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ABSTRACT

IZA DP No. 15464 JULY 2022

Prenatal Exposure to PM2.5 and Infant 
Birth Outcomes: Evidence from a 
Population-Wide Database

There are growing concerns about the impact of pollution on maternal and infant 

health. In the UK in 2018, 36% of local authorities had levels of PM2.5 where exposure 

exceeded the annual level recommended by the World Health Organisation at the time. 

Using a population database of births in Northern Ireland linked to localised geographic 

information on pollution in mothers’ postcodes (zip codes) of residence during pregnancy, 

we examine whether prenatal exposure to PM2.5 is associated with a comprehensive range 

of birth outcomes. Overall, we find little evidence that particulate matter is related to worse 

infant outcomes once we implement a fixed effects approach that accounts for time-

invariant factors common to mothers. While reducing pollution remains an urgent public 

health priority, our results imply that improvements in short-run levels of prenatal PM2.5 

exposure are unlikely to be sufficient by themselves to reduce disparities in birth outcomes.
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1 Introduction 

Climate change, a growing literature on the associations between air pollution and adverse outcomes, 

and an awareness of growing health disparities associated with differential environmental exposures, 

have combined to generate increasing interest in empirically estimating how exposure to particulate 

matter and other pollutants affect population health (Currie et al. 2014). In the US alone, almost 50 million 

people live in counties where levels of exposure exceed national air quality standards (Sullivan and 

Krupnick 2018). Exposure to fine particulate matter with a diameter of 2.5μm or less (PM2.5) has one of 

the biggest impacts of particulate pollution on human health; according to a Committee on the Medical 

Effects of Air Pollutants, a 10μg/m3 increase in ambient PM2.5 concentration is associated with a 6% 

increase in all-cause mortality (Committee on the Medical Effects of Air Pollutants 2021). Estimates of the 

economic impact of environmental exposure that are based on calibrated models of mortality risk imply 

that global health-related losses are of the order of trillions of dollars annually (Yin et al. 2021). Moreover, 

exposure to PM2.5 is higher for socioeconomically-disadvantaged communities and the impact on those 

with underlying health conditions is likely greater (Fecht et al. 2015; Brunt et al. 2017; Milojevic et al. 

2017; Bowe et al. 2019).  Consequently, in addition to its overall impact, particulate matter may contribute 

to reinforcing health inequalities.  

One population that is particularly important to study in this context is pregnant women and infants. 

Despite recent reductions in maternal and early-life mortality in many higher income countries, outcomes 

during the period around childbirth may still be among those most susceptible to environmental 

conditions. Biological mechanisms through which the impact of pollution is likely to operate include 

gestational hypertension and placental health (Abraham et al. 2018; Luyten et al. 2018; Nobles et al. 

2019). Moreover, previous studies that have directly examined the association between particulate 

matter and early life outcomes such as birth weight and infant mortality have found a negative 

relationship in a variety of contexts (Currie et al. 2009; Fu et al. 2019; Goyal et al. 2019). Reflecting the 

importance of interactions with the healthcare system around birth, health expenditures during this stage 

of life for both infants and mothers are amongst the highest for pre-retirement age-groups, for example 

with half of all Medicaid spending in the US occurring during this life stage (Xu et al. 2015). Life-saving 

treatments for premature and infants experiencing poor health represent extraordinary medical progress 

but are expensive (Almond et al. 2005), thus from a public policy point of view addressing risk factors for 

these outcomes, potentially including exposure to particular matter, remains a policy priority. In addition 

to impacting directly on the contemporaneous health of women and infants, reducing exposure to 

pollution may also have medium and long-term benefits (Sanders 2012). Improvements in early life 

environment as reflected in measures such as birth weight, which PM2.5 is hypothesized to affect, have 

been linked to better adolescent and adult outcomes such as education, health, and earnings (Almond 

and Currie 2011). An emerging literature has found evidence of intergenerational impacts of infant health, 

including for pollution (Colmer and Voorheis 2020).     

Quantifying the relationship between particulate matter and early life outcomes is challenging because of 

the potential for omitted factors to bias estimates. Given we expect pollution exposure to be associated 

with other background characteristics, further evidence on how exposure to pollutants causally affects 

these outcomes is important for informing public policy. Air quality can be thought of as a local amenity 

(Chay and Greenstone 2005), therefore we expect the cost of living, for instance through wage and house 

prices within neighbourhoods that are differentially affected, to adjust to reflect differing exposure. 

Without an empirical strategy to adjust for such factors that may be difficult to measure directly, estimates 
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from correlational studies could be biased. Assessing the magnitude of the relationship between air 

pollution and early life outcomes is important, because if there is no effect of PM2.5 exposure per se, or 

relevant effect sizes are small, alternative strategies such as increasing access to ante-natal services and 

addressing social determinants such as material hardship and education may be additionally required to 

improve maternal and infant health and reduce disparities. Studies that adopt an identification strategy 

to account for unobserved confounders in estimating the impact of PM2.5 on infant outcomes are often 

focused on the US (e.g. Currie et al. 2014).  

Our approach in this paper is to use administrative birth records from Northern Ireland (NI) over a 7-year 

period (2011-2017), with outcome information linked to prenatal pollution exposure to PM2.5. We make 

a number of contributions to the literature. First, we consider a range of measures of infant health and 

birth outcomes beyond just mortality and birth weight, which together provide a comprehensive 

assessment of short-run infant morbidity. Second, the scale of the data and time horizon allow us to link 

infants born to the same mothers living in NI, but with different levels of exposure to particulate matter. 

Our empirical strategy is to implement a mother fixed effects approach, which adjusts for all time-

invariant factors common to siblings born to the same parent. We identify pollution exposure using 

postcode of residence, allowing us to capture highly localised PM2.5 measures for the population of 

mothers, while still adjusting for socioeconomic characteristics of census tracts. This is an important 

advantage of the data given concerns about omitted variable bias at the local level. Finally, the location 

in which we study the impact of pollution on infant outcomes is also important, as our analysis takes place 

in the context of a universal healthcare system (the UK’s National Health Service) that is largely free at the 

point of use, which stands in contrast to much of the previous literature (which we summarise below).  

The rest of this paper is structured as follows. In Section 2, we review previous literature to contextualize 

the paper. In Section 3 we discuss our methodological approach. Section 4 describes our data and the NI 

context, while results are presented in Section 5. Section 6 provides a discussion and Section 7 concludes. 

Further analysis is presented in the Appendix.    

2 Literature 

This paper examines a range of outcome measures for infant health using an approach designed to 

account for omitted variable bias. In what follows we first summarise findings from analyses that consider 

birth outcomes other than birth weight (the most commonly studied outcome). We then summarise 

studies, including for birth weight, which examine the impact of pollution using an empirical approach 

with an explicit identification strategy, with a focus on the economics literature, noting that in some cases 

the most relevant studies are for pollutants other than PM2.5.  

APGAR Score 

Several papers have examined APGAR scores as an outcome of pollution. In an analysis of shale gas 

development in the US state of Pennsylvania (Hill 2018), mother’s residential proximity to a gas well was 

associated with an increase in the probability of an APGAR score of less than 8 by 26 percent. Negative 

associations between APGAR scores and pollutants, including PM2.5 have also been documented in China 

(Wei et al. 2020) and Poland (Wojtyla et al. 2020). In France, carbon monoxide was associated with both 

APRGAR score and head circumference (Gomez et al. 2005).   
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Head Circumference and Infant Length 

In their review and meta-analysis, Fu et al. (2019) investigated the relationship between air pollutants NO2 

and PM2.5 and birth outcomes including head circumference and length. PM2.5 exposure (10μg/m3) during 

the entire pregnancy was negatively associated with head circumference at birth (β = − 0.30 cm, 95% CI − 

0.49, − 0.10), and NO2 exposure during the entire pregnancy was significantly linked to shorter length at 

birth (β = − 0.03 cm, 95% CI − 0.05, − 0.02).  

Placental Outcomes 

The placenta plays a crucial role in pregnancy, and is one of the hypothesised biological mechanisms 

through which impacts of pollution are expected to operate. Initially, the placenta functions to suppress 

the mother’s immune system, preventing rejection of the embryo. Subsequently, the placenta transfers 

oxygen, nutrition and other factors necessary for supporting growth from the mother to the foetus, as 

well as waste material from the foetus to the mother. Because the placenta comes into contact with 

substances that both mother and foetus are exposed to over the course of a pregnancy, the impact of 

particulate matter may be apparent here first. Moreover, the placenta regulates signals affecting the 

developmental process, including progesterone and other hormones, which play a role in determining 

appropriate responses to environmental exposures.  Nanoparticles, such as those found in air pollution, 

can pass through the placental barrier, and the smallest (less than 240 nanometres) can enter the foetal 

bloodstream (Wick et al. 2010). In their review,  Luyten et al. (2018) discuss a range of potential pathways 

through which pollution exposures may affect foetal growth and other outcomes via the placenta, 

including direct DNA damage and epigenetic expression.  

A number of empirical studies support these mechanisms using data from Europe  (Janssen et al. 2012; 

van den Hooven et al. 2012; Abraham et al. 2018; Nawrot et al. 2018; Giovannini et al. 2020), Brazil 

(Hettfleisch et al. 2017), and Japan (Michikawa et al. 2016). In the US, researchers used the Rhode Island 

Child Health Study to investigate the association between PM2.5, black carbon, and the expression of 10 

imprinted genes in the placenta, and birth weight (Kingsley et al. 2017). PM2.5 and black carbon were 

associated with changes in expression of 41 and 12 of 108 placental imprinted genes, respectively, which 

implies possible impacts on foetal growth and development.  

Literature with an identification strategy 
 
Table 1 summarises recent papers in the economics literature that examine the relationship between 
pollution exposures and infant outcomes (or, in one case, later life outcomes of in utero exposure) and 
which adopt an explicit identification strategy. Of the 14 papers listed, six adopt a (parental or area) fixed 
effects (FE) approach, six use an instrumental variables (IV) approach (e.g. exploiting variation in weather 
conditions or the business cycle, some in combination with FE), and four adopt a difference-in-differences 
(DID) approach (e.g. exploiting regulatory changes). Seven of these studies take place in the US, and infant 
outcomes analysed in these papers only include mortality, gestational age, preterm birth and birth weight. 
Although not all studies find statistically significant impacts in all cases, overall these papers suggest a 
negative impact of pollution exposure on these outcomes. In terms of magnitude the implied relationships 
are generally important, for instance in a paper that used data from California, every 1% reduction in PM10 
exposure was associated with a 1% reduction in weekly infant mortality (Knittel et al. 2016). Overall, Table 
1 highlights the need for further research that considers additional contexts outside the US and examines 
outcomes beyond mortality and birth weight or gestational age, evidence that this paper provides. 
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Table 1 Summary of Literature with Identification Strategies on the Impact of Pollution on Infant Health Outcomes  

Authors/Journal Population Identification strategy Pollutant/Exposure 
duration 

Outcome Effects sizes  

Chay, K., 
Greenstone, 
M., 2003, QJE 

 

 

US counties 
from 1980 to 
1982 

County FE. 
 
IV using stacked first-
differences, with changes in 
mean TSP (average total 
suspended particulate pollution) 
and per capita income 
instrumented by first and 
second lags of TSP and income 
levels. 

TSP (average total 
suspended 
particulate 
pollution) 
 
Exposure: changes 
in TSP. 

2500 fewer infants died during 
the recessions from 1980–1982 
than would have in the absence 
of reductions in TSP. 
 

A 1 μg/m3 reduction in TSP 
resulting in about 4–7 fewer 
infant deaths per 100,000 live 
births (an elasticity of 0.35). 

Currie, J., 
Neidell, M., & 
Schmieder, J. F. 
2009, JHE 

New Jersey 
1990s, 
mothers’ 
residential 
location  
 

Mother FE, interaction effect 
with smoking (controlling for 
neighbourhood FE too, 
therefore using variation in 
pollution exposure within 
families between children) 

CO exposure by 
trimester 

Birth weight, infant mortality. 
CO has negative impacts on 
infant health both before and 
after birth. 

