective colleges. 

To keep notation simple, we omit conditioning expectations of outcomes and probabilities 

of treatments on observables ., but all results go through also after such conditioning. 

Let "!(*") and "!(*#) be two possible values of the outcome for individual ! as a 

function of two different levels of college selectivity *" and *#, with *# > *". We would 

like to estimate the ATE of higher college selectivity on our outcomes, that is,  

 

 
012(*# − *") = 2["(*#)] − 	2["(*")] (A.1) 

Note that the ATE in (A.1) represents the difference in the two mean outcomes, which 

are both evaluated using all population units while taking the distribution of all other 

observable and unobservable variables as given (Manski 1997, p. 1322). In our context, 

these two mean outcomes denote probabilities of being obese under two different values 

of college selectivity.  

 By the law of iterated expectations, and given that 2["(*)|, = *] = 2("|, = *), 

the expected outcome, when the treatment is equal to *, is 

 2["(*)] = 2("|, = *)9(, = *) + 2["(*)|, ≠ *]9(, ≠ *) (A.2) 

where 9(, = *) denotes the probability that , = *. Note that the term 2["(*)|, ≠ *] 

in the right-hand side of (A.2) is an unobserved counterfactual one. The remaining three 

terms on the right-hand side of (A.2), however, have sample analogues that are observed 

in the data. Given that 2["(*)|, ≠ *] is unobserved, the unconditional expectation 

 
16 This Appendix draws from Christelis et al. (2020), and Christelis and Dobrescu (2020). 
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2["(*)] is also unobserved. Hence the ATE in (1) is equal to the difference between two 

average unobserved outcomes, and thus cannot be calculated without further assumptions. 

If one assumes that the counterfactual conditional expectation 2["(*)|, ≠ *] is 

equal to the observed one when the treatment received is equal to *, that is, if    

 

 
2["(*)|, ≠ *] = 2("|, = *) (A.3) 

then from (A.2) it follows that  

 2["(*)] = 2("|, = *) (A.4) 

Equation (A.4) states that the unobserved potential outcome under * is equal to the mean 

outcome when the treatment in fact received is *. As the sample analogue of the latter is 

observed in the data, one can estimate the unobserved potential outcome 2["(*)], and 

then the ATE from equation (A.4) as 

 

 
012(*# − *") = 2("|, = *#) − 	2("|, = *") (A.5) 

We refer to the ATE estimate in (A.5) as the one under exogenous treatment selection 

(ETS henceforth) because it is derived under the assumption that (A.3) holds, which in 

turn implies that respondents attending colleges that differ in selectivity are not 

systematically different from one another. In other words, (A.3) implies that selection 

into treatment is exogenous. 

Equation (A.3) is likely to hold in the case of a randomized control trial, in which 

treatment assignment is indeed exogenous. In observational data, however, (A.3) is 

unlikely to hold because treatment assignment is typically not random. In our context, 

attendance of a more selective college might be affected by unobservable variables that 

also affect obesity. Hence, the latter is likely to differ among population groups defined 

by attending colleges of different selectivity. This holds for any value * of the college 

selectivity variable.  

Once one rules out the application of (A.3), the problem of estimating the 

unobservable potential outcome 2["(*)] arises. As a solution, Manski (1990) suggested 

bounding this outcome from above and below by bounding the counterfactual potential 

outcome 2["(*)|, ≠ *] in (A.2). Let us denote the lower and upper bounds on 2["(*)], 

computed using a set of assumptions M, as <=$(*) and >=$(*), respectively. Given 
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that <=$(*) ≤ 2["(*)] ≤ >=
$
(*), Manski (1990) points out that equation (A.1) in turn 

implies that one can bound the ATE using a set of assumptions M as follows: 

 

 
<=

$
(*#) − >=$(*") ≤ 012(*# − *") ≤ >=

$
(*#) −	<=$(*") (A.6) 

The interval between the lower and the upper bound on the 012(*# − *") (which 

are denoted by <=%&'
$
(*# − *") and >=%&'

$
012(*# − *"), respectively) is its 

identification region. Since it is an interval, the ATE is only partially identified. 

