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While comparing students across large differences in GPA follows one’s intuition that higher 

GPAs correlate positively with higher-performing students, this need not be the case locally. 

Grade-point averaging is fundamentally a combinatorics problem, and thereby challenges 

inference based on local comparisons—this is especially true when students have 

experienced only small numbers of classes. While the effect of combinatorics diminishes in 

larger numbers of classes, mean convergence then has us jeopardize local comparability 

as GPA better delineates students of different ability. Given these two characteristics in 

decoding GPA, we discuss the advantages of machine-learning approaches to identifying 

treatment in educational settings.
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1 Introduction

We deconstruct grade-point averages (GPAs) to highlight the complex ways in which variation in it can

challenge one’s intuition about local comparability and, ultimately, interfere with causal identification.

In particular, we consider how mean convergence and combinatorics influence the evolution of GPA

as students engage in more classes, and demonstrate how these processes tradeo↵ in such a way that

one’s interpretation of GPA should also change with the number of contributing classes. This will be

especially true of one’s interpretation of local variation in GPA, which can often be misleading.

It is easy to imagine that one would find di↵erent types of student across large di↵erences in GPA.

For example, we think it’s reasonable to expect that students with GPAs of 3.81 or 3.84 have relatively

desirable productive characteristics on average when compared to those with GPAs of 2.29 or 2.30.

That said, many important decisions are made around small di↵erences in GPA. Admission decisions,

the determination of probation or its end, scholarship qualification, and what majors are available to

students—each of these are can be determined by relatively local considerations of GPA, and often

quite early in one’s college career. Similarly, we imagine academic or human resources departments

wanting to compare GPAs with simple rationing rules like “applicants must have a minimum 3.0

GPA.” Such rules have interesting implications if the average ability of applicants with 2.99 GPAs is

higher than that at 3.00. Unfortunately, however, there is little guidance in the literature regarding

the validity of making local comparisons in this way.

Given these practices, it is likewise common for researchers to use local variation in GPA to eval-

uate policy or the e�cacy of treatment. We are made more confident when research designs identify

treatment o↵ of di↵erences in outcomes for students with more-similar GPAs, especially when these

comparisons also leverage resource allocations following a GPA-based rule for treatment assignment.

For example, regression-discontinuity designs can identify the e�cacy of treatment when students are

treated di↵erently on either side of a given GPA. When we employ such strategies, though, identifi-

cation is supported by an appeal to smoothness—to local comparability. With that in mind, we will

demonstrate that in the very construction of GPA one should expect parameter instability around
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local GPA treatment cuto↵s, especially when the number of classes taken by students is small.1

While inference across large di↵erences in GPA will still have the ability to signal di↵erences in

the types of student generating those GPAs, we will demonstrate that local comparisons of GPA do

not reliably do the same. Doing so, we draw on two characteristics that are fundamentally important

to decoding GPA, and useful for practitioners and applied researchers to have in mind. First, we

consider convergence in mean, whereby GPA better represents the student’s ability as they engage in

additional classes. In essence, when conditioning on students having “similar” GPAs, the remaining

(and unobservable) heterogeneity across students is endogenous to the number of classes they have

taken. Second, we consider the implications of the combinatorics of GPA, which governs the sets of

GPAs that are feasible given a finite set of contributing grades.2 Some GPAs are not available at all,

for example, or are only available after having taken a specific number of classes, or are exceedingly

rare and only arrived at in very particular combinations of grades. We should be mindful of this when

interpreting variation in GPA, both cross-sectionally and over time.

While each of these characteristics can challenge how one interprets variation in GPA, their co-

existence can be particularly challenging. Consider, for example, the evolution of GPAs as students

engage in more classes—to do so, we’ll think of additional classes as draws from a distribution of grades

centered around the student’s modal grade. As such a process evolves, di↵erent types of student will

separate into occupying di↵erent parts of the domain space. In this way, GPA becomes a better reflec-

tion of a student’s true type as additional draws are made (i.e., as classes are completed). However,

just as that convergence makes GPA a more-informative signal of student type generally, it necessarily

makes local comparisons of students across GPA quite challenging. Moreover, while “comparability”

sounds like it is enhanced by considering students with “more-similar” GPAs—and it can be, in some

ways—it is the comparison of more-similar GPAs that will expose us to the pitfalls of combinatorics.

In fact, as we’ve suggested, small di↵erences in GPA will often not signal the anticipated change

1 This is di↵erent than considering the sensitivity of estimates to observations close to the discontinuity in treatment
(Butcher et al., 2008) where the first-order concern is that treated units may have endogenously selected into a preferred
side of the threshold. It’s more similar to (Barreca et al., 2011) and (Barreca et al., 2016), where there is some mechanistic
sorting that may or may not end up collecting masses of certain types of individuals around a threshold. However, in
(Barreca et al., 2011) and (Barreca et al., 2016) it is into 100g weights (e.g., through rounding). In the case of GPA,
sorting is due to a more-complex process of combinatorics, which does not leave behind the easily decipherable patterns
that are evident in simple rounding processes.

2 For example, three courses with grades of 2.3, 3.3, and 3.3 yield a GPA of 2.96, but so do three courses with grades
of 2.3, 2.3, and 4.3. These sorts of distinctions are systematic, and can lead to non-smoothness, for example. With
the right tools, they are also informative, however. We will demonstrate that machine learning exploits exactly this
informativeness in categorizing students.

2



in student ability at all, as combinatorics produces non-monotonicities in the relationship between

underlying student ability and GPA.

As part of this exercise, we will consider the informativeness of GPA using traditional methods

as well as with modern machine-learning approaches—machine methods will prove to be particularly

well suited to unlocking the complexity of GPA. So, while we conclude generally by arguing in favor

of an extra measure of care in how one interprets variation in GPA, we also highlight a productive

best response to this complexity. In particular, while combinatorics challenges linear estimators, it

will directly advantage machine classifiers—combinatorics are systematic, and learnable with enough

data. Thus, while we tell a cautionary tale, the particulars of that tale will also exemplify recent

developments in machine learning and how those tools perform despite the complexity of GPA data.

Random forests (RF), for example, can flexibly incorporate a student’s entire transcript of grades in

a prediction exercise. Rather than making comparisons between students at adjacent GPAs, which

are sensitive to the combinatorics of grade accumulation, an RF learner can distinguish between

students even when they have the same GPA—the paths to a given GPA are learnable, and to the

extent that outcomes are associated with how students arrive at their GPAs we understand student

heterogeneity better. The intuition is not always straightforward, either, and is therefore refined by

this consideration. For example, consider the problem of classifying two students who have the same

GPA despite only one of them having an F on his transcript. All else equal, this F would typically

be associated with lower ability. Yet, conditional on having the same GPA, having an F on one’s

transcript increases the likelihood that one is higher ability—with a failing grade included, in order to

have achieved the same GPA as others one must have received relatively better grades in other classes.

Ultimately, having the same GPA is not su�cient to satisfy the “all else equal” comparison we desire,

as there are di↵erent paths by which students arrive at GPAs.

We organize the remainder of the paper as follows. In Section 2 we discuss mean convergence

and combinatorics in the context of grade-point averaging. In so doing, we illustrate these sources of

concern for estimators that rely on localness. In Section 3 we then simulate course-taking behavior.

This allows us to see the important properties within the data-generating process known (i.e., the

distribution of a student’s potential grades, in particular) and demonstrate several implications for the

use and interpretation of GPA. In Section 4 we then consider how machine learning can be useful when

there is incomplete information about student ability and one relies on GPA to distinguish students.
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We first demonstrate the advantage of machine-learned approaches with a random forest predicting

outcomes as a function of student performance—random forests are known to be good predictors, so

here we find that it does quite well, even “learning” that there can be students of di↵erent ability at

the same GPA. We then extend this framework to consider a the casual forest of Wager and Athey

(2018), which further demonstrates the advantage of machine-learned methods when GPA is central

to a research design. We draw concluding remarks in Section 5.

2 Two characteristic components of GPA

2.1 Mean convergence

In a world where high-ability students draw grades from distributions that dominate those of lower-

performing students (in a first-order stochastic sense),there are still positive probabilities on relatively

low grades being received in a given class. Likewise, low-ability students can still receive relatively

high grades on individual classes. It’s with multiple classes that the higher-ability students separate,

as their GPAs converge to their “true” central tendencies. This mean convergence implies that as

students take more classes, there is less overlap in the distributions of GPAs among students of

di↵erent types—students of di↵erent abilities pool less and separate more over time.