A one unit change in mean 
CO during the last trimester 
of pregnancy increases the 
risk of low birth weight by 
8%. A one unit change in 
mean CO during the first 2 
weeks after birth increases 
the risk of infant mortality by 
2.5%. 
 

Currie J., & 
Walker R., 
2011, AEJ:AE 

Pennsylvania 
for 1997 to 
2002, and 
New Jersey 
for the years 
1994 to 2003 

DID exploiting the introduction 
of electronic toll collection (EZ-
Pass) in 98 regions 

Emissions cause by 
traffic congestion 
(e.g., CO) 

Policies intended to curb traffic 
congestion can have significant 
health benefits for local 
populations 

EZ-Pass reduced the 
incidence of prematurity and 
low birth weight in the 
vicinity of toll plazas by 6.7–
9.1 percent and 8.5–11.3 
percent, respectively 

Sanders, N. J. 
2012, JHR 

Texas, from 

1981 to 1983  

 

IV: instruments for TSP using 
annual employment changes in 
the county-level manufacturing 

Annual mean 
average TSP 
weighted by the 
inverse distance 

A statistically significant 
relationship between prenatal 
pollution exposure and 
educational outcomes, 

A standard deviation 
decrease in TSP is associated 
with approximately a 6 
percent of a within-county 
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 sector, exploiting a period of 
industrial recession 
in Texas from 1981 to 1983 and 
its impact on manufacturing 
production and associated 
ambient TSP levels. 

from pollution 
monitors. 
All pollution 
monitors within 20 
miles of a county 
were considered. 

specifically performance on 
standardized high school exit 
exams. 
 

standard deviation increase 
in test performance. 

Coneus, K., & 
Spiess, C. K., 
2012, 
JHE 

Germany, 

from 2002 to 

2007 

Area and family FE using the 
German Socio Economic Panel 
(SOEP). 

CO, SO2, NO2, 
Ozone, PM10  
mean pollution 
exposures during 
pregnancy.   Also 
mean pollution 
exposures in 
month before 
birth. 

CO impacts fetal growth and 
birth weight. 
 
Ozone levels impact birth 

length, fetal growth, and the 

probability of toddlers having a 

bronchitis or some other health 

condition. 

An increase in the average CO 
exposure during the month 
before birth lowers birth 
weight by, on average, 289 g. 
The impact on birth weight 
and fetal growth 
towards the end of 
pregnancy appears to be 
significantly higher 
than at earlier stages.  

Luechinger, S., 
2014, JHE 

Germany, 

from 1985 to 

2003 

FE and IV: (Natural experiment 
created by the mandated 
desulfurization at power plants, 
and power plants’ location and 
prevailing wind directions) 

SO2 
Exposure: Annual 
mean SO2 
concentration 
measured at air 
quality monitors 
for 1985–2003 

Desulfurization at power plants 
resulted in considerable 
benefits for infant health. 

The resulting instrumental 
variable estimates imply a 
marginal effect of SO2 on 
infant mortality of 0.045.  
Between 25 and 44 percent 
of the decrease in infant 
mortality over the sample 
period is estimated to be due 
to the improvement in air 
quality. 
 

Greenstone, 
M., & Hanna, 
R., 2014, AER 
 

India (city 
level panel 
data) 1986–
2007 

DID using air pollution 
regulation in India 

PM, SO2, NO2 The catalytic converter policy is 
associated with a reduction in 
the infant mortality rate. 

Reduction in the infant 
mortality rate of 0.64 per 
1,000 live births. However, 
this estimate is imprecise and 
is not statistically significant. 

Tanaka, S., 
2015, JHE 

China  DID approach, based on an the 
air pollution regulation “Two 

Overall pollutant 
emissions 

Air pollution regulations led to 
reductions in infant mortality 

Infant mortality decreased by 
20% 
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(145 counties 

from 1991 to 

2000) 

Control Zones” (TCZ) policy 
implemented in some Chinese 
counties. 
 

within the TCZ cities subjected 
to particularly stringent 
regulations. 

Knittel, C. R., 
Miller, D. L., & 
Sanders, N. J., 
2016, REStat 
 
 

California, 

from 2002 to 

2007 

 

IV: Interactions between mobile 
source emissions and local 
weather conditions as a source 
of exogenous variation in 
pollution. 
 
 

PM10 and CO 
 
Exposure: 
Vector of average 
pollution levels for 
the first, second, 
and third 
trimesters of 
gestation. 

PM10 has a statistically and 

economically significant impact 

on weekly infant mortality. CO 

has a large negative effect but is 

not statistically significant. 

A 1 unit decrease in PM10 
saves roughly 10 lives per 
100,000 live births, an 
elasticity of approximately 1; 
a standard deviation increase 
in traffic results in a 0.2% of a 
standard deviation increase 
in infant deaths. Effects are 
largest for premature and low 
birthweight infants. 

Arceo et al., 
2016, EJ 

Mexico City 

for the years 

1997–2006. 

IV: number of thermal 
inversions in a given week to 
instrument for pollution levels 
that week. 

PM10, SO2, CO, 
Ozone 
 
Exposure: weekly 
measures of 
pollution for each 
of the 56 
municipalities in 
Mexico City 

The adverse effects of pollution 

on infant mortality in Mexico 

City is statistically significant. 

1 ppb increase in CO over a 
week leads to a 0.0046 per 
100,000 births increase in the 
infant mortality rate. 
 
 A 1µg/m3 increase in PM10 
leads to an increase in the 
mortality rate of 0.23 per 
100,000 births. 

Cesur et al., 
2017, EJ 

Turkish 

provinces 

between 

2001 and 

2011. 

IV: exploiting variation in the 
timing of deployment and 
intensity of expansion of natural 
gas infrastructures  

PM10 Expansion of natural gas 

services has led to a significant 

reduction in the rate of infant 

mortality.  

1pp increase in the rate of 
subscriptions to natural gas 
services would lower the 
infant mortality rate by 4% 

Hill, E. L., 2018, 
JHE 

Pennsylvania, 
from 2003 to 
2010. 

DID model in which mothers 
living within 2.5km of a shale 
gas well or permit site before 
drilling are used as a control for 

Shale gas 
development as a 
potential pollution 
source. 

Extensive margin: 
Babies born to mothers who 
lived within 2.5km of at least 
one gas well during pregnancy 

A statistically significant 
increase in low birth weight 
of 1.36 pp and a reduction in 
term birth weight of 49.58g, 
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those exposed after drilling 
began – to estimate the impact 
of exposure to shale gas 
development on birth 
outcomes. 

experienced adverse birth 
outcomes. 
Intensive margin: 
Each additional well drilled 
within 2.5km of the mother’s 
residence increases low birth 
weight and premature birth by 
0.3 percentage points and 
reduces term birth weight by 
5g. 

on average. No statistically 
significant effect for 
premature birth.  

van den Berg, 
G. J., Paul, A., & 
Reinhold, S., 
2020, LabEcon 

Sweden, 
from 1992 to 
2004 

Parental FE No direct pollution 
measure was used, 
but it is 
hypothesised that 
economic 
downturns are 
negatively 
associated with 
pollution. 
 

Economic downturns are 
beneficial to the health 
outcomes of newborn infants in 
developed countries. Air 
pollution decreases during 
downturns. 

A one-percentage- point 
increase in the 
unemployment rate is 
associated with an 
approximately 10% reduction 
in the incidence of having a 
birth weight below 1500 
grams and of dying within 28 
days after birth. 

Alexander, D., 
Schwandt, H., 
2022, Restud 

 

 

US counties 
from 2007 to 
2015 

County and time FE. Exploiting 
the introduction of cheating 
diesel cars in the US by 
Volkswagen. 

PM2.5, PM10, 
Ozone 

Birth weight, Gestational age, 
Preterm birth, and Infant 
mortality 

Additional cheating diesel car 
per 1,000 cars 

increases PM2.5, PM10⁠, and 

Ozone by 2, 2.2, and 1.3%⁠, 
respectively, while the low 
birth weight rate and infant 
mortality rate increase by 1.9 

and 1.7%⁠, respectively. 
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3 Methods 

In this paper, we model birth outcomes as a function of PM2.5 exposure during pregnancy, where exposure 

levels are spatially matched to mothers via their home postcode at the time of birth. Postcode is a low-

level geographic identifier comparable to zip code in the US, and NI has over 61,800 postcode units, with 

an average of 20 addresses per unit (NISRA 2021). As described in the next section, PM2.5 is the average 

level in that location over the course of a calendar year. However, we also consider models adjusting for 

time of birth during the year. Following Currie et al. (2009) we estimate regression models of the following 

form: 

 

𝐼𝑛𝑓𝑎𝑛𝑡 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖𝑚𝑝 =  𝛽𝑃𝑀2.5𝑝 + 𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑝𝛿 + 𝑋𝑖𝑚𝑝𝛾 + 𝜀𝑖𝑚𝑝 

 

Where the outcome of interest for infant 𝑖 born to mother 𝑚 in location 𝑝, is a function of PM2.5 location-

level exposure, location-level weather conditions, and a vector of control variables (𝑋𝑖𝑚𝑝) that includes a 

constant. 𝜀𝑖𝑚𝑝 is an idiosyncratic error term. We begin with a model that adjusts for month and year of 

birth, background sociodemographic characteristics (mother’s age, employment status, relationship 

status, smoking status, number of previous pregnancies (gravida) and child sex) and weather 

(temperature and rainfall in location of residence).  We are unable to control for postcode fixed effects as 

the anonymisation procedure did not permit having access to these identifiers, but in later models we do 

include controls for neighbourhood characteristics at the Super Output Area (SOA) level which roughly 

correspond to census tracts in the US. SOAs are geographical boundaries designed to comprise local 

populations of similar sizes. NI is split into 890 SOAs, each with an average of 2,100 residents and 818 

households (NISRA 2019). In our final set of models we include mother fixed effects that control for all 

factors common to infants with the same mother. The main coefficient of interest is 𝛽, which captures 

the adjusted association between PM2.5 exposure and the outcome of interest. By comparing how this 

coefficient changes as additional model controls are added we can learn about the structure of 

confounding variables. For example, by including SOA-level fixed effects we can assess whether estimates 

of the impact of pollution are confounded by shared local-level factors such as material disadvantage. 

Additionally, by including mother fixed effects, we are able to test whether estimates for 𝛽 are affected 

by unobserved factors, which are likely important for the reasons described above. In our model with 

mother fixed effects, parameter estimates are identified by variation in prenatal pollution exposures for 

siblings to the same mother.  

In our main models, we use a weighted average of birth and conception year PM2.5, where the weights 

reflect gestation time during each year. We measure this pollution exposure using categorical indicator 

variables for average PM2.5 exposure based on the following intervals: 3-6, 6-10, and 10-16 μg/m3. We are 

particularly interested in exploring how being in the category above the recommended limit for PM2.5 set 

by the World Health Organization at the time (10 μg/m3), subsequently halved in the 2021 revised 

guidelines, is related to infant outcomes. However, we also consider specifications where we included 

additional categories as well as modelling the postcode average PM2.5 as a more continuous measure 

based on the median of shorter intervals. Doing so allows us to assess the functional form of potential 

relationships between pollution and our outcomes.  
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4 Data and Context 

We use data on births in Northern Ireland from 2011 to 2017. Northern Ireland is a nation within the UK 

located on the island of Ireland. Unlike the Republic of Ireland with which it shares a land border, as part 

of the UK the health system in Northern Ireland is run as a component of the National Health Service 

(NHS) which is largely free at the point of access. Economically, living standards in Northern Ireland are 

broadly comparable to the rest of the UK, with median annual earnings for full time employees of 

GBP29,000 in 2021 (UK median GBP31,000).  