 

A.2. Bounds using no assumptions 

When calculating the upper and lower bounds on 2["(*)], a natural starting point 

is to assume that, for any value * of the treatment, the outcome space ) is bounded below 

and above by two finite values, )(!) and )(*+, respectively. These values can be used to 

bound 2["(*)|, ≠ *]. In our context, and since obesity is a binary variable, we use zero 

and one as )(!) and )(*+, respectively. 

Given that zero and one are the most conservative feasible bounds on 

2["(*)|, ≠ *] (which denotes a probability of being obese in our context), and that no 

other assumptions are used, the resulting identification regions of 2["(*)] and the ATE 

can be considered as being derived under no assumptions (NA henceforth).  

As in Manski (1990), one can replace the counterfactual term 2["(*)|, ≠ *]  in 

(A.2) by )(!) = 0 and )(*+ = 1, and thus bound 2["(*)] from below and above as 

follows: 

 

 

 

 

2("|, = *)9(, = *) + )(!)	9(, ≠ *) = 2("|, = *)9(, = *) 

≤ 2["(*)] ≤ 

2("|, = *)9(, = *) + )(*+9(, ≠ *) = 2("|, = *)9(, = *) + 9(, ≠ *) 

(A.7) 

The NA bounds can be readily calculated using their sample analogues, as these 

are observed in the data. As Manski (1989) points out, taking sample averages leads to 

consistent estimates of 2("|, = *), 9(, = *) and 9(, ≠ *).   

 

A.3. The MTR assumption 

The NA identification regions are typically very wide, and thus uninformative 

(i.e., they always include zero, as Manski (1990) shows), as one would expect when trying 
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to draw conclusions by using only the data without any additional assumptions imposed. 

It is possible, however, to narrow the NA identification region by making further 

assumptions. The first such assumption is that of monotone treatment response (MTR 

henceforth; see Manski, 1997). In our context, the MTR assumption implies attending a 

more selective college has a weakly negative effect on the probability of being obese.  

In the case of a weakly negative treatment response, the MTR assumption as 

discussed by Manski (1997) states that for all sample units !, and for any two treatment 

values *" ∈ ' and *# ∈ ' such that *# > *", 

 "!(*#) ≤ "!(*") (A.8) 

Importantly, (A.8) holds irrespective of the treatment actually received, and for 

all sample respondents. Given that at each point in time one observes only one outcome 

for every sample respondent, one cannot test for the validity of (A.8) in isolation using 

the data at hand.  As already discussed, however, there are various reasons, also supported 

by considerable evidence, why one would expect attendance of a more selective college 

to have a weakly negative effect on the likelihood of becoming obese.  

In practice, we use a weaker, and thus more conservative, version of the MTR 

assumption than the one in (A.8). This weaker version states that for any treatment value 

* ∈ ', and any two values *" ∈ ' and *# ∈ ' such that *# > *", 

 

 
2["(*#)|, = *] ≤ 2["(*")|, = *] (A.9) 

Equation (A.9) implies that attending a more selective college has a weakly 

negative effect on the likelihood of becoming obesity on average, that is, not necessarily 

for every sample respondent. Furthermore, this average weak monotonicity holds for all 

subsamples that are defined by the treatment actually received.17 Clearly, (A.8) implies 

(A.9), but the converse is not necessarily true.  

Following the reasoning in Manski (1997) for the case of a weakly negative 

treatment response, the MTR assumptions (A.8) and (A.9) imply that the bounds on 

2["(*)] can be expressed as follows: 

 
17 Given that (A.9) holds for all values ! of the observed treatment ", it is clearly the case that the weak monotonicity 
in (A.9) applies also to the unconditional expectation, that is, (A.9) implies that #[%(!!)] ≤ #[%(!")]. However, the 
converse need not be true. 
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)(!)9(, < *) + 2("|, = *)9(, = *) + 2("|, > *)	9(, > *)	

≤ 2["(*)] ≤	

2("|, < *)9(, < *) + 2("|, = *)9(, = *) + )(*+9(, > *) 

(A.10) 

This is so because under both (A.8) and (A.9) imply that 2("|, > *) can be used 

as a lower bound for 2["(*)|, > *] instead of )(!). Similarly, both (A.8) and (A.9) 

imply that 2("|, < *) can be used an upper bound for 2["(*)|, < *] instead of )(*+. 