For example, in a population of “C” and “B” students, suppose that “C” students receive course

grades stochastically from the set {D+, C-, C, C+, B-}, corresponding to the grade points {1.3, 1.7,

2.0, 2.3, 2.7}, and that the weight on each leaves the “C” student’s expected grade point equal to

2.0. A uniform probability distribution would produce this expectation, for instance. Suppose “B”

students are defined similarly, but receive grades from the set {C+, B-, B, B+, A-} and an expected

grade point of 3.0. Given the overlap of potential grades, “C” students can clearly outperform “B”

students in a given class. However, as the number of classes taken by this population increases, the

probability of observing “C” students with GPAs of 2.0 approaches 1, and likewise for “B” students

and GPAs of 3.0. Thus, even with overlap in the grades two types of student can earn, the overlap in

grade-point averages is decreasing with the number of classes taken.

This can directly challenge research designs that rely on smoothness around local changes in GPA.

For example, consider the intuition that motivates regression discontinuities—as di↵erences in GPA

become vanishingly small, we are more confident in the comparability of students on either side of a
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discontinuity. In the language of “types” that we are developing here, comparability on both sides

of a threshold is synonymous with an overlap assumption—that the types who are present on one

side of a treatment threshold are also present on the other side, and in comparable proportion within

some bandwidth. Mean convergence implies that this overlap is not guaranteed, however, but rather

is highly dependent on the number of classes students have taken. In the worst case, one can imagine

that at some standard number of classes when a treatment is commonly applied (e.g., major entry

after one year of coursework), the threshold assigning students into treated and untreated groups is

also perfectly dividing students by type.

To demonstrate this intuition more concretely, we build on the simple example above. In particular,

we assume that there are four types of student, with each type drawing grades from distributions that

center on grade-points of 1, 2, 3, or 4, and that students draw grades with equal odds from the grade

points that are within ±1 of their central tendency. Doing so, for example, has “D” types draw

grades from {0.0, 0.3, 0.7, 1.0, 1.3, 1.7, 2.0}, and “C” types drawing grades from {1.0, 1.3, 1.7, 2.0,

2.3, 2.7, 3.0}, and so on—these should be recognizable as the common way in which letter grades

are numerically recorded.3 As part of the data-generating process we will assume that students of

di↵erent ability levels are also level-di↵erent in expected outcomes. Specifically, higher-ability students

experience better outcomes on average—the average A type is level higher than the average B type,

and the average B type is level higher than the average C type, and so on.4 However, important to

note, there is no treatment occurring anywhere in the data-generating process.

We depict this data-generating process in Figure 1, where we simulate 125 students of each type

each drawing grades from classes according to this process. (While we do distinguish students’ types

with color, note that student heterogeneity is unobservable ex ante.) With no treatment occurring

anywhere in the data-generating process, we then proceed to estimate discontinuities in each panel,

as though one was inquiring into evidence of treatment at some GPA with a discontinuity estimator.

3 Note that in this setup, a student whose grade distribution centers on 4 (i.e., an “A” student) can receive grade
points of up to 5.0. Such a grade is outside the standard GPA range, but this di↵erence will not materially alter
the process of mean convergence—the point is that “A” students converge to higher expected GPA. We discuss the
implications of this top-coding of grade point contributions in Appendix B. In reality, such “A” students would have
their positive grade shocks top-coded as “A+.” The consequence of this is that “A” students as we define them would
have a limited ability to benefit from positive grade shocks relative to their peers. The impact of this top-coding can be
significant—notice, for instance, that top-coding leads the expected GPA for each student type to be unequal to their
central grade point, altering the mean GPAs to which these student types converge. However, top-coding is mechanically
distinct from the issues of mean convergence and combinatorics, and also separable in terms of its impact on inference.

4 Specifically, we will simulate that “D” students have outcomes described by ⇠ N(10, 5), “C” students have outcomes
described by ⇠ N(20, 5), “B” students have outcomes described by ⇠ N(30, 5), and “A” students have outcomes described
by ⇠ N(40, 5).
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In Panel A, all students have drawn four classes and we consider whether one could establish evidence

of “treatment” having fallen on students with GPAs at or above 2.50. Even on visual inspection, we

see that there are “true 2s” on the right of 2.50—this is beneficial to the estimator, as an abrupt

change in the makeup of students at 2.50 would be troubling. Despite level di↵erences in outcomes

across student type, fitting yi = f(GPAi) on either side of a 2.50 GPA threshold in Panel A yields a

confidence interval within which the true � = 0 is contained. However, in Panel B we consider these

same students after they have taken four additional classes and students have further separated. We

should, generally, anticipate that students will begin to separate in GPA as they engage with these

classes, which we see evidence of in Panel B. (There are fewer “true 2s” above 2.50 in Panel B.) More

to the point, we can see that fitting yi = f(GPAi) to the same students just one-semester later has us

moving toward mistaking unobserved heterogeneity in type (i.e., what we know are just level di↵erence

in outcomes in this example) for something that looks like a discontinuity in yi at GPAs of 2.50. If

we tightened up around the “threshold,” as we do in Panel C, we would clearly identify a significant

discontinuity in outcomes at 2.50 despite there being no treatment at all.5

Thus far, this example makes clear that observing GPA is no guarantee that we can control for

unobserved heterogeneity—or, at least that linear estimators may not be su�cient. However, behind

this example we also evidence that smoothness in the density of observations at the threshold does

not assure that there is likewise smoothness in student type at the threshold.6 What drives the

estimated discontinuities in panels A through C are the 2.50 (placebo) thresholds relative to the

central tendencies of students who are in the vicinity of 2.50. In Panel D we estimate a discontinuity

at a di↵erent threshold, safely in the middle of a type of student. Moreover, we choose a small-enough

bandwidth that there is only rare weight on other types of student when fitting yi = f(GPAi). The

implications of mean convergence should be less evident here—as one might expect, the confidence

intervals overlap and the traditional RD analysis cannot reject that �̂ = 0. In particular, in Panel

5 These are exemplary of the systematic variation in GPA and not meant to be prescriptive of how one models
regression discontinuity estimators. For a more flexible environment in which to explore the variation in RD estimates
in simulated GPA data, see https://glenwaddell.shinyapps.io/RD-in-GPA-data/. (Note that this shiny app includes
the top coding issues we discuss in Appendix B.)

6 In all panels of Figure 1 we fail to reject that the density is continuous (using the test provided in McCrary (2008)).
As noted in Frandsen (2017), the McCrary test can over- or under-reject the assumption of smoothness when the running
variable is discrete. However, the test proposed for use with a discrete running variable is also inappropriate in GPA
data, as it relies on the assumption that the support of the running variable has equally spaced intervals. Grade points
themselves are unequally spaced, and combinatorics yields unequal spacing. See Lee and Card (2008) and Kolesár and
Rothe (2018) for discussions of standard-error estimation and the inference problems associated with research designs
in which treatment is determined by a discrete covariate. This relates to our discussion as GPA should arguably be
considered discrete data—especially in small numbers of classes.
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D we simulate students between their first and second years of classes, around a GPA of 3.00, where

“B” types are equally likely to be on the left and right sides of the discontinuity we estimate (and

smoothness in type is reconstituted). Clearly, there is a sensitivity in �̂ that is disconcerting.

We demonstrate the variability in treatment estimates more generally in Figure 2, where we con-

sider placebo tests at every GPA in increments of 0.01. With no treatment anywhere within the

data-generating process, confidence intervals should generally include zero. Yet, as students draw

additional classes and their GPAs converge to their central tendencies, the risks associated with mean

convergence become apparent—point estimates are deviating from true �, and with increasing fre-

quency at larger numbers of classes.7 In this simulated environment (where we actually know the

central tendencies of student types) we see that the biases are largest at the placebo thresholds that

tend to separate students, leaving di↵erent types on the left and right sides of the cuto↵.

2.2 Combinatorics

As GPAs are contributed to by combinations of course-level grades—grade outcomes that we will

again have arising from a distribution of potential grades—we begin by deriving PDFs for any number

of classes and for varieties of grading curves. We then demonstrate two fundamental mechanisms by

which combinatorics sorts students systematically into GPA—di↵erently across grading rules students

can experience, and di↵erently across the number of classes over which the GPA is being calculated.

In all cases, we will restrict our attention to GPAs measured at a 0.01 level of precision.8

The setup

Consider the discretized “grade points” that exist as contributions to the aggregate GPA. For example,

the traditional letter grades of {F,D,C,B,A} can be notated in grade points as

� = {0, 1.0, 2.0, 3.0, 4.0}, (1)

with student performance presumably mapping into this scale according to some rule or “curve.” A

curve here, amounts to a rubric by which the distribution of letters is determined, given performance.