The birth data used in this paper are collected as part of the NI Maternity System (NIMATS). NIMATS 

compiles information on mothers and infants from demographic and clinical data collected during 

delivery, supplemented with data from ante-natal check-ups and the post-natal period, and has been used 

elsewhere to study birth outcomes, e.g. Mongan et al. (2019) and Saad et al. (2021). The main source of 

data for NIMATS (excluding data input) is the Patient Administration System (PAS). The PAS provides 

mainly demographic details recorded when the mother attended for her booking appointment and also 

data recorded on admission to hospital for delivery. The NIMATs data are available for research purposes 

to accredited researchers and can be accessed through the Honest Broker Service, a Trusted Research 

Environment for Health and Social Care (HSC) NI which is hosted within the HSC Regional Business Services 

Organisation (RBSO/BSO). It is possible to merge NIMATS data with confidential identifiers provided that 

the ultimate analysis dataset does not permit identification disclosure. For this project, we merged 

NIMATS data with PM2.5 annual pollution in each postcode in each year using mother’s address at the time 

of birth. To preserve confidentiality, PM2.5 levels were merged into categories that did not permit 

identification of individuals. Other weather variables were merged in the same way. All other variables 

used in this analysis are present in the original NIMATS database, including outcome and control variables 

for mothers. Patients within the UK’s NHS, which in NI is run by the Health and Social Care (HSC) 

organisation, are assigned a unique Health and Care Number. This number is not observed by researchers; 

instead, mothers are assigned a unique anonymised ID which permits multiple pregnancies to the same 

mother to be identified. All data are prepared for analysis so that researchers do not have access to 

identifiable information, and all analysis took place onsite within the Honest Broker Service’s ‘Safe Haven’ 

in Belfast. The NIMATS data include the following control variables that we adjust for in the analysis: 

mother’s age, employment status (employed or not), relationship status (single parent or not), mother’s 

smoking status (smoker or not), gravida, and child sex. We include additional controls for rainfall and 

temperature, as these factors have been shown to be predictive of health and wellbeing as well as 

pollution exposure (Buckley et al. 2014; Noelke et al. 2016; Kalisa et al. 2018).  

The pollution and weather variables are derived from UK-wide datasets. The pollution data are published 

by the Department for Environment, Food and Rural Affairs (DEFRA) to provide policy support and to fulfil 

the UK's air quality reporting obligations. Annual average background PM2.5 concentrations are modelled 

on a 1km x 1km grid and calibrated using measurements from sites within the national monitoring 

network. These data have been used in other studies, e.g., in the context of pregnancy outcomes in 

Scotland (see Dibben and Clemens (2015) and Clemens et al. (2017)). The weather data – annual mean air 

temperature (in degrees Celsius) and annual mean total precipitation (in millimetres) – are produced by 

the Met Office (2018) using interpolation techniques applied to data from a network of UK land surface 

observations. To transform the pollution and weather data from the grid to the postcode level (in order 

to match with mother’s address), we carried out spatial interpolation (Kriging) using Geographic 

Information System (GIS) software.  
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Descriptive statistics for outcome, exposure and control variables are shown in Table 2. There were a 

similar number of births per year over the study period 2011-2017 (between 23,000 and 26,000). The 

modal age of mothers was in the 31-35 category (31%), with the vast majority in a relationship (94%), 75% 

employed, 15% who smoke, and 38% having three or more pregnancies. Just under one-fifth of the full 

sample of births experienced low average PM2.5 exposure during pregnancy, while the majority (71%) 

experienced medium exposure; just under one-in-ten experienced the highest level of exposure. The 

average infant weighed 3,421 grams at birth and measured 51.5 centimetres in length and 34.7 

centimetres in head circumference. Approximately 6.1% of infants were born below 2,500 grams (the 

classification for low birth weight). In terms of delivery, 7.6% of infants were delivered before 37 weeks, 

0.4% were born still, and 14.5% were delivered through a crash, emergency or urgent caesarean. As 

expected, average outcomes in our data closely match comparable official statistics for NI during this 

period (PHA 2019). Compared to England, Wales and Scotland, a smaller proportion of babies in NI have 

low birth weight (PHA 2018). Around 10.5% of infants were resuscitated using either chest compression, 

a positive pressure (PP) tube or mask. A small minority of new-borns received an APGAR score below 7, 

with 7.8% receiving 1-minute score, and 1.7% receiving a 5-minute score, below this level. In terms of 

placenta outcomes, 14.6% were deemed to have an ‘unhealthy’ placenta, 8.7% had placental infarcts, 

25.6% had a calcified placenta, and 1.7% had a retroplacental clot.  

Appendix Figure A1 shows the distribution of PM2.5 by SOA in 2017. In NI, the majority of the geographic 

area is rural with low population density, with only 36% of people in NI living in a rural area in 2018 (2020). 

The majority of the population is concentrated within the main cities of Belfast (the capital) and 

Derry/Londonderry and their metro areas. Rates of exposure to PM2.5 are typically low outside of the 

cities, but Figure A1 shows considerable variation within urban areas. In Belfast, for example, pollution 

was concentrated in the downtown area and near major roadways. This, together with Figure A2 which 

shows that the highest-pollution areas also tend to be the most deprived according to NI’s Multiple 

Deprivation Measure (MDM) (see NISRA 2010), highlights the need to adjust for location of residence at 

a disaggregated level, and motivates our inclusion of SOA fixed effects in our model estimates. Average 

population weighted PM2.5 exposure has declined from almost 8μg/m3 in 2011 to around 6μg/m3 in 2017 

(Figure A3). Figure A4 illustrates how the outcome variables have changed through time, with average 

outcomes in 2017 similar to their 2011 levels in most cases. However, mean birth weight decreased 

slightly during this period, while the proportion of babies with a 5-minute APGAR score of less than 7 

increased. Mean head circumference and length both increased. 
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Table 2: Descriptive Statistics for Infant Outcomes, Exposure and Control Variables 

 Mean Frequency N obs. 

Outcome Variables    
Birth Weight (grams) 3421.4 N/A 168999 
Low Birth Weight (<2,500g) 0.061 10302 168999 
Resuscitated 0.105 17752 168781 
1-minute APGAR Score <7/10 0.078 13213 168474 
5-minute APGAR Score <7/10 0.017 2792 168486 
Unhealthy Placenta 0.146 19012 130665 
Placenta Infarcts 0.087 11318 130665 
Placenta Calcified 0.256 33471 130665 
Retroplacental Clot 0.017 2179 130665 
Stillborn 0.004 634 169178 
Preterm: Gestation <37 weeks 0.076 12828 169192 
Crash/Urgent C-Section 0.145 24614 169198 
Length (cm) 51.5 N/A 163366 
Head Circumference (cm) 34.7 N/A 165593 
    
PM2.5 Category    
[3-6] 0.195 31348 160544 
(6-10] 0.713 114439 160544 
(10-16] 0.092 14757 160544 
    
Mother/Infant Control Variables    
Mother aged <21 at birth 0.057 9582 169198 
21-25 0.164 27829 169198 
26-30 0.302 51026 169198 
31-35 0.312 52860 169198 
36 or above 0.165 27901 169198 
Mother not single parent 0.943 157295 166719 
Mother single parent 0.057 9424 166719 
Mother not employed 0.255 42124 165232 
Mother employed 0.745 123108 165232 
Mother does not smoke 0.848 143261 169006 
Mother smokes 0.152 25745 169006 
1 Pregnancy 0.316 53516 169198 
2 Pregnancies 0.302 51063 169198 
3 or more pregnancies 0.382 64619 169198 
Infant was female 0.487 82340 169166 
Infant was male 0.513 86826 169166 
    
Birth Month    
January 0.082 13913 169198 
February 0.074 12581 169198 
March 0.081 13767 169198 
April 0.079 13435 169198 
May 0.084 14144 169198 
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June 0.080 13519 169198 
July 0.088 14882 169198 
August 0.088 14827 169198 
September 0.090 15160 169198 
October 0.087 14638 169198 
November 0.084 14211 169198 
December 0.083 14121 169198 
    
Birth Year    
2011 0.138 23320 169198 
2012 0.149 25276 169198 
2013 0.143 24158 169198 
2014 0.144 24438 169198 
2015 0.144 24387 169198 
2016 0.143 24258 169198 
2017 0.138 23361 169198 
    

Temperature Decile    

1 (Coolest) 0.065 10951 167814 
2 0.114 19078 167814 
3 0.126 21161 167814 
4 0.116 19408 167814 
5 0.119 20000 167814 
6 0.107 17976 167814 
7 0.104 17494 167814 
8 0.095 16019 167814 
9 0.084 14016 167814 
10 (Warmest) 0.070 11711 167814 
    
Rainfall Decile    
1 (Driest) 0.033 5535 167814 
2 0.081 13659 167814 
3 0.089 15002 167814 
4 0.092 15369 167814 
5 0.114 19205 167814 
6 0.119 19960 167814 
7 0.124 20869 167814 
8 0.131 21933 167814 
9 0.123 20662 167814 
10 (Wettest) 0.093 15620 167814 

Notes: Table reports means and frequencies of analysis variables and the number of non-missing observations. 
Sample is all births between 2011 and 2017, and calculations are performed over all available data. Data on 
retroplacental clot and placenta outcomes are not available from June 2016 onwards, resulting in a smaller number 
of observations. N/A denotes frequency not applicable to continuous variable. 
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We examine the bivariate association between our outcomes of interest and PM2.5 to determine whether 

a relationship exists between pollution and infant health in our data before adjusting for other factors. 

We focus on measuring mean outcomes by pollution category (those used in our main regression model: 

3-6, 6-10, and 10-16 μg/m3). We expect to see a correlation in this analysis based on the findings from the 

existing literature described above (e.g. Fu et al. 2019). Table 3 shows these bivariate means. Broadly 

speaking, we see the expected relationship with pollution. For instance, babies exposed to pollution in 

the 3-6 μg/m3 category had a low birth rate of 5.6%, compared to 7.7% for those born into the 10-16 

μg/m3 category. Similarly, 7.5% of babies in the first category had a 1-minute APGAR score of less than 7, 

compared to 9.0% in the 10-16 μg/m3 category. The continuous outcomes of birth weight, length and 

head circumference also show the negative expected relationship. For instance, the mean birth weight 

for infants in the lowest PM2.5 category is 3,466g, compared to 3,334g in the highest PM2.5 category. 

However, the pattern for preterm births and crash/urgent c-sections is less clear, with some being less 

common at higher pollution levels in the bivariate analysis. The magnitude of some of these differences 

is large, for example a birth weight difference of 132g is similar to the gradient in birth weight previously 

documented between infants born to households in the lowest income quintile compared to the highest 

income quintile (McGovern 2013).  However, for the reasons described above, it is important to adjust for 

other factors, both observed and unobserved, that may bias estimates of the relationship between PM2.5 

and infant outcomes. The following section presents these results from our regression analysis.  

In terms of how we construct the analysis sample for the regression analysis, there were a total of 169,889 

births over the study period. There were a small number of infants without an identification variable (420), 

who were excluded. We also excluded infants who appeared multiple times and had multiple values on 

the same variables (271). 8,654 infants had missing values on control variables and the PM2.5 and weather 

variables, with the most missing information from the following three variables: family status (2,479 

missing values), maternal employment status (3,966), and SOA (2,014). This resulted in potential analysis 

sample of n = 160,544. We use slightly different samples depending on the outcome. For post-natal 

outcomes, we restrict the sample to all live births where babies are born at term (37 or more weeks). For 

stillbirths, we consider all pregnancies, and for preterm and crash/urgent c-sections, we restrict the 

sample to live births. However, as described in the robustness check section, we verified that results were 

not sensitive to estimation using alternative samples.  

Given that we implement mother fixed effects models, an important issue is whether there is sufficient 

sample size and variation in pollution exposure for siblings born to the same mothers. Appendix Table A1 

presents additional summary statistics documenting this information. This table highlights the importance 

of using population-level data such as those we use in this paper because it provides a large enough 

sample size to justify within family comparisons of pollution exposure. We find that there are a substantial 

number of infants with differing pollution categories even though they were born to the same mother. 