Given that 2("|, > *) is likely considerably larger than )(!) and 2("|, < *) 

considerably smaller than )(*+, the identification region defined in (A.10) should be 

considerably narrower, and thus more informative, than the one in (A.7) that is generated 

using no assumptions. 

The above also imply that to obtain (A.10) one can use the weaker assumption 

(A.9) that states that MTR holds only on average for each subgroup defined by the 

treatment actually received instead of the stronger assumption (A.8) that states that MTR 

holds for every sample unit. 

Importantly, Manski (1997) shows that in the case of a weakly increasing MTR 

the identification region of the ATE under MTR has a lower bound equal to zero because 

MTR rules out the possibility that a higher value of the treatment induces a lower mean 

outcome, while allowing for the possibility of a zero effect. In the case of a weakly 

decreasing MTR (as in our context), the corresponding result is that the MTR upper bound 

is equal to zero. 

A particularly interesting instance of this result when examining the ATE of the 

change in the treatment from its minimum to its maximum value, denoted by *(!) and 

*(*+, respectively. Given that (, < *(!)) = 9(, > *(*+) = 0 and 9(, ≥ *(!)) =

9(, ≤ *(*+) = 1, the MTR bounds in (A.10) imply that >=
$&,

(*(*+) =

<=
$&,

(*(!)) = 	2("). In other words, the MTR assumption leads to the replacement of 

all counterfactual terms in >=$&,(*(*+) and <=$&,(*(*+) not multiplied with zero 

with observed outcomes, and, as a result, both these bounds become equal to the observed 

overall mean. This in turn implies that  >=%&'
$&,

(*(*+ − *(!)) = >=$&,(*(*+) −

<=
$&,

(*(!)) = 0. 

Clearly, this result applies to our context as well because we have a binary 

treatment, and thus *" = *(!) and *# = *(*+.  
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A.4. The MIV assumption 

One can further narrow the identification region of the ATE by using a 

considerably weaker kind of IV than the usual exogenous one, namely the MIV. MIVs 

were introduced by Manski and Pepper (2000), and they satisfy the following requirement 

for any pair of values D",	D# of E such that D# > D", 

 2["(*)|E = D#] ≥ 2["(*)|E = D"] (A.11) 

where X are a set of control variables. Equation (A.11) states that the MIV can 

influence the outcome in a particular direction, but also allows for the possibility of no 

influence whatsoever. Hence, this requirement is much weaker than that of an exogenous 

instrument which requires no direct relationship between the instrument and the outcome. 

It is important to note that (A.11) captures only a positive association of E with ); a causal 

relationship is neither implied nor required. 

To better understand how MIVs work, we first note that we can always express the 

lower bound on 2["(*)] under a set of assumptions M as 

 <=
$
(*) =F<=

$
(*|E = D)

-
9(E = D) (A.12) 

Clearly, 9(E = D) is a given magnitude in the data and thus cannot be changed. 

Hence, the lower bound <=$(*) can increase only by increasing the lower bound 

<=
$
(*|E = D). Similarly, to decrease the upper bound >=$(*) one must decrease the 

upper bounds >=$(*|E = D). 

Let us first examine how an exogenous IV (XIV) – the IV type typically used in 

treatment effect estimation - can help narrow the identification range. Following Manski 

(1990), a variable E is a XIV if ∀ * ∈ ', ∀	D ∈ E, 

  2["(*)|	E = D] = 2["(*)] (A.13) 

Equation (A.13) implies that conditioning on any value of the XIV does not 

change the mean potential outcome. Hence, all identification regions conditional on 

values of Z should provide identical lower and upper bounds on 2["(*)]. Therefore, the 

identification region of 2["(*)] is the intersection of all identification regions conditional 

on Z. This intersection is defined as the region between the maximum of all lower bounds 

conditional on Z and the minimum of all upper bounds conditional on Z. Hence, we have  
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max
-
<=