7 With each model in Figure 2 we adopt the optimally chosen bandwidth (Imbens and Kalyanaraman, 2012).
8 While reporting GPAs at 0.01 precision is common, some institutions report GPA to a precision of 0.001. Adding

precision in this way can exaggerate the combinatoric complexity, but does not change the concerning implications of
combinatorics as we describe here.
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The realization of a letter grade by a student via some curve can be regarded as a stochastic process—

probabilities can be assigned to the likelihood that a student will draw each grade-point in �.9 In

Figure 3 we produce several probability density functions that define class-level curves—we will use

and refer back to these below. In Panel A, for example, we plot the probability densities of potential

grade-points for an individual student who faces the letter grades in � with probability weights

� = {.05, .10, .30, .30, .25}, (2)

indicating that in a specific course this student has a 25 percent change to earn an A, a 30 percent

chance to earn a B, and so on. In the remaining panels of Figure 3 we o↵er a menu of other potential

PDFs over grade outcomes.

In Figure 4 we next consider how combinatorics influences the distribution of potential grade-point

averages if a student draws multiple grades from � according to the probability weights �. Across

panels in Figure 4 we plot the PDFs over GPAs at the end of two classes, at the end of the first and

second semesters (4 and 8 classes), and at the end of year two (16 classes) and year four (32 classes).

What is made clear in Panel B, for example, is that there is no possible combination of two draws

(with replacement) from � in Equation (1) that yields anything other than a GPA from the set

�2 = {0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}, (3)

where we notate the number of draws (i.e., the number of classes taken) in the subscript. Given

probability weights � (from Equation 2), we can attach weights to each of these GPAs in �2 quite

easily—Panel B represents two draws with replacement from � with probabilities �. As such, we

account for all paths by which one can arrive at the same grade-point average. For example, receiving

an “A” in the first class and a “C” in the second combine for a grade-point average of 3.0, as would

receiving a “B” in both classes, or a “C” in the first class and an “A” in the second, etc.10 In the

remaining panels of Figure 4 we fill in the potential grade-point averages that can occur with repeated

9 We remain agnostic about the exact factors leading to these probabilities in practice. Among many factors, the
probabilities attached to each letter grade could reflect a random component in the expression of a student’s performance
(e.g., variability in performance on exams), or could reflect an individual student’s performance relative to the set of
classmates drawn in a given course.

10 Below, we will consider variation in the underlying PDFs. Note, though, that throughout our analysis we will be
abstracting away from the potential that courses have unequal credit-hour weights, though that would introduce its own
source of potential heterogeneity.
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draws—the PDFs after one semester (of four classes), one year (eight classes), and so on. By the end

of four years of classes (Panel F), we have captured the full probability density function implied by

the 376,992 potential grade combinations from 32 draws.11

As with many combinatorics problems, seeing through the combinations quickly becomes intractable—

this is true even in this simple example, where we do not allow for any variation in � or in �, and

do not consider unequal increments in grade point as will occur when we introduce plus/minus mod-

ifiers.12 Though seeing through the problem is challenging, what is important is to recognize that

in the complexity of it all there is something systematic about the evolution of GPA for individual

students over time, and in the resulting variation it produces in GPAs across students. Given this

mechanistic component to how students arrive at given GPAs, we should be mindful in comparing

even proximate GPAs without regard for the potential heterogeneity within this common measure of

student performance.

Non-random sorting of students into GPA

Given the impact of combinatorics on the evolution of a given student’s potential GPAs, we now

explore how heterogeneous groups of students will sort into GPAs as they accumulate classes. We will

consider two natural sources of variation in the accumulation of grades: (i) variation in the grading

curves students are exposed to, and (ii) variation in the number of classes students have taken. One

can then attach to either source of variation any non-random selection of students and arrive at

particular examples that give empirical context to the sorting problem. (For example, if students of

varying ability levels sort into classes with di↵erent curves, or if students of varying ability levels sort

into taking additional classes, comparisons across even similar GPA are confounded.)

Variation in grading curves

11 Specifically, if there are k potential grade points in �, there are kn grade permutations that a student can receive
over a sequence of n classes. As an unordered sample with replacement, the set of possible grade-point combinations is
then  

n+ k � 1
k

!
=

(n+ k � 1)!
k! (n� 1)!

.

The set resulting from this operation is referred to in combinatorics as a multiset. See Brualdi (2009) for more on
multisets and their properties.

12 Were we to add the traditional plus/minus modifiers to � over 32 classes, the resulting combinatorics problem
yields 51,915,526,432 unique combinations of grade—the distribution of potential GPAs also fills in faster than in Figure
4, with positive weight on 430 of the 431 GPAs from 0.00 to 4.30 by the end of 32 classes. In the simpler example, with
only five distinct letter grades, at two-decimal places of precision there is positive weight on 145 of the 431 two-digit
GPAs between 0.00 to 4.30.
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In Figure 3 we produced the probability density functions that define several class-level curves. In

Figure 5 we reconsider these in various pairwise comparisons, as though there are two types of student

in the data-generating process and one is interested in how the probability of one or the other type being

at a given GPA changes across GPA. In all cases, we compare densities at the end of one year of (eight)

classes for two types of student, across GPAs of 0.00 to 4.30 (in 0.01 increments). For example, in

Panel A of Figure 5, we consider the density of student types when one type experiences plus/minus

grading and the other faces a similar distribution but without plus/minus grading (i.e., comparing

panels A and B of Figure 3). In Panel B we consider student type across GPA when both types

experience “triangle” distributions but with di↵erent modal grades (i.e., comparing those in panels C

and D of Figure 3). That the probability that a student is one type or the other changes across GPA,

generally, is to be expected. However, as each underlying PDF dictates its own combinatorics, what is

noteworthy across panels in Figure 5 is that this probability does not change smoothly across GPA. As

smooth changes in the composition of students are more easily accommodated, this non-monotonicity

will be troubling. Through the combinatorics of GPA, variation in the curves experienced can trigger

complex and irregular variation in the types of student occupying neighboring GPA—to assume that

two students with “similar” GPAs are actually similar in type is at odds with combinatorics.

Variation in the number of classes

In Figure 6 we consider one of the comparisons of Figure 5 (i.e., Panel C) while varying the number of

classes explicitly. As the number of classes increases the pattern of non-monotonicity clearly changes—

while there are still non-monotonicities evident after two years of classes (i.e., 16 classes), by the end

of three years of classes (24), student type is changing monotonically across almost all GPAs.13 What

becomes apparent, generally, is that the non-monotonicities induced by combinatorics are a “small n”

problem, of sorts, but where n is the number of classes. In education environments, however, where

important decisions are often made well before 24 classes, this is not easily ignored. Major choice,

for example, will typically occur well before students have taken enough classes to not worry about

this “small n” problem. Moreover, schools and departments might admit students who earn a GPA of

2.8 or higher across very few introductory courses. For example, Bleemer and Mehta (2020) exploits

UC Santa Cruz’s 2.80 GPA threshold over three introductory economics classes to evaluate the return

13 Small non-monotonicities actually occur 7 times in Panel D (out of a possible 430 GPAs), but only at extremely
high (e.g., 4.24) or low (e.g., 0.14) GPAs. Further, at these non-monotonicities the fractional change in type is vanishingly
small (i.e., on the order of 10�22).
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to an economics major. The number of classes required to smooth out the distributions of student

type will depend on the underlying grading distributions, of course. However, as a general rule, the

less overlapping are the grade distributions of types of student (i.e., the less overlap there is in the

potential grades that an H or L type draw from) the sooner we see the relationship between GPA and

average ability become smooth.

In Figure 7 we consider variation in the number of classes from a di↵erent perspective—comparing

students who have accumulated a slightly di↵erent number of classes at several benchmarks in their

academic careers. In so doing, we assume that both students face the same PDFs governing class-level

grades and di↵er only in the number of classes they have taken.14 Across panels, we mimic what we

anticipate researchers or practitioners doing—assuming that two students are comparable at various

points in time during their tenures, without regard for the number of classes they may have taken. For

example, in Panel B we consider two students who are both at the end of one semester of coursework

with one of them having taken four classes while the other having taken five. Likewise, in Panel C

we consider two students who are both at the end of one year of coursework, but with eight or nine

classes contributing to their GPAs. At each GPA between 0.00 and 4.30 (in 0.01 increments) we plot

the probability that a student with that GPA has taken nine classes. If this probability was smooth

through the range of GPA, or even locally smooth in places, we would be less concerned—again, we

are used to accommodating smooth changes in the fraction of students who are of a particular type

by simply controlling for GPA (e.g., as the running variable in an RD). However, we again see that

the combinatorics of GPA yields a significant amount of troubling variation in student type across

the domain space of GPA given this DGP. Across two otherwise-identical students, even taking one

additional class can fundamentally change which GPAs are even possible.15 Given the resulting non-

monotonicity, if there is any degree of non-random selection into taking an extra class here or there in

one’s tenure, then we should anticipate that these students are selecting into distinct sets of potential

GPAs—this requires attention beyond our typical approach to policy evaluation.

And, if di↵erent types of student select di↵erentially on these margins?