For example, among the 8,488 mothers in the lowest pollution category, 4,910 (57%) fall into a higher 

category during their next pregnancy. Among the 3,209 in the highest category, 60.3% subsequently fall 

into a lower pollution category. 
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Table 3: Summary Statistics for Outcome Variables by PM2.5 Category 

 PM2.5 Category 

 3-6 6-10 10-16 

 Mean Freq. N obs. Mean Freq. N obs. Mean Freq. N obs. 

Birth Weight (grams) 3466.2 N/A 33159 3419.4 N/A 119210 3334.6 N/A 15242 
Low Birth Weight (<2500g) 0.056 1873 33159 0.060 7184 119210 0.077 1175 15242 
Resuscitated 0.101 3335 33096 0.106 12570 119083 0.114 1730 15215 
1-minute APGAR Score <7/10 0.075 2471 33042 0.078 9293 118853 0.090 1365 15194 
5-minute APGAR Score <7/10 0.016 519 33044 0.017 1973 118859 0.018 275 15198 
Unhealthy Placenta 0.101 1612 15899 0.146 14597 99903 0.198 2713 13682 
Placenta Infarcts 0.059 938 15899 0.088 8813 99903 0.111 1520 13682 
Calcified Placenta 0.207 3289 15899 0.260 25937 99903 0.298 4077 13682 
Retroplacental Clot 0.016 250 15899 0.017 1654 99903 0.019 255 13682 
Stillborn 0.003 116 33195 0.004 452 119336 0.004 64 15259 
Preterm: Gestation <37 weeks 0.076 2526 33199 0.075 8953 119350 0.082 1246 15259 
Crash/Urgent C-Section 0.146 4841 33199 0.147 17491 119350 0.134 2052 15259 
Length (cm) 51.6 N/A 32406 51.4 N/A 115118 51.4 N/A 14474 
Head Circumference (cm) 35.0 N/A 32746 34.7 N/A 116733 34.5 N/A 14735 

Notes: Sample is all births 2011-2017. N/A denotes frequency not applicable to continuous variable. 

 

5 Results  

We begin by showing results for birth weight in Table 4.  As described above, we sequentially add control 

variables to assess how coefficient estimates change when accounting for potential confounders. The final 

model in column 4 includes mother fixed effects so parameter values are based on comparing siblings of 

the same mothers who faced different levels of PM2.5. All models are linear regressions (OLS) for 

continuous birth weight as the outcome, and the sample includes all singleton live births of 37+ weeks 

gestation. PM2.5 is included as a categorical variable with the reference category being 3-6 μg/m3. 

Comparing the first two columns, adding a standard set of control variables for infant and mother 

variables and weather slightly reduces the magnitude of estimates of the association between PM2.5 and 

birth weight. Experiencing PM2.5 during pregnancy of 10-16 μg/m3 compared to 3-6 μg/m3 is associated 

with a reduction in birth weight of around 130g in the unconditional model. After controlling for gender 

and observable mother characteristics, this effect falls to 86g. Adding fixed effects for mother’s SOA of 

residence further reduces the magnitude of the coefficients, although estimates remain statistically 

significant. Now being in the top PM2.5 category is associated with a reduction in birth weight of around 

32g. However, in the mother fixed effects models, the coefficient is attenuated still further and is no longer 

statistically significant. Full model coefficients are shown in Appendix Table A2. We conduct formal tests 

of changes in coefficients between mother fixed effects and other models to assess whether differences 

are statistically significant. Because computation was not feasible otherwise, we omitted the SOA fixed 

effects from this test. The test statistic was 1323.3 with a p-value of <0.001 suggesting that adjusting for 

mother fixed effects is important for our understanding of the relationships under consideration. 
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Table 4: Impact of Prenatal PM2.5 Exposure on Birth Weight 

 (1) (2) (3) (4) 

PM2.5 (ref. [3-6])     
     
(6-10] -53.0*** -40.5*** -12.2** 1.1 
 (3.2) (3.7) (4.4) (5.9) 
     
(10-16] -129.9*** -86.3*** -31.6*** -3.0 
 (5.3) (6.0) (7.4) (10.4) 
     

Observations 146662 146662 146662 146662 
Outcome Mean 3525.5 3525.5 3525.5 3525.5 
Controls     
Year and Month of birth No Yes Yes Yes 
Gender No Yes Yes Yes 
Mother variables No Yes Yes Yes 
Weather variables No Yes Yes Yes 
SOA FE No No Yes Yes 
Mother FE No No No Yes 

Note: Linear model with standard errors clustered by mother in parentheses. FE denotes fixed effects. The outcome 
is a continuous measure of an infant's birth weight in grams. Sample is all live singleton births of 37+ weeks gestation. 
The PM2.5 exposure variable is a categorical, weighted average of PM2.5 in birth year and PM2.5 in conception year, 
where weights reflect gestation time spent in each year, respectively. The underlying units are micrograms per cubic 
metre. Control variables: birth month, birth year; infant: gender; mother: age group at birth, one parent family or 
not, employed or not, smokes or not, gravida; temperature decile, rainfall decile; Super Output Area. * p < 0.05, ** p 
< 0.01, *** p < 0.001. 

 
 

Table 5 presents results for alternative outcomes using the same empirical approach. For head 

circumference, we find a similar pattern as for birth weight. In the unadjusted model, being in the highest 

PM2.5 category is associated with a reduction in head circumference of 0.53 cm, however this is 

substantially attenuated in the mother fixed effects models. In contrast, the coefficient for length (-0.20) 

remains statistically significant even after adjusting for mother fixed effects. The pattern of attenuated 

estimates is similar for the binary outcomes, although associations are not statistically significant in all 

cases even in unadjusted or minimally adjusted models. For APGAR score at 1 minute, resuscitation, low 

birth weight, and preterm birth (gestation less than 37 weeks), none of the coefficients in the mother 

fixed effect models is statistically significant and generally negligible in magnitude despite being relatively 

large in the unadjusted model. For instance, in the model for low birth weight (<2,500g) as a dichotomous 

indicator as the outcome, the unadjusted coefficient for the highest pollution category is 1.5 percentage 

points, which is large given the overall mean in the estimation sample of 1.5%. In contrast the mother 

fixed effect coefficient is close to 0 and not statistically significant. Only the coefficient on the middle 

pollution category in Table 5 for crash/urgent c-Section is significant, which is not consistent with a smaller 

coefficient in the higher pollution category for this outcome and the dose response relationship expected 

for pollution.  
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Table 5: Impact of Prenatal PM2.5 Exposure on Other Birth Outcomes 

 (1)  (2)  (3)  (4)  

Low Birth Weight: Weight <2500g (Sample A, N = 146662, mean = .015) 
(6-10] 0.005*** (0.001) 0.003*** (0.001) 0.001 (0.001) -0.002 (0.002) 

(10-16] 0.015*** (0.001) 0.009*** (0.002) 0.004 (0.002) -0.002 (0.004) 
Resuscitated (Sample A, N = 146465, mean = .086) 

(6-10] 0.008*** (0.002) 0.006** (0.002) 0.001 (0.003) 0.002 (0.005) 
(10-16] 0.012*** (0.003) 0.009* (0.004) 0.004 (0.005) 0.011 (0.009) 

1-minute APGAR Score <7/10 (Sample A, N = 146374, mean = .064) 
(6-10] 0.005** (0.002) 0.002 (0.002) -0.002 (0.002) 0.005 (0.004) 

(10-16] 0.013*** (0.003) 0.010** (0.003) 0.004 (0.004) 0.014 (0.008) 
5-minute APGAR Score <7/10 (Sample A, N = 146388, mean = .009) 

(6-10] 0.000 (0.001) 0.002* (0.001) 0.002* (0.001) 0.003 (0.002) 
(10-16] 0.001 (0.001) 0.002 (0.001) 0.002 (0.002) 0.002 (0.003) 

Stillborn (Sample B, N = 156053, mean = .004) 
(6-10] 0.0004 (0.0004) 0.0003 (0.0005) 0.0003 (0.0006) -0.0005 (0.0011) 

(10-16] 0.0006 (0.0006) -0.0001 (0.0007) 0.0001 (0.0009) -0.0019 (0.0023) 
Preterm: Gestation <37 weeks (Sample C, N = 155495, mean = .056) 

(6-10] 0.000 (0.002) -0.004* (0.002) -0.004 (0.002) -0.002 (0.003) 
(10-16] 0.007** (0.002) -0.002 (0.003) 0.000 (0.004) -0.004 (0.006) 

Crash/Urgent C-Section (Sample C, N = 155495, mean = .14) 
(6-10] 0.003 (0.002) 0.004 (0.003) 0.010** (0.003) 0.013** (0.005) 

(10-16] -0.009* (0.004) -0.003 (0.004) 0.008 (0.005) 0.008 (0.009) 
Length in cm (Sample A, N = 144484, mean = 51.8) 

(6-10] -0.237*** (0.021) 0.093*** (0.025) -0.150*** (0.029) -0.163*** (0.047) 
(10-16] -0.300*** (0.034) 0.041 (0.040) -0.205*** (0.049) -0.199* (0.087) 

Head Circumference in cm (Sample A, N = 145030, mean = 35.0) 
(6-10] -0.286*** (0.012) -0.090*** (0.014) -0.009 (0.017) 0.000 (0.027) 

(10-16] -0.533*** (0.020) -0.197*** (0.024) -0.070* (0.029) -0.026 (0.048) 

Controls         
Year and Month of 
birth 

No  Yes  Yes  Yes  

Gender No  Yes  Yes  Yes  
Mother variables No  Yes  Yes  Yes  
Weather variables No  Yes  Yes  Yes  
SOA FE No  No  Yes  Yes  
Mother FE No  No  No  Yes  

Note: The models are linear with standard errors clustered by mother in parentheses. The PM2.5 exposure variable is a categorical, 

weighted average of PM2.5 in birth year and PM2.5 in conception year, where weights reflect gestation time spent in each year, 

respectively. The underlying units are micrograms per cubic metre, and the reference category is [3-6] micrograms per cubic metre. 

Control variables: birth month, birth year; infant: gender; mother: age group at birth, one parent family or not, employed or not, smokes 

or not, gravida; temperature decile, rainfall decile; Super Output Area. Sample A is live singleton births of 37+ weeks gestation; Sample 

B is all singleton births (live or still, any gestation). Sample C is all live singleton births (any gestation). Estimation uses all available 

outcome data. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

 



19 
 

Functional form of the relationship between PM2.5 and Infant Outcomes 

Although our specification of exposure to PM2.5 in three categories allows for non-linear impacts, this 

model may not appropriately capture the functional form of the relationship of interest with infant 

outcomes. We are somewhat limited because of the need to ensure confidentiality with the linked data. 

For this reason, for example, we are unable to include PM2.5 as a continuous variable as this would 

potentially identify postcode of residence for mothers in the dataset. In addition, at the postcode level 

we are restricted to annual data in NI. Nevertheless, we are able to include additional categories for PM2.5 

to further explore potential non-linearity, as well as a potentially more efficient and parsimonious model 

with a “continuous” version of pollution exposure that uses the median values of categories in each 

postcode. These results are shown, for birth weight, in Figure 1. The first panel shows the additional 

categories, comparing the same models as in our main results, as well as the continuous version in the 

second panel. In each case, we find results are consistent with our main estimates, with essentially no 

evidence of negative effects of PM2.5. For example, in our continuous model, every unit increase in PM2.5 

exposure is associated with a reduction in birth weight of 20g, however once we adjust for mother fixed 

effects the coefficient is negligible and indistinguishable from 0.  