$
(*|E = D) ≤ 2["(*)] ≤ min

-
>=

$
(*|E = D) (A.14) 

Hence, using XIVs implies that one searches for the maximum lower bound and 

the minimum upper bound on 2["(*)] by partitioning the sample in cells defined by the 

XIV values and then comparing the extrema calculated in each cell. This search for the 

extrema is similar to the search for extrema of objective functions in a dynamic program, 

or of likelihood functions in econometric estimation, which, however, occur in subsets of 

the parameter space defined by the chosen grid and/or the optimization method. Clearly, 

different XIVs will define different partitions of the sample space, and thus likely yield 

different extrema.  

There are, however, a couple of key difference between searching for extrema in 

the sample space versus the parameter space: i) the size of the sample partitions is in 

practice constrained by the number of observations in each cell, whereas there is no such 

constraint when partitioning the parameter space; and ii) local extrema of the bounds on 

2["(*)] lead to the estimation of perfectly valid identification regions, which, however 

are not as informative as when these extrema are global. In other words, using different 

valid XIVs and various possible combinations of their values will always produce valid 

identification regions, albeit not necessarily the most informative ones. In contrast, local 

extrema of objective functions in a dynamic program or in likelihood function estimation 

will typically yield estimates that are inconsistent. Hence, PI optimization delivers 

considerably more robust results than dynamic programming or likelihood optimization. 

When using an MIV, equation (A.13) does not hold because (A.11) implies that 

the MIV is weakly monotonically correlated with the outcome. As a result, one cannot 

calculate the overall identification region as the intersection of all conditional 

identification regions, as was the case with XIVs. On the other hand, it is possible to 

exploit the fact that, by (A.11), a lower bound on 2["(*)|	E = D"] is also a lower bound 

on 2["(*)|	E = D] for D ≥ D", and, correspondingly, an upper bound on 2["(*)|	E = D#] 

is also a upper bound on 2["(*)|	E = D] for D ≤ D#. Hence, one can potentially increase 

the lower bound <=$(*|E = D) in (A.12) by using the maximum lower bound 

<=
$
(*|E = D") over all D" ≤ D. Correspondingly, one can potentially decrease the upper 

bound >=$(*|E = D) by using the minimum upper bound >=$(*|E = D#) over all D# ≥

D. Hence, we obtain 
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NOP
-!.-

<=
$
[*|E = D"] ≤ 2["(*)|E = D] ≤ N!Q

-.-"
>=

$
[*|*|E = D#] (A.15) 

Once the bounds in (A.15) have been computed for all D, one can take the 

weighted average over all D using 9(E = D) and bound the potential outcome 2[)(*)] as 

follows: 

 

 

 

 

FNOP
-!.-

<=
$
[*|E = D"]

-
9(E = D) 

≤F2["(*)|E = D]9(E = D)

-
= 2["(*)] ≤ 

FN!Q
-.-"

>=
$
[*|E = D#]

-
9(E = D) 

(A.16) 

In other words, by integrating E out of the bounds on the conditional expectation 

2["(*)|E = D], one can obtain bounds on 2["(*)].  

Clearly, the optimization operations in (A.15) take place over a restricted range 

of values of Z compared to (A.14), and thus the identifying power of the MIV assumption 

is smaller than that of the XIV one. This is to be expected, as the weak monotonicity of a 

MIV in (A.11) is a weaker assumption than the exogeneity of an XIV in (A.13). As with 

XIVs, this weak monotonicity assumption is imposed on the unobserved potential 

outcome 2["(*)]; hence, it cannot be tested using the observed data without imposing 

further assumptions.  

As is the case with XIVs, valid MIVs generate valid identification regions, 

although not necessarily the most informative ones. 

In our context, the MIV used, namely the PPVT score, is assumed to have a 

weakly negative association with obesity, as described in Section 3. 