In figures 3 through 7 we o↵er examples of a more-general problem associated with interpreting GPAs.

14 In Figure 7 we use the probability density functions from the 13-point grade distribution in Panel D of Figure 3.
However, the results are representative of the comparison one could make for any class-level PDF.

15 While we do not show this, one can produce evidence of a similar problem arising from students taking di↵erent
numbers of credit hours.
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In the end, as the sorting of students into GPA is governed by combinatorics, if there is any meaningful

heterogeneity across students that correlates with either the grading regimes they experience or the

number of classes they’ve taken by a point in time, then we should expect that inference that relies

on comparisons (or similarity) of GPA will be challengeable by combinatorics-induced sorting.

While the above figures make pairwise comparisons, and in that way capture the roles of various

contributors as comparative-static exercises, it’s more likely that students select into a variety of

classes, with di↵erent curves (i.e., di↵erent PDFs). In Figure 8 we plot the proportional breakdown

of many students and types. In Panel A there are six types of student, for example, with each having

experienced classes like those we imagined earlier Figure 3. Again, non-monotonicity is evident. In

Panel B we go further, imagining that there are 13 student types, each having a di↵erent modal grade

but drawing from a similarly shaped PDF (i.e., triangle distributions akin to those in Panels C and D

of Figure 3). Even as we increase the number of student types populating the GPA domain, discrete

changes in student composition across local changes in GPA persist.

3 Evaluating GPA-determined treatment

3.1 A setup

Given the construction of GPA, and the non-random sorting into local GPAs in particular, identifying

unbiased estimates of treatment in GPA data is non-trivial—this is especially true the more local is

the identifying variation. As demonstrated in Section 2, a clear violation exists in designs where one

relies on smoothness around a treatment threshold, for example, and the non-monotonicity in student

type across GPAs should give pause as we consider experiments with GPA as a running variable.

(Moreover, with the typical interest being to collapse on smaller bandwidths where power allows, one

might be particularly concerned that the implications of combinatorics around treatment thresholds

could lead to questionable inference from well-powered RD designs.)

In the sections below we consider two thought experiments. First, we consider the scenario we feel

is more relevant in practice—unobservable student heterogeneity, where their type is only learned over

time as they draw from better and worse grade distributions. Second, we consider the scenario where

type is observable—here we will assume that students draw from the same grade distribution, but will

have some students take more classes. This will both demonstrate the importance of considering the
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component parts of GPA and solidify some intuition around the ways in which identifying treatment

in such an environment might be salvageable.

In both scenarios we envision a data-generating process in which there are two types of students

who di↵er in their average outcomes—we keep with the idea that in the population of students there

are L types and H types. In particular, suppose that each student realizes some outcome—here, we

will simulate weekly wages, wi—according to the simple process,

wi = ↵+ � (Hi = 1) + ei . (4)

The parameterization of (4) will be immaterial, so we roughly mimic the 25th, 50th, and 75th percentiles

of weekly incomes among college graduates in the United States in 2020, assuming that H types

experience �-higher average wages.16 Other than from the level di↵erences in outcomes associated

with being an H or L type, then, wages vary randomly. To be clear, there is no treatment-induced

variation in outcomes, so we are in an environment in which well-identified models should fail to reject

the null hypothesis that there is no systematic discontinuity in outcomes. Nonetheless, adopting

traditional methods in such an environment exposes one to the risk of identifying a discontinuity in

wi, as combinatorics facilitates a source of non-random selection into GPA by type of student.

3.2 When student heterogeneity is only partially observable

Here, we assume that H types draw grades from a distribution that first-order stochastically dominates

that of L types, with modal (mean) grades at the individual class level of 2.3 and 3.7 (2.23 and 2.68),

respectively.17 In what follows, we produce regression discontinuity estimates from 200 simulations of

5,000-student panels, inquiring into whether there is evidence of a systematic discontinuity in outcomes

for those with GPAs of 2.50 or above. While we consider a GPA cuto↵ of 2.50, the issues we illustrate

generalize to any GPA where students of di↵erent type are present. We choose 2.50 as it falls between

16 Assuming ↵ = $1, 133, � = $566, and ei ⇠ N(0, 300) centers our DGP on the weekly incomes of college graduates,
approximating the first quartile ($977), median ($1,416), and third quartile ($2,110) of weekly income of college graduates,
according to the Usual Weekly Earnings of Wage and Salary Workers section of the Current Population Survey. (See
Bureau of Labor Statistics (2020) for details.)

17 Specifically, L types draw grades from the 13-point plus/minus letters as in Panel C of Fig-
ure 3, and H types draw “better” grades, on average, as in Panel D of Figure 3. In other
words, L and H types draw from � = {0, 0.7, 1.0, 1.3, 1.7, 2.0, 2.3, 2.7, 3.0, 3.3, 3.7, 4.0, 4.3} with prob-
abilities �L = {0.024, 0.058, 0.073, 0.088, 0.107, 0.122, 0.136, 0.113, 0.095, 0.077, 0.053, 0.036, 0.018} and �H =
{0.016, 0.038, 0.048, 0.057, 0.07, 0.08, 0.089, 0.102, 0.111, 0.121, 0.134, 0.089, 0.045}, respectively. That the mean GPA from
a grade distribution with mode of 3.7 is 2.68 reflects top-coding, as discussed in Appendix B.
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the mean grades of L and H types, where we can anticipate that one would need a rule to separate

students. As we initially allow students to have taken four classes, in that sense it’s fitting to have

in mind the sort of decisions that are made around the middle of the first year of college (e.g., major

choice) or policies that tend to be most binding in the first year of college (e.g., the initiation of

probationary status, admittance into greek a�liations, enrollment into professional schools).

In Panel A of Figure 9 we plot the mean point estimate (across simulations) associated with each

bandwidth between 0.01 and 0.50 in increments of 0.01. The absence of any treatment in the DGP

should have us anticipate estimated discontinuities of zero. However, consistent with combinatoric

sorting, there is significant sensitivity evident in the estimated treatment e↵ects at smaller bandwidths.

In fact, the bias tends to be both large and sensitive to changes in bandwidth, and is directly resulting

from combinatorics-induced violations of the required smoothness assumption. In an environment

where average weekly wages are $1,416, RD estimates across bandwidths range from $-105 (-0.25�) to

$47 (0.11�).

In Panel B of Figure 9 we see how this sensitivity arises—the combinatoric sorting of di↵erent

types of student around the treatment threshold. In particular, in Panel B we plot the fraction of

students who are H types across the same range of bandwidths (0.01 through 0.50) both to the left- and

right-hand sides of the 2.50 cuto↵. The lumpy introduction of H and L types included in the sample

as the bandwidth changes is clearly evident, and around small bandwidths in particular—other than

noise, this imbalance is the only factor that drives estimates away from zero in Panel A. We see this

from a di↵erent perspective in Panel C, where we plot counts of student type across bandwidths. This

makes the source of the lumpiness is particularly evident. While there are bandwidth adjustments

that do not trigger changes in the number of observations at all—by its nature, combinatoric sorting

will leave behind GPAs that are not occupied—when adjusting the bandwidth allows “new” GPAs

into the estimator there are discrete changes in the number of H and L types. It is at these same GPAs

that mass shifts discretely to one type of student or the other—this abrupt tipping of the balance one

way or the other explains fully the change in point estimates across bandwidth.

Note, importantly, that even with combinatorics playing an active role in facilitating the non-

random sorting of student types into GPA, the overall density of students can still itself to the ap-

pearance of smoothness in the aggregate. In fact, our DGPs routinely pass standard tests for changes

in the density of students around the threshold (i.e., McCrary 2008; Frandsen 2017).
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In Figure 10 we produce similar plots of bandwidth sensitivity tests as students take additional

classes, mimicking their progress through the institution and the potential for similar evaluations

being performed at the end of two classes, one semester, one year, and two years. This highlights that

the non-random sorting is particularly egregious when students have taken few classes. That said,

estimates are sensitive to combinatorics at smaller bandwidths through the end of one year of classes

(in Panel C). Notably, it’s here where the tell-tale signs of mean convergence appear, albeit to a lesser

degree than in Panel D where students have taken even more classes. This reveals a general pattern in

the evolution of GPAs—while the combinatorics problem diminishes with additional classes, student

populations also converge to their mean performance. Thus, the domain of GPAs over which there is

overlap (i.e., in student type) is getting increasingly narrow. While the smallest bandwidths in Panel

D evidence “zero” treatment e↵ect, by the time students have taken sixteen classes the degree of mean

convergence experienced is such that larger bandwidths now use increasingly di↵erent types of student

to identify the discontinuity.18 As one should anticipate, this results in biased point estimates.19

In Figure 11 we demonstrate how the uneven distribution of student types changes as they take

additional classes. Similar to the lumpiness we saw in Figure 9, the problematic influence of com-

binatorics on treatment evaluation shows up where we anticipate it (i.e., panels A and B, and to

some extent C) and disappears as combinatorics present less of a first-order concern (Panel D). At

su�ciently large numbers of classes—16 in our data-generating process—it matters less that GPA is

the product of a combinatorics problem.