Figure 1: Impact of PM2.5 on Birth Weight in Alternative PM2.5 Specifications 

 

Notes:  Panel A shows the coefficient and 95% confidence interval on the PM2.5 variable treated as a continuous 
variable in the following models: M1: Unadjusted (Circle); M2: M1 + Controls (Diamond); M3: M2 + SOA Fixed Effects 
(Square); and M4: M3 + Mother Fixed Effects (Triangle). Panel B shows the coefficients and 95% confidence intervals 
on the PM2.5 variable with additional categories, with a base category of [3-5] micrograms per cubic metre. 
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Test of potential mechanisms 

In this paper, we focus on short-run infant outcomes, and thus far find little evidence that infants are 

impacted by PM2.5 during pregnancy. Nevertheless, it is possible that other outcomes beyond the time 

period we consider could still be affected by pollution, even if a short-run association is not evident 

because the impact is latent. For example, some studies have documented a relationship between PM2.5 

and child and adolescent outcomes (e.g. Anderson 2020; Colmer and Voorheis 2020). Another advantage 

of the data used in this paper is that we have, rarely for this literature, measures that allow us to assess 

one of the hypothesized biological mechanisms linking pollution to infant and child outcomes. As 

explained above, the placenta is the organ responsible for transmission of substances between mother 

and child and regulation of responses to environmental exposures (Wick et al. 2010). In our data, we have 

information on four measures of placental health (retroplacental clot, calcified placenta, placental 

infarcts, and unhealthy placenta). A retroplacental clot is an indicator of bleeding behind the placenta, 

which can occur due to placental abruption (premature separation of the placenta). Placental abruption 

is associated with a higher of risk of adverse birth outcomes, including caesarean delivery, preterm birth, 

and low birth weight (Downes et al. 2017). Placenta calcification refers to deposition of calcium-phosphate 

minerals in placenta tissue, and while there is some indication that placenta calcification is associated with 

adverse pregnancy outcomes, the evidence is inconclusive (Wallingford et al. 2018). A placental infarction 

results from the interruption of blood supply to a part of the placenta. While small infarcts are considered 

normal, larger and multiple infarcts are observed in association with severe early-onset pre-eclampsia 

and/or intra-uterine growth retardation in pregnancies that are unlikely to reach term (see Becroft et al. 

(2002)). The final outcome indicates whether a placenta is deemed to be not healthy. If there were to be 

longer-run impacts of pollution that were not apparent in our short-term outcomes, it is reasonable to 

expect an impact through these intermediate outcomes and the placental pathway. Therefore, we 

implement regression models similar to those described above for our main outcomes, with these four 

measures of placental health as the dependent variables as a function of PM2.5 exposure. When we 

estimate associations with pollution for these measures (see Table 6), we observe the same pattern as we 

do for our infant outcomes (except for retroplacental clotting); a negative relationship between pollution 

exposure and placental health in unadjusted models, but no evidence once we compare siblings born to 

the same mother. Overall, this mechanism test supports our results above that do not indicate a negative 

impact of PM2.5 in this population. 

Given these findings, another issue we can explore in our data is the structure of omitted variable bias, 

specifically, what are the characteristics that attenuate the relationship between pollution and our 

outcomes. While we do not have information beyond the variables on parental characteristics available 

in NIMATS, we do know about the characteristics of SOAs where mothers live. Thus, we can replace the 

SOA fixed effects with a measure of SOA deprivation to determine whether this is a characteristic that 

affects coefficient estimates. While adjusting for mother fixed effects rendered results not statistically 

significant, much of the attenuation in the models comes from controlling for SOA. Including area-level 

averages is akin to the Mundlak approach with panel data (Mundlak 1978). Appendix Table A3 shows 

results where we adjust for SOA MDM decile, which sorts SOAs into deprivation deciles across seven 

domains as of 2010, instead of SOA fixed effects, for birth weight. In our data, these deciles are assigned 

to each mother’s SOA at each pregnancy, and included as a categorical variable in the model. Comparing 

coefficient estimates for birth weight in this Table (and focusing on the (10-16] category for pollution 

exposure), area level socioeconomic status as measured by SOA fixed effects (column 3, where the 
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coefficient is -31.6) accounts for around 75% of the coefficient attenuation from the minimally adjusted 

model (column 2, where the coefficient is -86.3) to the mother fixed effect results (column 4, where the 

coefficient is -3.0). In contrast, MDM decile (column 7, where the coefficient is -66.9) accounts for around 

50% of the coefficient attenuation from the minimally adjusted model to the mother fixed effect results. 

Therefore, MDM decile accounts for some of the omitted SOA-level factors, but the remaining attenuation 

still comes from SOA unobserved factors and fixed mother characteristics.  

Table 6: Impact of Prenatal PM2.5 Exposure on Placenta Outcomes 

 (1)  (2)  (3)  (4)  

Placenta Unhealthy (mean = .146) 

(6-10] 0.045*** (0.003) 0.033*** (0.003) 0.007 (0.004) 0.008 (0.008) 
(10-16] 0.098*** (0.004) 0.065*** (0.005) 0.005 (0.007) 0.016 (0.014) 

Placenta Infarcts (mean = .086) 

(6-10] 0.030*** (0.002) 0.018*** (0.003) 0.000 (0.003) 0.001 (0.007) 

(10-16] 0.051*** (0.003) 0.029*** (0.004) -0.002 (0.005) 0.004 (0.012) 

Placenta Calcified (mean = .264) 

(6-10] 0.055*** (0.004) 0.034*** (0.004) 0.022*** (0.005) 0.010 (0.010) 

(10-16] 0.094*** (0.006) 0.051*** (0.006) 0.022** (0.008) 0.015 (0.018) 

Retroplacental Clot (mean = .015) 

(6-10] 0.001 (0.001) 0.000 (0.001) -0.000 (0.001) 0.004 (0.003) 

(10-16] 0.002 (0.001) -0.000 (0.002) -0.001 (0.002) 0.003 (0.005) 

Observations 114506  114506  114506  114506  
Controls         
Year and Month of birth No  Yes  Yes  Yes  
Gender No  Yes  Yes  Yes  
Mother variables No  Yes  Yes  Yes  
Weather variables No  Yes  Yes  Yes  
SOA FE No  No  Yes  Yes  
Mother FE No  No  No  Yes  

Note: The models are linear with standard errors clustered by mother in parentheses. The PM2.5 exposure variable is a 
categorical, weighted average of PM2.5 in birth year and PM2.5 in conception year, where weights reflect gestation time spent 
in each year, respectively. The underlying units are micrograms per cubic metre, and the reference category is [3-6] 
micrograms per cubic metre. Control variables: birth month, birth year; infant: gender; mother: age group at birth, one parent 
family or not, employed or not, smokes or not, gravida; temperature decile, rainfall decile; Super Output Area. The sample is 
live singleton births of 37+ weeks gestation. Note that observations from June 2016 onwards have been dropped because 
data on these outcomes are not available after this time. * p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

Robustness checks 

We conduct a number of robustness checks to assess sensitivity of results for birth weight to alternative 

modelling and measurement assumptions. First, we control for additional variables included in NIMATS 

that were excluded from our main estimates because they represent potential outcomes of pollution. 

However, we have verified that adjusting for hospital, maternal hypertension, and maternal BMI do not 
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affect results (Table A4). Second, because we have annual data we need to assign a value for PM2.5 

exposure to infants born at different times of the year. We have verified that using PM2.5 exposure during 

conception year or birth year, for example, also has similarly little impact (Table A5). Some analyses of 

infant outcomes restrict their analysis to infants born at term. This arguably has the advantage of assessing 

impacts among infants of standard gestational length. However, given that gestational age is a potential 

outcome of some of these exposures it may not be advisable to perform this sample restriction. We have 

verified that the results for birth weight are consistent across multiple possible sample restrictions (Table 

A6). Our conclusions are also robust to estimating all models on the sample of mothers with two or more 

births (Table A7), including additional controls (Table A8) for partner’s employment status and smoking 

behaviour (this last step reduces sample size given missing values), and omitting weather controls (Table 

A9).  

Trimester-specific Exposure 

Some studies suggest that exposure later during pregnancy is more strongly associated with birth 

outcomes than exposure earlier during pregnancy (e.g. see Currie et al., 2009). If so, it is possible that a 

zero effect from exposure averaged throughout pregnancy could obscure one or more trimester-specific 

effects. The nature of our PM2.5 data, which vary only by calendar year, limit the extent to which we can 

examine this question here. Nevertheless, we are able to conduct an exploratory analysis of this issue, for 

birth weight, by selecting two sub-samples of mothers, the first having a pregnancy whose first month of 

gestation was October, and the second having a pregnancy whose first month was July. For each sub-

sample, we separate the gestation period into two parts: trimester 1 (part 1) and trimester 2/3 (part 2) 

for October mothers, and trimester 1/2 (part 1) and trimester 3 (part 2) for July mothers. In both cases, 

the first part was assigned the PM2.5 level in the conception year, and the second part was assigned the 

PM2.5 level in the birth year, generating two separate PM2.5 exposure variables. Given the reduction in 

sample size we estimate only models 1-3 and not the mother fixed effects model in this analysis. The 

results are presented in Table A10. Despite the limitations of this analysis we find no evidence of 

trimester-specific effects once individual, household and neighbourhood characteristics are controlled 

for. Our zero estimated overall effect does not appear to obscure one or more non-zero trimester-specific 

effects. 

6 Discussion 

This paper analyses records from a population-wide database of births in Northern Ireland from 2011-

2017 to examine whether infants with higher levels of prenatal PM2.5 exposure exhibit worse birth 

outcomes. We leverage a unique administrative dataset that allows us to link information from pollution 

data to mother’s residential location in low-level geographic areas (postcode). Moreover, because we are 

able to identify births occurring to the same mother within the time period, we can adopt a mother fixed 

effects approach. In these models, our pollution coefficient estimates are identified by comparing 

outcomes for infants born to the same mother but with different pollution exposures. Our main 

contributions are the use of large-scale data linked to localised measures of PM2.5 with an empirical 

approach that accounts for all time-invariant factors common to mothers, even those that are 

unobserved. In addition, we consider a wide range of outcomes, allowing us to examine a comprehensive 

assessment of infant health along with hypothesised biological pathways (placental health). 

Overall, we find little evidence of a negative relationship between PM2.5 in the postcode of the mother’s 

residence during pregnancy and infant health. In unadjusted or minimally adjusted models, there is a 
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strong relationship for the majority of outcomes. However, once we control for mother fixed effects, 

almost all coefficients are small in magnitude for comparing infants born in postcodes with PM2.5 levels of 

6-9 μg/m3 or 10-15 μg/m3 with infants born in postcodes with PM2.5 levels of 3-6 μg/m3. Coefficient 

attenuation in the mother FE models is consistent with pollution exposure being more concentrated in 

communities most affected by social determinants of health. In our data, and most data that examine 

pollution impacts, we do not have individual-level measures of factors such as permanent income, housing 

quality, or social support, all of which have been linked to pregnancy outcomes and are therefore potential 

(unobserved) confounders. As is the case in Table 4, we would expect models that do not account for 

these factors to have larger coefficients. Investigating how these omitted variables affect estimates of 

pollution exposure on health outcomes is an ongoing challenge for the literature (Deryugina et al. 2019).  

The descriptive findings are generally consistent with the previous literature and studies that examine 

minimally adjusted models or models that adjust for observed factors in estimating relationships between 

particulate matter and infant outcomes, including studies using UK data (e.g. Dibben and Clemens, 2015; 

Smith et al. 2017). However, previous literature that has adopted identification strategies to account for 

omitted variable bias has generally found that the harmful impact of particulate matter remains even after 

adjusting for unmeasured confounders (Currie et al. 2014). There are a number of potential explanations 

for why results from this analysis differ from these other papers. First, context may be important, 

especially for infant outcomes. Many previous papers based in higher-income countries focus on the US 

which has relatively high rates of infant mortality (Bairoliya and Fink 2018) and a fragmented healthcare 

system with disparities in access to medical care and prenatal support services. In contrast, Northern 

Ireland, like the rest of the UK, has a universal healthcare system that is free at point of access. It may be 

that the impact of pollution is lessened by greater availability of affordable care. Moreover, while 

Northern Ireland is diverse in terms of its socioeconomic composition, it is very homogenous in terms of 

race and ethnicity, with the vast majority of residents identifying as white (98.21% in the 2011 Census 

(NISRA 2014)). In the US, PM2.5 related mortality disproportionately affects non-Hispanic black and African 

American individuals (Bowe et al. 2019). 