 

A.5. Treatment spillovers 

 When there are treatment spillovers and thus the SUTVA is violated, the potential 

outcomes can be expressed, following Manski (2013), as "!(*/), that is, as a function of 

the treatment * received by a set R of respondents, here understood as consisting of the 

whole population. Specifically, the treatment received by any member of the set R can 

potentially affect the potential outcome of any other member ! of R. In our context, this 

implies, for example, that the likelihood of obesity for any given individual ! who attends 
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a very selective college, can be affected by that individual’s peers who also attend a very 

selective college. This would not have been possible had the response function "!(•) been 

individualistic. 

The definition of the ATE now needs to be adapted to the non-individualistic 

nature of the response function as follows: 

 

 
012(*#

/
− *"

/
) = 2["S*#

/
T] − 	2["S*"

/
T] (A.17) 

  Average potential outcomes under non-individualistic response are equal to: 

 2["(*
/
)] = 2["(*

/
)|, = *]9(, = *) + 2["(*

/
)|, ≠ *]9(, ≠ *) (A.18) 

  In contrast to the case of individualistic responses, as described in (A.2), one 

cannot replace the term 2["(*/)|, = *] with 2("|, = *), given that the latter is 

generically the outcome of the interaction of sample units that choose , = * with sample 

units belonging in R that choose treatment values that can different from *.  

  Without making any further assumptions, both counterfactual terms 

2["(*
/
)|, = *] and 2["(*/)|, ≠ *] can be only bounded from below and above by 

)(!) = 0 and )(*+ = 1, respectively, which thus become also the bounds on 2["(*/)], 

that is: 

0 ≤ 2["(*
/
)] ≤ 1	 (A.19) 

 

A.5.1 Reinforcing interactions 

The reinforcing interaction (RI henceforth) assumption states that, for any 

subsample defined by the actual treatment received (i.e., the selectivity of the college of 

actual attendance), if all individuals in the subsample had attended a very selective 

college, the average obesity prevalence would have been weakly lower than if those 

individuals had attended a less selective college. In other words, we have that, for any 

two treatment vectors *"
/ and *#

/ such that *#
0
≥ *"

0
	∀	U ∈ R, 

 "!S*#
/
T ≤ "!S*"

/
T, ∀	! ∈ R	 (A.20) 

where R in our context is understood to be the whole population. (A.20) implies, following 

the reasoning in Manski (2013, p. S10), that when RI holds, the likelihood of obesity 

weakly decreases for any given person with the selectivity of the college that (s)he 
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attends, and also with the selectivity of the college that other members of the population 

interacting with that person attend. Thus, as pointed out by Manski (2013), the treatments 

received by others reinforce a person’s own treatment. 

As was the case with MTR, we use a weaker, and thus more conservative, version 

of the RI assumption than the one in (A.20). This weaker version states that for any 

treatment value *, and any two treatment vectors *"
/ and *#

/ such that *#
0
≥ *"

0
	∀	U ∈ R, 

 

 
2["(*#

/
)|, = *] ≤ 2["(*"

/
)|, = *] (A.21) 

where, once more, R includes the whole population in our context. Compared to (A.20), 

(A.21) implies that, when RI holds, for any subsample of individuals choosing a particular 

treatment value, only the average prevalence of obesity in this subsample weakly 

decreases with the selectivity of the college that each subsample member attends, and 

also with the selectivity of the college that other individuals in the population interacting 

with the subsample members attend.  

Using RI, one can narrow the identification region of 2["(*/)] when the 

treatment takes its minimum value *(!) = 0. Specifically, both (A.20) and (A.21) imply 

that the counterfactual term 2["(0/)|, ≥ 0] can be bounded below by 2("|, ≥ 0), 

instead of  )(!) = 0. Intuitively, under RI, if nobody attends a very selective college, then 

the average obesity prevalence should be weakly higher than the observed one, which is 

the outcome of a situation in which at least some individuals attend a more selective 

college. 