In the end, the roles of combinatorics and mean convergence are clearly in tension as students

progress through college. The degree to which this tension is felt should inform bandwidth choice. At

smaller numbers of classes, estimates are more sensitive to combinatorics—here, larger bandwidths can

act as a mitigating device, because they leave parameter estimates less sensitive to the types of student

at particular GPAs. However, at larger numbers of classes combinatorics induces less local variation in

student type and smaller bandwidths become appropriate—here, larger bandwidths expose researchers

to lost comparability. Overall, considering the evaluation of treatment that falls on students around

some number of classes, the researcher’s choice of bandwidth is implying something of a tolerance for

combinatorics-related bias over the bias induced by mean convergence. We summarize this tension as

follows, highlight the particularly concerning source of bias.

18 Recall Figure 6, where by the time students had drawn 16 classes there was no smoothness violation.
19 We saw similar evidence in Figure 1, for example.
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The first-order source of bias in RD designs that use GPA data

With fewer classes? With more classes?

With smaller bandwidths? Combinatorics

With larger bandwidths? Combinatorics and mean convergence Mean convergence

By choosing a smaller bandwidth we are down-weighting the potential that mean convergence will bias

�̂ while at the same time up-weighting the bias from combinatorics. In choosing larger bandwidths

we are down-weighting the potential bias associated with combinatorics while at the same time up-

weighting the potential bias from mean convergence. When researchers weigh these tradeo↵s, the

variation in the number of classes taken by students in the population under study cannot be ignored—

employing a small-bandwidth design when students have taken many classes implies a lower overall

potential for bias, but the equivalent small-bandwidth design will be much more vulnerable to bias

when students have taken few classes.20

3.3 Does the problem go away if student heterogeneity is observable?

Before moving on to consider potential solutions to the above problem, there is good intuition in

considering how the classification of students into type can move us toward better identification.

In this section, we recast the problem as one in which both types draw repeatedly from the same

grade distribution, but H types simply draw one extra grade (i.e., they take classes at a faster rate)

than L types. In this experiment we shut down entirely on any heterogeneity coming from grades

themselves.21 This highlights the problem that can arise simply due to the mechanistic sorting of

combinatorics, which allows some students to populate GPAs that other students simply cannot. We

will then consider the implications of controlling for the “number of classes” in regression analyses.

20 Another important consideration for researchers navigating this tradeo↵ is that the bias stemming from mean
convergence is likely signable. For example, to the extent we’ve populated the right-hand side of a discontinuity estimator
with H types who attain better average outcomes for reasons not associated directly with treatment, we expect �̂ to be
biased up. However, the non-monotonicity in student type introduced through combinatorics implies that there can be
discretely more or less of one type on the left or right of any threshold. This leaves the resulting bias unsignable, and
any associated inference more uncertain.

21 All students draw all grades from a triangle centered at 2.7.
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Given that we rarely control for the number of classes contributing to a student’s GPA, the results

of this exercise are quite striking. In Figure 12 we estimate “discontinuities” in outcomes at a variety

of GPAs (i.e., 2.30 though 3.10 in increments of 0.10). There should be no discontinuities in outcomes

in this environment—here there will be, as they are left behind by the combinatoric sorting of students

into GPA simply through the inclinations of H types to take one more class.22

Consistent with combinatoric sorting, the bias is unsignable in general and particularly problematic

at smaller bandwidths where the density of student “types” can be di↵erent either side of a given GPA

and can change abruptly as di↵erent bandwidths allow di↵erent GPAs to populate the estimator.

Across the nine thresholds we illustrate (between 2.30 and 3.10), the mean bias in point estimates is

positive in four of them and negative in five of them. However, in all but two of the nine placebo

thresholds the point estimate itself changes sign across bandwidth.23 Given the combinatorics of

grade-point averaging, not controlling for the number of classes that contribute to GPA is clearly

problematic. As the number of classes is observable—while not often used, it often is observable—in

Figure 13 we plot the bandwidth sensitivity around one of these placebo treatments (a GPA of 2.50, in

this case) with and without controlling for the number of contributing classes. Even though students

are drawing from the same distribution of grades, combinatorics allows the number of classes taken to

transmit through to the set of GPAs H types are able to occupy. Consistent with the omitted variables

bias, controlling for the number of courses also resolves the bias in estimated treatment.

While we’ve designed a simple experiment here, where student type is perfectly inferable through

one observable attribute, the reality is that field data rarely presents such a clean opportunity to merely

control for di↵erences. Fortunately, however, while combinatoric sorting will defeat local estimators,

it is also ripe for the more-sophisticated remedies made available through machine learned approaches

to prediction, even when student heterogeneity is not easily inferable. Thus, having documented the

potential pitfalls associated with the underlying combinatoric sorting of students into GPAs, below

we turn to considering the ways in which the variation in GPA is actually learnable. In short, while

22 Moreover, our simulated environment suggests that the bias can be large in magnitude. Granted, we’ve constructed
this data environment. However, in so doing we’ve matched mean weekly wages (in 2020 for US college graduates) and
25th and 75th percentiles while assuming a level di↵erence in wages of $566 for H types. In this environment, mean
wages are $1,416, and RD estimates across the cuto↵s and bandwidths range from $-1,365 to $483—the associate impacts
range from -96.3 percent to 34.1 percent at the mean. That is, the bias associated with not accounting for the number
of classes is roughly five times as large as the largest bias we found from not controlling for the di↵erence between a
C- student (drawing grades around 2.3) and an A- student (drawing grades around 3.7) when the number of draws was
common.

23 Only in the estimation of a discontinuity at 2.80 and 2.90 do we find the point estimates never changing—not as a
rule, of course, but in this DGP.
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the nature of GPA (and the combinatoric problem, in particular) has been challenging thus far, it

also leaves behind evidence that can be learned—in e↵ect, evidence that can be used to salvage better

inference.

4 Machine-learned approaches to classifying students

The above analysis suggests that we should clearly not anticipate that student ability is smooth

across local changes in GPA—the non-monotonicity evident above makes it easy to demonstrate that

average student ability can even decrease in response to small increases in GPA. Moreover, where

estimators rely on local smoothness at some threshold, the combinatorics of GPA can be of first-order

importance, especially when we fail to recognize that local variation in GPA does not control well for

student heterogeneity. However, decisions made at marginal considerations of GPA are fundamentally

relying on a classification, of sorts. As problematic as GPA can be as a measure of performance—

having more-complex variation than we had recognized—it is still systematic in its construction. As

such, sophisticated methods, instead of succumbing to the complexity, find it something to be learned.

4.1 Predicting outcomes using GPA and course-level grades

In Figure 14 we compare di↵erent approaches to modeling the data-generating process of Section 3—a

distribution of wages within which there are two level-di↵erent types. In all panels we plot the true

average wage and the predicted wage for each GPA (again, at 0.01 precision). In panels A through C

we consider linear approaches to this exercise, projecting wi onto GPAi across a variety of polynomials.

With enough flexibility linear models can eventually track the global non-linearity in outcomes across

GPA fairly well. However, even a ninth-order polynomial does a fairly poor job of capturing local

changes in GPA.

As an alternative to these methods, in Panel D we plot the predictions from random forest regres-

sions of wi on GPAi.24 To be clear, in Panel D we restrict the model to only the single covariate (i.e.,

GPA) and, even then, the flexibility o↵ered by the random forest is evident—the estimated relation-

ship tracks the true pattern of average wages so well that it is di�cult to distinguish the two lines

by visual inspection. (We use a dashed line to represent the prediction to help somewhat with this

inspection.) Being fully nonparametric, at every GPA the random forest yields a predicted ŵi that

24 See Breiman (2001) for details of the random forest algorithm as it applies to regression problems.
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is independent of the predictions at surrounding GPAs. In this setting, then, this flexibility improves

performance markedly and the non-monotonicity in the data is as evident in the predictions of the

model as is it in the underlying DGP. (This bodes well for our return to considering causal estimation

in this environment.) Here, we know that this non-monotonicity is driven by varying types of student

who are sorted into GPAs through combinatorics. While field data would not a↵ord the same ability

to see the source of heterogeneity, a similar exercise with field data would nonetheless capture varia-

tion in outcomes that are predictable through the learned combinatorics of GPA—and to the extent

learnable, they would mitigate the problems we identify.25

However, there is little reason to limit the RF environment to learning simply through GPA when

the individual contributors to GPA were available. The obvious return to the addition of course-level

information will be through the RF learning to distinguish systematic heterogeneity in outcomes even

from students who have the same GPA. Without transcript-level information, RF learning is restricted

to making one prediction for each GPA, while variation in course-level grades within given GPA is

able to predict di↵erent outcomes for those who have the same GPA but arrived at it di↵erently. In