Second, it is possible that functional forms for pollution exposures other than those we consider in this 

paper, such as maximum PM2.5 levels or number of days above a certain value, might impact infant 

outcomes more than averages throughout pregnancy. For example, Deryugina et al. (2019) and Currie et 

al. (2009) consider how changes in contemporaneous exposure to PM2.5 and CO impact older-age 

mortality and birth outcomes respectively. Similarly, exposure effects may be limited to a particular stage 

of pregnancy (e.g. the third trimester) rather than evident throughout (Currie et al. 2009). While our data 

have a number of advantages, we are restricted to annual averages for pollution at the postcode level 

from which we derive our measures of exposure during pregnancy. Having said this, the range of 

robustness checks that we are able to implement to assess functional form and other potential sources of 

sensitivity do not provide any evidence that our results are affected by using a more continuous measure 

of exposure, the presence of threshold effects, the inclusion/exclusion of particular individual-level 

control variables, changing the way we construct average prenatal exposure or define the estimation 

sample, or assigning different exposures to earlier and later trimesters during pregnancy. Our individual-

level control variables and weather variables have relatively little impact on our conclusions, almost all of 

the coefficient differences between unadjusted and fully adjusted models are due to SOA and mother 

fixed effects, indicating results are unlikely to be due to over-controlling for potential outcomes of 

pollution. 9% of our sample had PM2.5 exposure above 10μg/m3, so based on the previous literature we 
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should have sufficiently high exposure levels and sufficient sample size and variation to detect adverse 

impacts in our data. In this regard, it is also important to note that estimates are very consistent across 

infant health measures and intermediary mechanisms through which pollution impacts are expected to 

operate, indicating that our findings are not due to a lack of a relationship with one specific variable but 

rather form a pattern across the range of outcomes we consider.  

Third, our identification strategy is based on comparing siblings born to the same mother. If there are 

infant-specific factors that are correlated with pollution exposure, these within-family confounders could 

still bias our estimates. Generally we would expect these other factors, specifically other types of 

disadvantage, to be positively associated with PM2.5 exposure, meaning that we would expect them to 

bias our estimates upwards if they are present. The expected direction of confounder impact is apparent 

in our comparison of how we enter area-level SOA controls into the model (Table A3). The results using 

MDM decile indicate that area-level deprivation accounts for around half of the PM2.5 coefficient (relative 

to if SOA characteristics were unobserved). Given that we find a lack of impact of pollution exposure in 

our mother fixed effect models, however, a more relevant source of potential bias is misclassification bias 

or measurement error, which can attenuate estimates even when the error is random. Moreover, its 

consequences are exacerbated in fixed effects models (Ashenfelter and Krueger 1994; McGovern 2019). 

When mismeasurement or misclassification is random, the degree of attenuation depends on the 

correlation in pollution between siblings, the variance of the idiosyncratic error affecting pollution, and 

the variance in true underlying pollution exposure (the ratio of the latter two being referred to as the 

signal to noise ratio). The more highly correlated is the true pollution exposure within siblings, the greater 

the degree of attenuation bias. In their analysis of measurement error in twin fixed effect models, Kohler 

et al. (2011) report a range for the signal to noise ratio of 0.04–0.12 among analyses that are able to 

include an external validation measure for their particular exposure of interest. This would imply fixed 

effects analyses would be up to 14% lower than non fixed effect analyses due to measurement error alone. 

These figures are for non-identical dizygotic twins, who if anything would be expected to exhibit greater 

bias than in our sample because we would expect the correlation in pollution exposure to be higher for 

twins than siblings. On the basis of these figures, measurement error is unlikely to be able to fully explain 

why our FE estimates are close to 0. In our preferred specification in Table 4, without FE the coefficient 

on being in the highest PM2.5 category is -31.6, whereas once FE are added the coefficient is -3.0. This is a 

far larger attenuation (99%) than the 14% implied by measurement error. Indeed, this degree of 

attenuation is far larger than any of the scenarios considered by Kohler et al. (2011), even those for 

monozygotic twins and a signal to noise ratio of up to 0.20. Even if our FE coefficient was 14% less 

attenuated (-4.5), this magnitude is still negligible and also half that of the estimated standard error 

meaning it would not be close to reaching statistical significance at conventional levels. Nevertheless, our 

context is different from Kohler et al. (2011) as we consider pollution exposure instead of years of 

schooling as the independent variable. Without having access to additional external validation data for 

localised PM2.5 exposure in Northern Ireland, it is hard to assess how much a role measurement error is 

playing in our estimates. For this reason, future research should adopt additional identification strategies 

using alternative data sources to investigate this issue further. Higher frequency data linked to nationally 

representative samples would also be useful for exploring non-linearities in PM2.5 exposure, and for 

quantifying the impact of more long-run effects on mothers and children.  

Fourth, we measure pollution at the residential postcode. While this has the advantage of capturing 

outdoor exposure in the local neighbourhood, it may be that a mother’s total exposure to PM2.5 is more 
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accurately captured by a combination of sources including indoor pollution and commuting and workplace 

environment. Traffic-related PM2.5 has been highlighted in the literature as being particularly harmful 

(Smith et al. 2017), and there is also a growing focus on indoor pollution as a determinant of health 

(Sharpe 2004). However, we would expect these sources to be positively correlated with our measure of 

neighbourhood exposure given that indoor pollution also disproportionately affects disadvantaged 

communities in the UK (Ferguson et al. 2021), therefore it is unclear how their omission could fully explain 

that we find a negligible relationship with birth outcomes. Moreover, urban-rural differences in the 

indoor/outdoor pollution relationship should be accounted for as in the model with SOA fixed effects we 

are essentially comparing exposures within small geographic areas. Further, Dibben and Clemens (2015) 

demonstrate robust associations between particulate pollution and birth outcomes whether pollution is 

measured at residential location or some combination of residential and workplace location. While this 

issue of indoor, commuting and workplace pollution is not one we can address in our study, future 

research should aim to measure such exposure for the same individuals. Advances in technology may 

facilitate data collection, for example through the use of wearables, air sampling or biomarkers.  

This paper contributes to a number of policy-relevant debates. The infant outcomes we consider here are 

important in and of themselves because they measure an important dimension of population health. 

Policy interventions to improve maternal and infant health are notable because early life conditions have 

long-run impacts on child and adult outcomes, with potential intergenerational consequences (Currie 

2011). Medical care around pregnancy comprises a substantial proportion of healthcare resources 

(Almond et al. 2005; Xu et al. 2015) and more broadly, improving indicators such as birth weight may have 

long-term economic benefits (Black et al. 2007). Recent evidence on private valuations of birth weight 

have suggested that individuals are willing to pay up to $2.40 for each additional gram (Clarke et al. 2021). 

Quantifying the impact of PM2.5 exposure on these outcomes is therefore important for assessing the full 

range of benefits that may be associated with reducing levels of particulate matter. Moreover, there are 

substantial disparities in pregnancy outcomes according to parental characteristics, including but not 

limited to mortality and birth weight. Considering the long run consequences of these inequalities, 

evidence on how to best address differences in maternal and child health is an urgent priority. Given that 

we observe parallel gradients in pollution exposure to gradients in these outcomes, quantifying the extent 

to which reducing exposure to PM2.5 is expected to reduce these disparities is important for understanding 

which interventions are likely to be most effective. The findings in this paper imply that further 

improvements in maternal and infant outcomes will likely require addressing underlying social 

determinants of health, such as material disadvantage, or behaviours that are known to have strong 

effects such as in utero exposure to smoking, rather than focusing solely on environmental pollution.  

Overall, it is important to note that we do not view these results as undermining the imperative to reduce 

population exposures. There is a substantial literature examining a range of population health outcomes, 

with many quasi-experimental studies supporting policy intervention to address PM2.5 and other 

pollutants. In our analysis, we considered short-run prenatal postcode-level exposure as a determinant of 

short-run (birth) outcomes. Even if reducing exposure as defined by this specific measure is not sufficient 

to reduce disparities in infant health at birth in Northern Ireland, there remains a strong evidence base to 

continue taking action to lower rates of PM2.5 and other pollutants in other contexts and to improve other 

population health outcomes.  
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7 Conclusion 

In a nationally representative dataset linking infant outcomes with ambient PM2.5 data in Northern Ireland, 

a context with universal healthcare access that is largely free at the point of use, we find little evidence 

that higher levels of exposure have a negative impact after we adjust for characteristics common to 

siblings with the same mother. This finding highlights the importance of controlling for unobserved 

confounders in the wider literature on pollution. While research on other health outcomes emphasises 

that reducing exposure to PM2.5 remains a policy priority, our results imply that addressing existing 

disparities in maternal and infant health in the UK is likely to require improving underlying social 

determinants of health in addition to environmental exposures.  
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Appendix 

 

Figure A1: Distribution of PM2.5 by Super Output Area in Northern Ireland 2017 

 

Notes: Map shows population-weighted PM2.5 concentrations (micrograms per cubic metre) by Super Output Area, 
with inset showing Belfast and surrounding areas. Authors’ calculations. 
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Figure A2: Proportion of Infants with High PM2.5 Exposure by Super Output Area Deprivation Decile 

 

Notes: Figure shows the proportion of infants with an PM2.5 exposure level above 10 micrograms per cubic metre by 
decile of deprivation. For example, decile 1 contains infants in the 10% most deprived SOAs according to the NI 
Multiple Deprivation Measure (2010). 95% confidence intervals are also displayed. 
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Figure A3: Population-Weighted PM2.5 Levels 2011-2017 

 

Notes: Figure shows the annual population-weighted mean PM2.5 level (in micrograms per cubic metre) across 
Northern Ireland between 2011 and 2017. The unit of the underlying data is the postcode (not infant). 
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Figure A4: Mean Birth Outcomes by Year 

 

Notes: Figures shows mean birth outcomes by year for all outcomes. Mean birth weight is reported in grams, while mean head 
circumference and length are reported in centimetres; the remainder are proportions. The sample is unrestricted, contains all 
available cases, and differs slightly by outcome depending on missing values. 95% confidence intervals are also reported. 
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Table A1: Within-Mother Variation in Prenatal PM2.5 Exposure 

PM2.5 category at previous 
pregnancy 

PM2.5 category at current pregnancy  

 [3-6] (6-10] (10-16] Total 

[3-6] 3,578 4,821 89 8,488 
 42.2 56.8 1.1 100 
(6-10] 4,743 20,499 1,927 27,169 
 17.5 75.5 7.1 100 
(10-16] 80 1,856 1,273 3,209 
 2.5 57.8 39.7 100 

Total 8,401 27,176 3,289 38,866 
 21.6 69.9 8.5 100 

Notes: Table reports a crosstabulation of PM2.5 at previous pregnancy with PM2.5 at current pregnancy, for mothers 
with more than one pregnancy. Figures in italics are row percentages.  
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Table A2: Full Table for the Impact of Prenatal PM2.5 Exposure and Control Variables on Birth Weight 

 (1) (2) (3) (4) 

PM2.5 (ref. [3-6])         
(6-10] -53.0*** (3.2) -40.5*** (3.7) -12.2** (4.4) 1.1 (5.9) 
(10-16] -129.9*** (5.3) -86.3*** (6.0) -31.6*** (7.4) -3.0 (10.4) 

Gender (ref: Girl)         
Boy   127.1*** (2.4) 127.0*** (2.4) 138.1*** (3.3) 

Age at Birth (ref: < 21)         
21-25   -11.4 (6.0) -14.7* (6.0) -19.3 (11.0) 
26-30   -3.4 (6.1) -12.3* (6.1) -33.6* (14.5) 
31-35   1.6 (6.3) -11.7 (6.4) -23.2 (17.7) 
36 or above   -23.9*** (6.8) -38.9*** (6.9) -10.6 (21.6) 