Given the above, and the fact that 9(, < 0) = 0 and 9(, ≥ 0) = 1, the bounds 

for 2["(0/)] derived from (A.18) are as follows:  

 

 
2("|, ≥ 0)	9(, ≥ 0) = 2(") ≤ 2["(0

/
)] ≤ )(*+ = 1 (A.22) 

Correspondingly, RI allows one to narrow the identification region of 2["(*/)] 

also when the treatment takes its maximum value *(*+ =1. Specifically, both (A.20) and 

(A.21) imply that 2("|, < 1) can be used an upper bound for 2["(1/)|, < 1] instead 

of  )(*+ = 1. Intuitively, under RI, if everybody attends a very selective college, then the 

average obesity prevalence should be weakly lower than the observed one, which is the 

outcome of a situation in which at least some individuals do not attend a more selective 

college. 
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Given the above, and that 9(, > 1) = 0 and 9(, ≤ 1) = 1, the bounds for 

2["(1
/
)] derived from (A.18) are as follows:  

 

 
)(!) = 0 ≤ 2["(1

/
)] ≤ 2("|, ≤ 1)	9(, ≤ 1) = 2(") (A.23) 

Hence, we observe that under RI, we have that >=,1(*(*+) = <=
,1
(*(!)) =

	2("), just as was the case with MTR when the SUTVA was assumed to hold, as 

discussed in Section A.3 above. In other words, the observed obesity prevalence is both 

the RI upper bound of the obesity prevalence when everybody attends a very selective 

college and the RI lower bound of the obesity prevalence when everybody attends a less 

selective college.  

(A.22) and (A.23) imply that the ATE under RI can be bounded as follows 

 

 

 

  

<=
,1
(1) − >=

,1
(0) = )(!) − )(*+ = −1	

≤ 2["(1
/
)] − 2["(0

/
)] ≤	

>=
,1
(1) − <=

,1
(0) = 2(") − 2(") = 0 

(A.24) 

The MIV assumption under spillovers can be defined in a similar way as when the 

response is individualistic. In particular, we have that for any pair of values D",	D# of E 

such that D# > D", 

 2["(*
/
)|E = D#] ≥ 2["(*

/
)|E = D"] (A.25) 

 The MIV assumption in the presence of treatment spillovers can be justified on 

the same grounds as when there are no such spillovers. In our context, this implies that, 

taking into account treatment spillovers, a higher human capital, as denoted by higher 

values of the PPVT score, should be associated with a lower prevalence or obesity, for 

any level of college selectivity. 

The MIV assumption operates in the presence of treatment spillovers exactly as 

without them because it is always the case that terms involving unobserved potential 

outcomes are replaced in the bounds by observed magnitudes. Hence, there is no change 

in the way the optimization operations described in (A.15) and (A.16) work to narrow 

identification regions. What is different with treatment spillovers is that, in some cases, 

the bounds on which the MIV assumption operates are not the same as those without 

treatment spillovers.  
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A.6.     Advantages of PI  

All in all, there are many reasons why one would prefer PI methods to other more 

commonly used ones (e.g., OLS-, IV- or panel data-based) when trying to estimate the 

causal effect of interest. First, PI methods are completely nonparametric, as they require 

only the calculation of sample averages of the outcome and the prevalence of the 

treatment.  

Second, PI methods produce estimates of the ATE across all sample units, and not 

of the LATE as is the case with IV estimation when the treatment is heterogeneous. Thus, 

they allow for arbitrary forms of heterogeneity of the treatment effect because the ATE 

is just an average magnitude across sample units. Such unlimited heterogeneity of the 

treatment effect is not typically allowed for, as in most estimation methods one makes 

specific assumptions about how the treatment variable enters the specification. Moreover, 

if one is interested in the heterogeneity of the treatment effect in specific dimensions, then 

one can simply apply PI methods to subsamples defined by particular combinations of 

values of control variables.  

Third, in PI one bounds the unconditional expectation 2["(*)], taking as given 

the distribution of all observables and unobservables (other than the treatment) that might 

affect the outcome. Hence, one does not need to worry about i) which variables to add in 

the empirical specification; ii) the way they appear; and iii) whether they are endogenous.  

Fourth, PI methods accommodate any form of endogeneity (e.g., due to both time-

varying and time-invariant unobservables or selectivity), as they allow for any form of 

non-random selection into treatment. This also implies that one does not need to assume 

specific properties of the error term, as is the case with regression methods. 