Figure 15, then, we consider the addition of course-level information and the RF’s ability to predict

outcomes of H and L types. As we know each student’s type—to be clear, the RF does not—we report

predicted outcomes separately for H and L types.26 The RF learner can distinguish heterogeneous

outcomes among students who share the same GPA—predicted outcomes are higher for H types than

for L types more than 90 percent of the time.27

4.2 Can we exploit this learning in a causal environment?

Above, we have demonstrated the suitability of machine-learned approaches to disentangling the un-

derlying combinatorics within GPA, inclusive of identifying student heterogeneity even among those

who share the same GPA—we identify heterogeneity through variation in the combination of grades

that got them to that GPA, essentially. Thus, it is natural to consider the performance of companion

25 In Appendix A we report quantitative measures of model performance across 1,000 simulations of the above process.
26 We only include GPAs for which there are students of both H and L type to compare.
27 In simulating this process 1,000 time at the end of one semester of classes, the RF with GPA and course grades

predicts higher average wages for H types at 78.1 percent of GPAs. After one year of classes, the RF predicts higher
outcomes for H types at 90.8 percent of GPAs, and after two years of classes predicts higher outcomes for H types at
92.9 percent of GPAs. (Again, these values are based on only the inner-95 percent of the data according to GPA. When
we use all of the data, there is a marginal decline in performance, to 70.9, 85.7, and 91.0 percent, respectively at one
semester, one year, and two years of classes. This decline is a consequence of the sparsity of students at extremely high
or low GPAs, which limits the RF models’ ability to distinguish students.)
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methods in a causal framework.

Here, we simulate post-graduation wages and consider the performance of causal forests with

respect to their ability to retrieve the causal parameter of interest. To do so, we make one addition

to the environment we’ve considered above—a treatment that is experienced in some discontinuous

way at a GPA threshold, but available to all students with some positive probability. As this “overlap”

is required in order to satisfy the identifying properties of the causal forest, we will benchmark the

casual forest estimators against fuzzy regression discontinuities.28

4.2.1 Causal forests

Introduced in Wager and Athey (2018), the causal forest (CF) is an application of machine learning

to causal inference in the presence of randomized treatment. CF procedures build on the strengths of

random forest learning, which is known to work well as a classifier (Hastie et al., 2017). In particu-

lar, these strengths include flexibility in modeling nonlinear processes, and an ability to handle large

numbers of covariates. By leveraging these strengths, it is also notable that the causal forest esti-

mates individual treatment e↵ects—heterogeneity in the e↵ect of treatment across individuals is then

likewise identifiable. A causal forest, then, is simply an algorithm that leverages a random forest’s

classification strength to group together those observations that are good counterfactuals for each

other—having grouped them, one can then estimate the e↵ect of treatment within those groups.29

In our working example above, given course-level information the RF procedure produced di↵erent

predicted outcomes, on average, for the two types of student in the DGP—this was true even when

they had the same GPA. Likewise, then, the RF component within the CF estimator will exploit that

there are multiple (and learnable) paths by which students arrive at given GPAs and thereby better

estimate their counterfactual outcomes would have been—their outcomes in the absence of treatment.

With identifying assumptions met, a causal forest estimates a treatment e↵ect at every set of

covariates x by estimating the mean di↵erence in the outcomes of treated and control units who have

28 This is similar in spirit to asking if there are discontinuities in outcomes at particular GPAs, but in an environment
where we likewise simulate placebo treatments with discontinuities in the odds of experiencing treatment. (As the
discontinuity in the assignment rule is assumed to be independent of student heterogeneity, the consequences of mean
convergence and combinatorics demonstrated in Section 3 replicate in this “fuzzy” setting.)

29 In so doing, a CF finds similar groups within which treatment-e↵ect variation is reduced. Of course, since potential
outcomes are not observable, neither are treatment e↵ects. However, Athey and Imbens (2016) demonstrates that
maximizing the heterogeneity of estimated treatment e↵ects between groups, subject to a penalty for within-group
variance, is equivalent to minimizing the expected MSE of treatment e↵ects within groups.
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those covariates in common. Given this condition, the di↵erence,

⌧(x) = E[Y 1
i � Y 0

i | Xi = x] , (5)

is commonly be referred to as the conditional average treatment e↵ect (CATE), as it is conditional

on a set of covariates. As we allude to above, we adjust our DGP somewhat to meet the identifying

assumptions—“unconfoundedness” and “overlap.” Wager and Athey (2018) defines unconfoundedness

as the independence of treatment assignment from outcomes, conditional on covariates. This is similar

to the conditional independence assumption discussed at length in Angrist and Pischke (2009). Like-

wise, the overlap assumption should be familiar from matching-type estimators more generally, as the

overlap assumption for the CF requires that 0 < Pr(Wi = 1|Xi) < 1 8 Xi 2 Xi. That is, in order to

estimate the e↵ect of treatment in our context there must be treated and control observations within

each GPA. Of note, then, is that the overlap assumption implies that a causal forest cannot estimate

treatment in a classic “sharp-RD” design, where the probability of assignment into treatment is zero

on one side of a threshold and one on the other.30

Borrowing from the weekly wages we simulated in Section 4.1, here we augment our data-generating

process to satisfy unconfoundedness and overlap by introducing a degree of noise in treatment assign-

ment. Specifically, those at GPAs below the threshold now randomly experience treatment with 15-

percent probability, while those above the threshold randomly experience treatment with 75-percent

probability. In Panel A of Table 1 we evaluate the performance of a regression-discontinuity estimator

employing either an optimal bandwidth (Imbens and Kalyanaraman, 2012) or a smaller bandwidth

(defined as 10 percent of the optimal bandwidth)—both largely fail to identify that the average treat-

ment e↵ect is zero.31 This is the benchmark against which it is informative to compare the performance

of a causal forest.
30 Other common situations can also violate the overlap assumption. For example, if students with an F on their

transcript are ineligible for treatment then the overlap assumption would be violated in a causal forest that ran on
course-level grades. In such cases one can, of course, resurrect the internal validity of the estimator by limiting the
sample to that for which there is overlap.

31 At the end of one semester (i.e., in Column 1), the RD estimator with an optimal bandwidth leads to a rejection
of the null hypothesis in 31 percent of iterations, with an average increase in weekly wages of $21.91 in weekly wages
(.05�) relative to the mean wage of $1416.At the end of one and two years, this rejection rate increases to 56 percent
of iterations (0.09�) and 61 percent of iterations (0.11�). That the bias is positive on average is merely an artifact
of the data-generating process and chosen treatment threshold—the student types at the threshold we consider just
happen to split with more H types on the right-hand side of 2.50. At smaller bandwidths, we again see over-rejection of
the null hypothesis and biased point estimates, but the bias interacts with the number of classes di↵erently. Applying
smaller-bandwidth designs to the same data we reject the null in 13 percent of iterations (0.13�) at the of one semester,
in 8 percent (0.11�) at the end of one year, and in 6 percent (�0.003�) at the end of two years.
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4.2.2 The CF model appropriately rejects the � = 0 null where the RD over-rejected

In Panel B of Table 1 we reconsider the same data as was drawn for the exercise in Panel A but with a

CF procedure performing the same task.32 We do this across two models, including only GPA in the

first model and then adding individual course grades in the second.33 Notably, where there is nothing

introduced into the data-generating process other than the naturally occurring combinatorics-induced

imbalance of type, RD-type methods falsely identify “treatment.” (RD methods reject the null 31

percent of the time after one semester, 56 percent of the time after one year, and 61 percent of the

time after two years.) CF procedures, however, retrieve treatment estimates that appropriately reject

the null (i.e., reject that � = 0 only five percent of the time). Whether at the end of one term,

one year, or two years, the estimated e↵ect sizes identified in the RD estimates are also orders of

magnitude larger than those identified in the CF procedure (which are hovering around zero, and less

than .0005�, on average).34

For a more-direct comparison to the regression discontinuity benchmarks, in Panel C Table 1 we

consider CF performance when the samples are restricted to observations within the bandwidths we

imposed on the RD estimators (in Panel A). Again, the CF estimators do not over reject the null.

4.2.3 The CF model also informs us of underlying heterogeneity in treatment

A unique strength of using a causal forest is that its estimation of conditional average treatment e↵ects

can retrieve underlying heterogeneous in treatment e↵ects. Since treatment e↵ects are identified up to

every unique x in the data, a causal forest will explore whether treatment e↵ects vary systematically

across any combination of covariates. (Indeed, Athey and Imbens (2016) is motivated by a desire

to identify such heterogeneity.) This is particularly useful in the setup we’ve developed, where the

“types” of student might benefit di↵erentially from treatment.35 Here, we allow H types to respond

32 As in Panel A of Table 1, then, each simulation includes 30,000 students, with grades drawn from the same
distributions as in Section 4.1, with H types are again a level-di↵erence higher than L types.