Single Parent (ref: No)         
Yes   -24.2*** (5.6) -22.6*** (5.6) 3.1 (9.0) 

Employed (ref: No)         
Yes   54.0*** (3.5) 48.7*** (3.5) -5.3 (23.4) 

Smokes (Ref: No)         
Yes   -252.7*** (3.9) -244.2*** (3.9) -85.5*** (9.5) 

No. of Pregnancies (ref: 
1) 

        

2 Pregnancies   88.5*** (2.9) 90.2*** (2.9) 107.1*** (4.6) 
3 or more 
Pregnancies 

  105.4*** (3.3) 107.4*** (3.3) 131.5*** (7.8) 

Temperature Decile (Ref: 1 
(Coolest)) 

       

2   0.9 (5.2) -1.8 (5.3) 4.9 (7.3) 
3   -2.8 (5.2) -6.4 (5.5) -6.7 (7.6) 
4   4.5 (5.5) 4.5 (5.8) 4.2 (7.9) 
5   -2.9 (5.5) -4.1 (5.9) -3.4 (8.3) 
6   -6.2 (5.6) -6.6 (6.1) -0.9 (8.6) 
7   -8.9 (5.7) -6.2 (6.3) -8.3 (9.0) 
8   -5.0 (6.0) -0.4 (6.7) -3.6 (9.5) 
9   -12.1 (6.3) -7.9 (7.1) -6.7 (10.1) 
10 (Warmest)   -5.1 (7.0) 0.8 (8.1) 5.0 (11.6) 

Rainfall Decile (Ref: 1 (Driest))        
2   17.8* (7.8) 12.8 (8.0) 15.1 (11.0) 
3   13.7 (7.8) 14.3 (8.1) 11.7 (11.2) 
4   29.9*** (7.9) 29.8*** (8.3) 25.5* (11.3) 
5   26.9*** (7.7) 26.7** (8.3) 23.6* (11.3) 
6   25.4** (7.8) 23.3** (8.7) 21.6 (12.0) 
7   27.0*** (7.8) 23.4** (8.7) 25.1* (12.0) 
8   13.2 (7.8) 13.1 (9.0) 12.6 (12.5) 
9   27.8*** (8.0) 26.0** (9.4) 24.7 (13.1) 
10 (Wettest)   39.3*** (8.2) 31.0** (10.1) 30.9* (14.1) 

Birth Month (ref: January)        
February   2.7 (5.9) 2.6 (5.9) 15.6 (8.2) 
March   -0.2 (5.8) 0.9 (5.8) -7.4 (8.0) 
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April   6.8 (5.9) 7.4 (5.9) 7.9 (8.2) 
May   0.0 (5.8) 1.1 (5.8) 9.8 (8.1) 
June   14.0* (6.0) 14.6* (6.0) 28.1*** (8.2) 
July   6.3 (5.8) 8.6 (5.8) 20.1* (8.0) 
August   15.9** (5.8) 18.4** (5.8) 29.4*** (8.1) 
September   8.8 (5.7) 11.0 (5.7) 24.7** (7.9) 
October   13.5* (5.8) 15.4** (5.8) 26.5** (8.2) 
November   13.5* (5.9) 15.6** (5.9) 15.8 (8.2) 
December   -7.4 (6.0) -5.4 (6.0) -0.1 (8.4) 

Birth Year (ref: 2011)         
2012   -5.3 (4.6) -2.5 (4.6) 4.2 (6.6) 
2013   -14.5** (4.5) -13.8** (4.6) -7.2 (6.6) 
2014   -15.8*** (4.7) -17.5*** (4.8) -5.5 (7.6) 
2015   -40.4*** (4.8) -31.6*** (4.9) -7.5 (8.9) 
2016   -48.0*** (4.8) -34.2*** (4.9) -10.3 (10.0) 
2017   -39.4*** (5.3) -25.1*** (5.5) -3.6 (11.7) 

Constant 3575.1*** (2.9) 3430.8*** (11.1) 3304.4*** (46.8) 3423.7*** (117.3) 

Observations 146662  146662  146662  146662  
Outcome Mean 3525.48  3525.48  3525.48  3525.48  
SOA FE No  No  Yes  Yes  
Mother FE No  No  No  Yes  

Note: Linear model with standard errors clustered by mother in parentheses. FE denotes Fixed Effects. The outcome is a continuous measure 

of an infant’s birth weight in grams. Sample is all live singleton births of 37+ weeks gestation. The PM2.5 exposure variable is a categorical, 

weighted average of PM2.5 in birth year and PM2.5 in conception year, where weights reflect gestation time spent in each year, respectively. 

The underlying units are micrograms per cubic metre. SOA coefficients are not reported. There are 75,965 infants belonging to a mother with 

more than one birth. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table A1: Impact of Prenatal PM2.5 Exposure on Birth Weight, by Type of Geographical Control 

 SOA FE  SOA MDM 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

PM2.5 (ref. [3-6])          
          
(6-10] -53.0*** -40.5*** -12.2** 1.1  -53.0*** -40.5*** -34.3*** 1.6 
 (3.2) (3.7) (4.4) (5.9)  (3.2) (3.7) (3.8) (5.8) 
          
(10-16] -129.9*** -86.3*** -31.6*** -3.0  -129.9*** -86.3*** -66.9*** -2.4 
 (5.3) (6.0) (7.4) (10.4)  (5.3) (6.0) (6.3) (10.3) 

Observations 146662 146662 146662 146662  146662 146662 146662 146662 
Outcome Mean 3525.5 3525.5 3525.5 3525.5  3525.5 3525.5 3525.5 3525.5 
Controls          
Year and Month of birth No Yes Yes Yes  No Yes Yes Yes 
Gender No Yes Yes Yes  No Yes Yes Yes 
Mother variables No Yes Yes Yes  No Yes Yes Yes 
Weather variables No Yes Yes Yes  No Yes Yes Yes 
SOA FE No No Yes Yes  No No No No 
SOA MDM No No No No  No No Yes Yes 
Mother FE No No No Yes  No No No Yes 

Note: Linear model with standard errors clustered by mother in parentheses. FE denotes Fixed Effects. The outcome is a continuous 
measure of an infant's birth weight in grams. Sample is all live singleton births of 37+ weeks gestation. The PM2.5 exposure variable is a 
categorical, weighted average of PM2.5 in birth year and PM2.5 in conception year, where weights reflect gestation time spent in each 
year, respectively. The underlying units are micrograms per cubic metre. Control variables: birth month, birth year; infant: gender; 
mother: age group at birth, one parent family or not, employed or not, smokes or not, gravida; temperature decile, rainfall decile; SOA 
FE or SOA MDM decile. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table A2: Impact of Prenatal PM2.5 Exposure on Birth Weight, Including Control Variables Potentially 
Affected by Pollution Exposure 

 Without Bad Controls  With Bad Controls 

 (1) (2) (3) (4)  (5) (6) (7) (8) 

PM2.5 (ref. [3-6])          
          
(6-10] -52.7*** -40.9*** -11.9** 2.8  -52.7*** -34.5*** -12.8** 2.2 
 (3.3) (3.8) (4.4) (6.0)  (3.3) (4.0) (4.4) (6.0) 
          
(10-16] -131.2*** -88.9*** -32.7*** -6.4  -131.2*** -76.0*** -32.6*** -6.7 
 (5.3) (6.1) (7.6) (10.8)  (5.3) (6.4) (7.5) (10.8) 

Observations 142433 142433 142433 142433  142433 142433 142433 142433 
Outcome Mean 3525.4 3525.4 3525.4 3525.4  3525.4 3525.4 3525.4 3525.4 
Controls          
Year and Month of birth No Yes Yes Yes  No Yes Yes Yes 
Gender No Yes Yes Yes  No Yes Yes Yes 
Mother variables No Yes Yes Yes  No Yes Yes Yes 
Weather variables No Yes Yes Yes  No Yes Yes Yes 
SOA FE No No Yes Yes  No No Yes Yes 
Mother FE No No No Yes  No No No Yes 
Bad Controls No No No No  No Yes Yes Yes 

Note: Linear model with standard errors clustered by mother in parentheses. FE denotes Fixed Effects. The outcome is a continuous 

measure of an infant's birth weight in grams. Sample is all live singleton births of 37+ weeks gestation. The PM2.5 exposure variable is a 

categorical, weighted average of PM2.5 in birth year and PM2.5 in conception year, where weights reflect gestation time spent in each year, 

respectively. The underlying units are micrograms per cubic metre. Control variables: birth month, birth year; infant: gender; mother: age 

group at birth, one parent family or not, employed or not, smokes or not, gravida; temperature decile, rainfall decile; Bad controls: 

hypertension, BMI, and hospital of birth. The sample in both cases excludes infants with missing values on any of the above control 

variables. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table A3: Impact of Prenatal PM2.5 Exposure on Birth Weight, by Period of Exposure 

 (1)  (2)  (3)  (4)  

Weighted         
(6-10] -53.0*** (3.2) -40.5*** (3.7) -12.2** (4.4) 1.1 (5.9) 
(10-16] -129.9*** (5.3) -86.3*** (6.0) -31.6*** (7.4) -3.0 (10.4) 
Modal         
(6-10] -49.2*** (3.2) -36.7*** (3.7) -8.4* (4.2) -0.5 (5.7) 
(10-16] -125.1*** (5.1) -79.7*** (5.9) -25.3*** (7.2) -5.1 (10.1) 
Birth Year         
(6-10] -47.9*** (3.1) -38.8*** (3.6) -9.1* (4.2) -5.1 (5.7) 
(10-16] -120.9*** (5.1) -77.1*** (6.1) -20.0** (7.5) -7.1 (10.5) 
Conception Year         
(6-10] -50.1*** (3.3) -37.3*** (3.8) -8.6 (4.4) 0.1 (5.9) 
(10-16] -120.8*** (5.1) -75.6*** (5.9) -17.0* (7.3) -1.2 (10.2) 
Maximum         
(6-10] -46.7*** (3.4) -36.0*** (4.0) -8.8 (4.6) -1.5 (6.2) 
(10-16] -119.4*** (4.9) -73.1*** (5.9) -19.7** (7.3) -4.3 (10.4) 

Observations 146662  146662  146662  146662  
Outcome Mean 3525.5  3525.5  3525.5  3525.5  
Controls         
Year and Month of birth No  Yes  Yes  Yes  
Gender No  Yes  Yes  Yes  
Mother variables No  Yes  Yes  Yes  
Weather variables No  Yes  Yes  Yes  
SOA FE No  No  Yes  Yes  
Mother FE No  No  No  Yes  

Note: Linear model with standard errors clustered by mother in parentheses. PM2.5 Reference Category: [3-6] 

micrograms per cubic metre. FE denotes Fixed Effects. The outcome is a continuous measure of an infant's birth 

weight in grams. Sample is all live singleton births of 37+ weeks gestation. Control variables: birth month, birth year; 

infant: gender; mother: age group at birth, one parent family or not, employed or not, smokes or not, gravida; 

temperature decile, rainfall decile; Super Output Area. PM2.5 is specified in the following ways: Weighted (main 

estimates): weighted average of PM2.5 in birth and conception year, where the weights reflect gestation time spent in 

each year, respectively; Modal: modal PM2.5 category, namely birth year (conception year) if they spent most gestation 

time in birth year (conception year); Birth Year: PM2.5 category in birth year; Conception Year: PM2.5 category in 

conception year (may differ from or coincide with birth year); Maximum: maximum of birth and conception year PM2.5 

categories (may coincide or may differ if conception year and birth year differ). Weather controls are also adjusted in 

the same way as the corresponding PM2.5 variable, except in the weighted model, where modal (rather than weighted) 

weather is used. 
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Table A4: Impact of Prenatal PM2.5 Exposure on Birth Weight, by Estimation Sample 

 A B C D E F G H 

M1         
(6-10] -53.0*** -52.6*** -52.1*** -53.0*** -53.2*** -51.3*** -50.9*** -53.3*** 
 (3.2) (3.7) (3.7) (3.2) (3.3) (4.1) (4.0) (3.3) 
         