 Fifth, PI uses very few and quite mild assumptions to narrow the identification 

region of the estimates. Importantly, it is completely transparent about how adding each 

assumption affects the identification region. In contrast, most commonly used estimation 

methods impose simultaneously many assumptions on the empirical model, and thus it is 

typically unclear how each of them affects estimates.  

Sixth, PI methods allow the use MIVs that can tighten the identification regions. 

As is the case with standard IV estimation, the assumptions behind those variables cannot 

be tested without making further assumptions. However, MIVs - unusable in standard IV 
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estimation - are required to be weakly monotonically related to the outcome, which is a 

much weaker assumption than the exogeneity required of standard IVs.  

Seventh, the most important PI result (namely the upper bound of the ATE, that 

is, by at least how much attending a selective college reduces the prevalence of obesity) 

remains valid even when there are treatment spillovers, provided one uses the RI 

assumption, supplemented by the MIV assumption. This is in contrast to what happens 

with OLS, IV or panel data methods. This is an extremely useful result, given that 

treatment spillovers are likely to obtain in many contexts. 

Eighth, PI can operate without problems on cross-sectional data, and thus panel 

data are not required. This is so because PI assumes that the treatment is endogenous, and 

this endogeneity can be due to time-varying or time-invariant unobservables, or both. One 

can accommodate dependencies among sample units (e.g., due to repeated observation of 

sample units or features of the sampling process) through the appropriate clustering and 

stratification when bootstrapping standard errors. 



46 
 

Appendix References 

Christelis, D., D. Georgarakos, T. Jappelli, and M. van Rooij (2020), “Consumption Uncertainty 

and Precautionary Saving,” The Review of Economics and Statistics, 102, 148-161. 

Christelis, D., and L.I. Dobrescu (2020), “The causal effect of social activities on cognition: 

Evidence from 20 European countries,” Social Science and Medicine 247, Article 112783. 

Manski, C. F. (1989), “Anatomy of the selection problem,” Journal of Human Resources 24, 343–

60. 

Manski, C. F. (1990), “Nonparametric Bounds on Treatment Effects,” American Economic Review 

Papers and Proceedings, 80, 319-323. 

Manski, C. F. (1994), “The Selection Problem,” in Advances in Econometrics: Sixth World 

Congress, ed. by C. Sims. Cambridge, UK: Cambridge University Press, 143–170. 

Manski, C. F. (1997), “Monotone Treatment Response,” Econometrica, 65, 1311-1334. 

Manski, C. F., and J. V. Pepper (2000), “Monotone Instrumental Variables: With an Application 

to the Returns to Schooling,” Econometrica 68, 997-1012. 

Manski, C. F., and J.V. Pepper (2018), “How Do Right-to-Carry Laws Affect Crime Rates? Coping 

with Ambiguity Using Bounded Variation Assumptions,” Review of Economics and Statistics 

100, 232–244. 

 

  



47 
 

 

Appendix: Figures and Tables 
 
 

Table A1. Summary statistics 

  Mean 
Std. 
Dev. 

N 

Age (Wave IV) 28.25 1.81 3578 
Age (Wave V) 37.24 1.87 2856 
Female 0.54 0.50 3578 
Hispanic 0.07 0.25 3578 
Black 0.10 0.30 3578 
PPVT 109.26 12.10 3578 
Parent has a college degree 0.59 0.49 3554 
Family SES 0.00 1.00 3474 
Highly selective college 0.20 0.40 3578 
Note: the means are weighted using Wave IV cross-sectional weights. PPVT is the Peabody Picture 
Vocabulary Test score.  
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Table A2. Summary of outcomes 

        

  Mean Std. 
Dev. N 

Panel A: Wave IV       

Obese 0.262 0.44 3525 
BMI 27.356 6.27 3525 
BMI self-reported  26.674 5.72 3536 
Waist (cm)  94.073 15.03 3547 
Ate fast food more than once in the past week 0.378 0.49 3576 
# Sweet drinks in the past week 7.201 8.64 3576 
No physical activity in the past week  0.093 0.29 3576 
# Times watched TV in the past week 11.352 8.78 3567 