33 In the random forests of the previous section, we saw evidence that a machine-learned estimator could find het-
erogeneity between students using only course grades. However, as GPA determines treatment in our DGP and H
types earn higher GPAs, on average, unconfoundedness requires that we condition on GPA. (Since type is correlated
with GPA, and therefore with treatment assignment, the unconfoundedness assumption is only satisfied if GPA is in-
cluded in the explanatory variables provided to the CF. This is similar in spirit to including the running variable in RD
estimation—capturing the relationship between the running variable and the outcome of interest that exists independent
of treatment.)

34 These CF estimates translate to an estimates treatment e↵ect of roughly $0.20 over a standard deviation in observed
wages of roughly $412. The most-conservative RD estimates imply a $20.00 “increase” in wages.

35 With a CATE for every set of x in the data, one can also then test for heterogeneity in treatment e↵ects. The
formal test for heterogeneity in estimated treatment e↵ects is an implementation of the best linear projection method
for detecting treatment heterogeneity in machine learning estimates, proposed by Chernozhukov et al. (2020).
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to treatment—H types receive a $300 increase in weekly wages coincident with treatment. L types,

though exposed randomly to treatment as in our baseline DGP, experience no benefit to treatment.

In this way, the true parameters are �H = 300 and �L = 0.

In Panel A of Figure 16 we plot the distributions of CATE estimates for our two causal forests

in the presence of this treatment-e↵ect heterogeneity. Assignment into treatment is unconfounded so

long as we condition on GPA, meaning that the CF algorithm can identify collections of individuals

with the same underlying propensity for receiving treatment (i.e., good counterfactual groups). Thus,

the first CF learner—the one provided with only GPA—still produces unbiased CATEs, even in the

presence of treatment e↵ect heterogeneity. But with only GPA as a covariate, the CATEs from this

first CF can only recover the average across H and L types at a given GPA.36 However, given that

expected student type changes across GPA, even this CF demonstrates some ability to detect the

heterogeneity in �H and �L. In the left of Panel A, many students assigned to low treatment e↵ects

are in fact low types, reflecting the fact that most “low” GPAs are associated with L types. Likewise,

“high” GPAs are associated with H types, on average.

In contrast, the right side of Panel A shows that providing the CF with individual course grades

allows it to identify heterogeneity much more cleanly. When provided with course grades, the stu-

dents with CATEs near zero are overwhelmingly L types and the students with CATEs near 300 are

overwhelmingly H types. As with RF classifiers, the CF has minimized the variance of within-group

treatment e↵ects when splitting students into groups—given that there are two types of student in

our DGP drawing from di↵erent distributions of grades, transcript-level grades make the two types

distinguishable.37 That is, the addition of course grades allows the CF to make distinctions between

students with the same propensity for receiving treatment (i.e., students at a certain GPA). When the

causal forest ultimately groups these students together to estimate treatment e↵ects, it is e↵ectively

36 Wager and Athey (2018) demonstrates that when the estimator’s identifying assumptions are met (i.e., overlap and
conditional unconfoundedness) each ⌧̂(x) is point-wise consistent, asymptotically Gaussian, and centered in the sampling
distribution. As such, the CATEs can be aggregated to estimate the average treatment e↵ect with consistency and conduct
valid hypothesis testing. (In an implementation of the causal forest estimator, Athey et al. (2019) constructs average
treatment e↵ects using augmented inverse probability weighting (AIPW). As noted therein, this method generally leads
to estimates of average treatment e↵ects that are more accurate than naive averages, based on results from Chernozhukov
et al. (2018). We use the implementation of AIPW in Athey et al. (2019) to produce average treatment e↵ects.

37 We find that, in general, random covariate sampling of roughly 75 percent of available grades allows the CF
algorithm to identify heterogeneity in the student population.
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grouping students by type, and thereby identifying the underlying treatment-e↵ect heterogeneity.38

In Panel B of Figure 16 we plot the distributions of CATE estimates associates with two causal

forests with placebo treatment—again, we allow only for GPA, and then for both GPA and individual

course grades. To demonstrate the CFs handling of the heterogeneity in treatment e↵ect by type, we

identify type of each student assigned to each treatment e↵ect. In Panel B, in particular, we again

see the value added in using individual course grades as the estimated parameter collapses on the true

� = 0 with the additional ability to learn through course-level variation in grades.

In scaled simulations of the above experiment, we also formally test for heterogeneity in estimated

treatment e↵ects. The test is an implementation of the best linear projection method for detecting

treatment heterogeneity in machine learning estimates, proposed by Chernozhukov et al. (2020). In

100 percent of simulations across both causal forest models, the heterogeneity identified is statistically

significant.

5 Conclusion

We demonstrate the complex ways in which grade point averages can challenge causal identification.

We model the process through which students arrive at GPAs, and demonstrate the roles of mean

convergence and combinatorics. In the evaluation of treatment, in particular, we show how these

two mechanisms tradeo↵ as students engage in additional classes, and thereby interfere with the

interpretation of GPA variation in rather complex ways.

Combinatorics governs the set of feasible GPAs and determines the paths by which a student can

arrive at a given GPA. Thus, while collapsing on students with more-similar GPA sounds very much in

the spirit of constructing “all-else-equal” conditions, it also exposes estimators to non-monotonicities

in student type across GPA. This is especially true where the number of classes is small. In the

context of treatment evaluation, we demonstrate that this induces a form of selection through which

combinatorics can lead to the students on either side of a given GPA not being comparable. This calls

into question the validity of identification strategies that rely on local comparisons. We argue further,

that the failure of linear GPA-based estimators is fundamentally due to this type of classification

38 The fact that both L and H type students have a chance of receiving each letter grade explains why we see treatment
e↵ects massed near, but not on, the true �L and �H . Since each letter grade has positive probability for both types, so
too does each transcript of grades. For instance, an H type student can occasionally draw an unlucky set of grades that
would be more common for an L type. This means that every CATE is still an average over both L types and H types.
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problem—the combinatorics of GPA require a flexibility in modeling that linear methods are not well

equipped for. Machine-learned methods, however, often excel at modeling such spaces.

We’ve demonstrated that this sort of local non-comparability is ameliorated with additional classes,

as the artifacts associated with combinatorics subside with repeated draws from a distribution. How-

ever, with additional classes, GPA can also be expected to converge to a student’s “true” average

grade (i.e., their type, in a way). While this increases the informativeness of GPA (i.e., as a signal-

to-noise ratio, the informativeness of GPA is increasing with additional classes), this can also expose

estimators to having very di↵erent types of student on either side of a given GPA. In the limit, even

though the density of students across GPA might appear continuous, there is the possibility of losing

overlap entirely. This highlights a trading o↵ in the informativeness of comparing GPAs across the

number of contributing classes, with implications for how local comparisons should be interpreted at

various stages of students’ academic progress.

In the end, we find benefits associated with supplementing traditional methods with machine-

learned methods that are capable of exploiting what is learnable through how students arrive at given

GPAs. For example, the inclusion of transcript-level data (which is easily incorporated into these

methods) allows one to distinguish heterogeneity in outcomes even among students at the very same

GPA. Similarly, in terms of treatment evaluation, causal forests (Athey et al., 2019) can likewise

learn through the combinatorics of GPA to identify not only average treatment e↵ects, but also the

heterogeneity in individualized treatment e↵ects.
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Figure 1: The e↵ect of mean convergence on RD estimates in the absence of treatment

A: After one semester B: After one year

C: After one year with a smaller bandwidth D: After one year with a smaller bandwidth
where the threshold “splits” a type of student

Notes: In all panels, students draw uniformly from the grades that are within ±1 of their median grade, which is
anchored by their type. In all panels there are 125 students of each type (i.e., n = 125 ⇥ 4 = 500 students). Students
take four classes per semester and two semesters per academic year. See Section 2.1 for related discussion. (For
a more flexible environment in which to explore the variation in RD estimates in simulated GPA data, see https:
//glenwaddell.shinyapps.io/RD-in-GPA-data/.)
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Figure 2: Placebo tests across GPA in the absence of any treatment (i.e., true � = 0)

A: At the end of one semester

B: At the end of one year

C: At the end of three semesters

Notes: In all panels, students draw uniformly from the grades that are within ±1 of their median grade, which is anchored
by their type. In all panels there are 125 students of each type (i.e., n = 125 ⇥ 4 = 500 students). Students take four
classes per semester and two semesters per academic year. See Section 2.1 for related discussion.
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Figure 3: The combinatorics of GPA: PDFs of di↵erent grading curves