(10-16] -129.9*** -139.0*** -138.4*** -129.9*** -128.3*** -137.0*** -136.7*** -128.3*** 
 (5.3) (6.1) (6.0) (5.3) (5.3) (6.6) (6.6) (5.3) 
M2         
(6-10] -40.5*** -33.9*** -33.9*** -40.5*** -40.1*** -33.4*** -33.3*** -40.1*** 
 (3.7) (4.4) (4.3) (3.7) (3.7) (4.4) (4.3) (3.7) 
(10-16] -86.3*** -83.2*** -83.9*** -86.4*** -85.7*** -85.1*** -85.7*** -85.8*** 
 (6.0) (7.1) (7.0) (6.0) (6.0) (7.1) (7.0) (6.0) 
M3         
(6-10] -12.2** -4.9 -4.9 -12.3** -12.1** -4.5 -4.2 -12.2** 
 (4.4) (5.1) (5.0) (4.4) (4.3) (5.1) (5.0) (4.3) 
(10-16] -31.6*** -29.1*** -29.4*** -31.9*** -31.4*** -31.5*** -31.2*** -31.7*** 
 (7.4) (8.7) (8.6) (7.4) (7.4) (8.8) (8.6) (7.4) 
M4         
(6-10] 1.1 5.2 2.7 1.3 1.8 5.3 3.5 2.0 
 (5.9) (6.9) (6.7) (5.9) (5.8) (6.9) (6.7) (5.8) 
(10-16] -3.0 6.1 -1.2 -2.8 -3.0 3.1 -2.4 -2.8 
 (10.4) (12.4) (12.0) (10.4) (10.4) (12.4) (12.0) (10.4) 

Observations 146662 155893 155344 146859 148422 160378 159792 148620 
Outcome Mean 3525.5 3457.5 3462.7 3524.9 3516.2 3426.5 3432.0 3515.6 

Note: Linear model with standard errors clustered by mother in parentheses. FE denotes Fixed Effects. The outcome is a continuous 

measure of an infant's birth weight in grams. The PM2.5 exposure variable is a categorical, weighted average of PM2.5 in birth year and 

PM2.5 in conception year, where weights reflect gestation time spent in each year, respectively. The underlying units are micrograms per 

cubic metre. The models are as follows: M1 is unadjusted. M2 is adjusted for birth month, birth year; infant: gender; mother: age group 

at birth, one parent family or not, employed or not, smokes or not, gravida; temperature decile, rainfall decile. M3 is also adjusted for 

Super Output Area. M4 also includes mother fixed effects. Samples are denoted A, B, C, etc. For samples that include both singleton and 

multiple births (E-H), models 2-4 also adjust for singleton versus multiple birth. Sample Definitions: Live, Singletons, 37+ weeks gestation 

(A); Live and Still, Singletons, Any gestation (B); Live, Singletons, Any gestation (C); Live and Still, Singletons, 37+ weeks gestation (D); Live, 

Singletons and Multiples, 37+ weeks gestation (E); Live and Still, Singletons and Multiples, Any gestation (F); Live, Singletons and Multiples, 

Any gestation (G); Live and Still, Singletons and Multiples, 37+ weeks gestation (H). * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table A7: Impact of Prenatal PM2.5 Exposure on Birth Weight, by Births Sample 

 All Mothers Mothers with 2 or more Births 

 (1) (2) (3) (4) (1) (2) (3) (4) 

PM2.5 (ref. [3-6])         
(6-10] -53.0*** -40.5*** -12.2** 1.1 -65.9*** -32.8*** -4.5 1.1 
 (3.2) (3.7) (4.4) (5.9) (4.4) (5.2) (5.9) (5.9) 
         
(10-16] -129.9*** -86.3*** -31.6*** -3.0 -146.3*** -68.7*** -14.1 -3.0 
 (5.3) (6.0) (7.4) (10.4) (7.7) (8.8) (10.3) (10.5) 

Observations 146662 146662 146662 146662 75965 75965 75965 75965 
Outcome Mean 3525.5 3525.5 3525.5 3525.5 3548.6 3548.6 3548.6 3548.6 
Controls         
Year and Month of birth No Yes Yes Yes No Yes Yes Yes 
Gender No Yes Yes Yes No Yes Yes Yes 
Mother variables No Yes Yes Yes No Yes Yes Yes 
Weather variables No Yes Yes Yes No Yes Yes Yes 
SOA FE No No Yes Yes No No Yes Yes 
Mother FE No No No Yes No No No Yes 

Note: Linear model with standard errors clustered by mother. FE denotes Fixed Effects. The outcome is a continuous measure of an 

infant's birth weight in grammes. Sample is all live singleton births of 37+ weeks gestation. The PM2.5 exposure variable is a categorical, 

weighted average of PM2.5 in birth year and PM2.5 in conception year, where weights reflect gestation time spent in each year, 

respectively. The underlying units are micrograms per cubic metre. Control variables: birth month, birth year; infant: gender; mother: 

age group at birth, one parent family or not, employed or not, smoker or not, gravida; temperature decile, rainfall decile; Super Output 

Area. The 'Mothers with 2 or more Births' (mother FE) sample is restricted to mothers with two or more birth records; the 'All Mothers' 

sample includes mothers with any number of births (main sample). * p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A8: Impact of Prenatal PM2.5 Exposure on Birth Weight, with Additional Partner Covariates 

 No Partner Covariates With Partner Covariates 

 (1) (2) (3) (4) (1) (2) (3) (4) 

PM2.5 (ref. [3-6])         
(6-10] -53.0*** -40.5*** -12.2** 1.1 -51.0*** -36.7*** -8.9 4.0 
 (3.2) (3.7) (4.4) (5.9) (3.3) (3.9) (4.5) (6.1) 
         
(10-16] -129.9*** -86.3*** -31.6*** -3.0 -122.8*** -75.5*** -23.1** -5.9 
 (5.3) (6.0) (7.4) (10.4) (5.5) (6.4) (7.8) (10.9) 

Observations 146662 146662 146662 146662 133459 133459 133459 133459 
Outcome Mean 3525.5 3525.5 3525.5 3525.5 3530.1 3530.1 3530.1 3530.1 
Controls         
Year and Month of birth No Yes Yes Yes No Yes Yes Yes 
Gender No Yes Yes Yes No Yes Yes Yes 
Mother variables No Yes Yes Yes No Yes Yes Yes 
Weather variables No Yes Yes Yes No Yes Yes Yes 
SOA FE No No Yes Yes No No Yes Yes 
Mother FE No No No Yes No No No Yes 
Partner Covariates No No No No No Yes Yes Yes 

Note: Linear model with standard errors clustered by mother. FE denotes Fixed Effects. The outcome is a continuous measure of an 

infant's birth weight in grammes. Sample is all live singleton births of 37+ weeks gestation. The PM2.5 exposure variable is a categorical, 

weighted average of PM2.5 in birth year and PM2.5 in conception year, where weights reflect gestation time spent in each year, 

respectively. The underlying units are micrograms per cubic metre. Control variables: birth month, birth year; infant: gender; mother: 

age group at birth, one parent family or not, employed or not, smoker or not, gravida; temperature decile, rainfall decile; Super Output 

Area; Partner covariates: employed or not, smoker or not. The ‘With Partner Covariates’ sample is restricted to cases with complete 

information on all controls, including partner's smoking and employment status. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure A9: Impact of Prenatal PM2.5 Exposure on Birth Weight, Excluding Weather Controls 

 With Weather Without Weather 

 (1) (2) (3) (4) (1) (2) (3) (4) 

PM2.5 (ref. [3-6])         
(6-10] -53.0*** -40.5*** -12.2** 1.1 -53.0*** -47.0*** -13.8** -0.3 
 (3.2) (3.7) (4.4) (5.9) (3.2) (3.5) (4.3) (5.7) 
(10-16] -129.9*** -86.3*** -31.6*** -3.0 -129.9*** -94.7*** -31.6*** -3.3 
 (5.3) (6.0) (7.4) (10.4) (5.3) (5.5) (7.3) (10.2) 

Observations 146662 146662 146662 146662 146662 146662 146662 146662 
Outcome Mean 3525.5 3525.5 3525.5 3525.5 3525.5 3525.5 3525.5 3525.5 
Controls         
Year and Month of birth No Yes Yes Yes No Yes Yes Yes 
Gender No Yes Yes Yes No Yes Yes Yes 
Mother variables No Yes Yes Yes No Yes Yes Yes 
SOA FE No No Yes Yes No No Yes Yes 
Mother FE No No No Yes No No No Yes 
Weather variables No Yes Yes Yes No No No No 

Note: Linear model with standard errors clustered by mother. FE denotes Fixed Effects. The outcome is a continuous measure of an 

infant's birth weight in grammes. Sample is all live singleton births of 37+ weeks gestation. The PM2.5 exposure variable is a categorical, 

weighted average of PM2.5 in birth year and PM2.5 in conception year, where weights reflect gestation time spent in each year, 

respectively. The underlying units are micrograms per cubic metre. Control variables: birth month, birth year; infant: gender; mother: 

age group at birth, one parent family or not, employed or not, smoker or not, gravida; Super Output Area. * p < 0.05, ** p < 0.01, *** p < 

0.001 
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Table A10: Impact of Prenatal PM2.5 Exposure in Different Trimesters on Birth Weight 

 (1) (2) (3) 

Panel A: Births whose first month of gestation is October 

Trimester 1 PM2.5 (ref. [3-6])    
(6-10] -27.7 -19.2 8.3 
 (14.6) (15.7) (17.4) 
(10-16] -73.7*** -34.5 7.1 
 (21.6) (23.6) (26.6) 
Trimester 2/3 PM2.5 (ref. [3-6])    
(6-10] -7.9 -22.7 -6.4 
 (12.8) (14.0) (15.4) 
(10-16] -47.3* -47.2* -22.0 
 (21.0) (23.4) (26.8) 

Observations 12923 12923 12923 
Outcome Mean 3524.3 3524.3 3524.3 

Panel B: Births whose first month of gestation is July 

Trimester 1/2 PM2.5 (ref. [3-6])    
(6-10] -18.4 -9.4 3.0 
 (15.8) (17.0) (18.5) 
(10-16] -93.5*** -65.1* -39.1 
 (23.1) (25.8) (29.1) 
Trimester 3 PM2.5 (ref. [3-6])    
(6-10] -35.1* -34.1* -10.5 
 (14.1) (15.3) (17.2) 
(10-16] -55.7* -53.4* -1.0 
 (23.0) (25.7) (29.2) 

Observations 11757 11757 11757 
Outcome Mean 3523.5 3523.5 3523.5 

Controls    
Year and month of birth No Yes Yes 
Gender No Yes Yes 
Mother variables No Yes Yes 
Weather variables No Yes Yes 
SOA FE No No Yes 
Mother FE No No No 

Note: Linear model with standard errors clustered by mother. FE denotes Fixed Effects. The outcome is a continuous 
measure of an infant's birth weight in grammes. Sample is all live singleton births of 37+ weeks gestation. The PM2.5 
exposure variable is a categorical, weighted average of PM2.5 in birth year and PM2.5 in conception year, where 
weights reflect gestation time spent in each year, respectively. The underlying units are micrograms per cubic metre. 
Control variables: birth year; infant: gender; mother: age group at birth, one parent family or not, employed or not, 
smoker or not, gravida; temperature decile, rainfall decile; Super Output Area. Model 4 (mother FE) not estimated. 
In Panel A, the estimation sample is restricted to mothers whose first gestation month is October; trimester 1 
exposure is assigned the conception year PM2.5 level, and Trimester 2 and 3 exposure is assigned the birth year PM2.5 
level. In Panel B, the estimation sample is restricted to mothers whose first gestation month is July; trimester 1 and 
2 exposure is assigned the conception year PM2.5 level, and Trimester 3 exposure is assigned the birth year PM2.5 
level. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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