Panel B: Wave V       

Obese 0.366 0.48 1520 
BMI 29.004 6.86 1520 
BMI self-reported  28.093 6.45 2839 
Waist (cm)  93.706 17.10 1537 
Ate fast food more than once in the past week 0.372 0.48 2805 
# Sweet drinks in the past week 4.584 5.84 2800 
No physical activity in the past week  0.077 0.27 2808 
# Times watched TV in the past week 11.461 10.18 2791 
Note: Wave IV cross-sectional weights are used in Panel A and Wave V cross-sectional 
weights are used in Panel B. 
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Table A3. Correlation between the PPVT index and the outcome variables 
 

  (1) (2) (3) (4) (5) (6) (7) 
                

  

Obese BMI Waist (cm) 

Ate fast food 
more than 
once in the 
past week 

# Sweet 
drinks in the 

past week 

No physical 
activity in the 

past week 

# Times 
watched TV 
in the past 

week 
  Panel A: Wave IV 
                
PPVT -0.047*** -0.059*** -0.014 -0.093*** -0.042** -0.006 0.001 
  (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017) 
                
  Panel B: Wave V 
                
PPVT -0.093*** -0.094*** -0.056** -0.101*** -0.038** -0.024 0.029 
  (0.027) (0.027) (0.027) (0.019) (0.019) (0.019) (0.019) 
                
Note: Correlation coefficients between the Peabody Picture Vocabulary Test scores (PPVT) and outcome variables are reported. ∗ ∗ 
∗: p < 0.01, ∗∗: p < 0.05. 
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Table A4. OLS estimates 
  (1) (2) (3) (4) (5) (6) (7) 
                

  

Obese BMI Waist (cm) 

Ate fast food 
more than 
once in the 
past week 

# Sweet 
drinks in the 

past week 

No physical 
activity in the 

past week 

# Times 
watched TV 
in the past 

week 
  Panel A: Wave IV 
                
More selective college -0.072*** -1.187*** -3.845*** -0.130*** -0.936** -0.019 -1.147*** 
  (0.023) (0.321) (0.884) (0.033) (0.413) (0.015) (0.399) 
                
Observations 3,525 3,525 3,547 3,576 3,576 3,576 3,567 
R-squared 0.025 0.042 0.060 0.047 0.036 0.012 0.012 
  Panel B: Wave V 
                
More selective college -0.072* -1.332*** -2.703** -0.087** -1.321*** -0.017 -1.450** 
  (0.042) (0.499) (1.326) (0.035) (0.342) (0.014) (0.595) 
                
Observations 1,520 1,520 1,537 2,805 2,800 2,808 2,791 
R-squared 0.033 0.063 0.096 0.059 0.015 0.029 0.020 
Note:  All regressions include age, age squared, gender and race indicators, and PPVT. Standard errors (in parentheses) are clustered 
at the school level. Estimates are weighted using Wave IV (Panel A) and Wave V (Panel B) weights. ∗ ∗ ∗: p < 0.01, ∗∗: p < 0.05, ∗: 
p < 0.1. 
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Table A5. Probability of being obese in wave IV, conditional on being observed in wave V 
 

Assumptions 
Estimates Lower 

Bound 
Low      

95% CI 

Lower 
Bound 
Upper 

95% CI 

Lower 
Bound 
Low      

95% CI 

Upper 
Bound 
Upper 

95% CI 
Lower 
bound 

Upper 
bound 

              
Exogenous treatment selection -0.1172 -0.1785 -0.0586 
No assumptions -0.4094 0.5906 -0.4590 -0.3693 0.5410 0.6307 
MTR -0.4094 0.0000 -0.4590 -0.3693 0.0000 0.0000 
MTR + MIV (bias-corrected) -0.2674 -0.0209 -0.3314 -0.1674 -0.0953 -0.0100 
MTR + MIV (bias-uncorrected) -0.2374 -0.0676 -0.3314 -0.1674 -0.0953 -0.0100 
              
Number of observations 1,506 
Note:  MTR: monotone treatment response, MIV: monotone instrumental variable (Peabody Picture Vocabulary Test score). 

 

 
  

 