A: Fixed-5 B: Fixed-13

C: Triangle-13 with a mode of 2.3 D: Triangle-13 with a mode of 3.7

E: Uniform-13 “no A+” Panel F: Uniform-13 “no F”

Notes: In all panels, the probability densities (at the class level) are identified in the panel titles. See Section 2.2 for
related discussion.
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Figure 4: The combinatorics of GPA: PDFs across the number of classes (for a “Fixed-5” curve)

A: Class level B: After two classes

C: At the end of one semester D: At the end of one year

E: At the end of two years F: At the end of four years

Notes: In Panel A we plot the underlying probability density function at the class level—the student’s expectation of
grade-point contributions at the class level. In panels B through F we plot the probability densities of having repeatedly
drawn from that class-level PDF a number of times, for each GPA between 0.00 and 4.30 in increments of 0.01. In their
production, we assume four classes per semester and two semesters per academic year. Thus, across all six panels we
span the equivalent of having completed 1 through 32 classes. See Section 2.2 for related discussion.
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Figure 5: Non-random sorting into GPA: Pairwise comparisons across students who have experienced
two di↵erent grading curves for one year of classes

Here we evaluate how students will be distributed across GPAs if there is heterogeneity in grade accumulation across
students. In each panel, we evaluate a DGP with two types of student—each draws grades from one of the grade distri-
butions in Figure 3. Across GPAs, we ask how likely it is that a student observed at a GPA has drawn their grades from
each of those distributions.

A: Fixed-5 vs Fixed-13 B: Fixed-13 vs Triangle-13 with mode of 2.3

C: Triangle-13, mode of 2.3 vs mode of 3.7 D: Triangle-13 mode of 2.3 vs Uniform “no A+”

E: Uniform-13 “no A+” vs Uniform-13 “no F” F: Uniform-13 “no A+” vs Fixed-5

Notes: For each GPA between 0.00 and 4.30 (in increments of 0.01) we plot the probability that a student with that
observed GPA was drawing grades from one of the PDFs (identified on the y axis). In each panel, the population of
students is split equally between the two types. See Section 2.2 for related discussion.
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Figure 6: Non-random sorting into GPA: How a pairwise comparison of H- and L-type students changes
over time

In each panel we evaluate a DGP with two types of student—they draw grades from a “triangle-13” PDF with either a
mode of 2.3 (L types) or a mode of 3.7 (H types), as in Panel C of Figure 5. Across panels, we ask how the sorting of
students into GPAs systematically changes as students take more classes.

A: At the end of one semester B: At the end of one year

C: At the end of two years D: At the end of four years

Notes: For each GPA between 0.00 and 4.30 (in increments of 0.01) we plot the probability that a student with that
observed GPA had taken classes with the mode of 3.7. Across panels, we reconsider this relationship as the number of
classes increases. In each panel, the population of students is split equally between the two types. See Section 2.2 for
related discussion.
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Figure 7: Non-random sorting into GPA: What if H types just take an extra class?

In each panel we evaluate a DGP with two types of student—they both draw grades from a “triangle-13” PDF with a
mode of 3.7 (as in Panel D of Figure 3) but L types draw c grades from that PDF and an equal number of H types draw
c + 1 grades from that PDF. Across panels, we ask how the sorting of students into GPAs systematically changes as
students take more classes.

A: Around entry B: Around one semester
(1 vs 2 classes) (4 vs 5 classes)

C: Around one year D: Around two years
(8 vs 9 classes) (16 vs 17 classes)

E: Around three years Panel F: Around four years
(24 vs 25 classes) (32 vs 33 classes)

Notes: For each GPA between 0.00 and 4.30 (in increments of 0.01) we plot the probability that a student with that
observed GPA had taken c+ 1 classes. See Section 2.2 for related discussion.
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Figure 8: The proportional breakdown of students sorted into GPA by curves experienced

Here, we assume that there are many types of students are present in a population (instead of only two), and ask how
those students will be distributed across GPAs. In Panel A we visualize the distribution of six types of students, each
reflecting one of the grade PDFs shown in Figure 4. In Panel B we assume 13 types of students, each drawing grades
from a triangle distribution with a modal grade that corresponds to the 13 traditional letter grades (i.e., F to A+).

Panel A: Six types of grading types (i.e., those from Figure 4)

(i) After one year (ii) After two years

Panel B: Thirteen triangle distributions, centered on each grade point

(i) After one year (ii) After two years

.

Notes: For each GPA between 0.00 and 4.30 (in increments of 0.01) we plot the stacked probabilities that a student with
that observed GPA had experienced the associated grading curves. See Section 2.2 for related discussion.
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Figure 9: Bandwidth sensitivity in RD estimates evidences combinatorics

In the absence of any treatment, we retrieve estimates of the discontinuity in outcomes at GPAs at or above 2.50. Due
to combinatorics, H and L types populate the domain of GPAs di↵erently—this amounts to a violation of the smoothness
assumption if this sorting is around the RD threshold. Here, as H types are level di↵erent in outcomes, this violation
is transmitted through to estimated treatment e↵ects. Estimates at smaller bandwidths are more likely to reflect the
non-monotonicity in student-type across GPA. See Section 3 for related discussion.

A: Bandwidth sensitivity at the end of one semester (4 classes)

B: On either side of the cuto↵, the fraction of “High” types

C: The combinatorics-induced sorting of types across bandwidths

Notes: In each panel we consider bandwidths in increments of increments of 0.01 and report means across 200 simulations
of 5,000 students.
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Figure 10: Bandwidth sensitivity in RD estimates at di↵erent times

As in Panel A of Figure 9, we retrieve estimates of the discontinuity at GPAs at or above 2.50. (As there is no treatment
at 2.50, these should be zero.) This demonstrates that combinatorics is more of a concern at smaller numbers of classes
and at smaller bandwidths, with mean convergence becoming more of a concern at larger numbers of classes and at larger
bandwidths. See Section 3.2 for related discussion.

A: At the end of two classes B: At the end of one semester
(highly sensitive to combinatorics)

C: At the end of one year D: At the end of two years
(highly sensitive to mean convergence)

Notes: In each we panel consider bandwidths in increments of increments of 0.01 and report means across 200 simulations
of 5,000 students. In the data-generating process, students take four classes per semester (i.e., eight classes per year).
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Figure 11: The combinatorics-induced sorting into bandwidths at di↵erent times

As in Panel C of Figure 9, we visualize how the population of High and Low type students are distributed around a GPA threshold.
When students have taken few courses, only some GPAs can be reached, leading the sample included on either side of an RD
threshold to change discretely as bandwidths grow. Smoothness in the distribution of High and Low type students only begins to
appear after one year of courses have been taken (Panel C), though mean convergence is also begins to appear. See Section 3.2
for related discussion.

A: At the end of two classes B: At the end of one semester

C: At the end of one year D: At the end of two years

Notes: In all cases, the cuto↵ is a GPA of 2.50 and above. In each panel we consider bandwidths in increments of
increments of 0.01 and report means across 200 simulations of 5,000 students. In the data-generating process, students
take four classes per semester (i.e., eight classes per year).
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Figure 12: Bandwidth sensitivities when there is student-level variation in the number of classes

In the absence of any treatment, we retrieve estimates of the discontinuity in outcomes at various GPA thresholds. All
students have drawn course grades from the same probability distribution (i.e. a triangle distribution with a modal grade
of 2.7), but half of the sample has taken four classes while the other half has taken five classes. In this way we mimic
the set of decisions that commonly occur for students after one semester of coursework, such as entry into a specific
degree program. We demonstrate that variation across students in the number of classes taken can induce bias through
combinatorics. We also evidence here that combinatorics bias is generally unsignable—the sign of point estimates here
varies with bandwidth and treatment threshold. See Section 3.3 for related discussion.

Notes: In each panel we consider bandwidths in increments of increments of 0.01 and report means across 200 simulations
of 5,000 students.
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Figure 13: Bandwidth sensitivity controlling for student-level variation in the number of classes

In the absence of any treatment, we evaluate the bandwidth sensitivity of an RD estimator at a 2.70 GPA threshold (using
the same data as in Figure 12), with and without controlling for the number of courses taken. All students have drawn
course grades from the same probability distribution (i.e. a triangle distribution with a modal grade of 2.7), but half of
the sample has taken four classes while the other half has taken five classes. We demonstrate that the bias induced by
combinatorics is eliminated when a visible signal of the heterogeneity between students in grade accumulation can be used
as a control. See Section 3.3 for related discussion.

Notes: In each panel we consider bandwidths in increments of increments of 0.01 and report means across 200 simulations
of 5,000 students.
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Figure 14: How well does GPA predict outcomes when there is unobserved student heterogeneity?

We evaluate the ability of various estimators to predict simulated wages when provided only with GPA. With enough
flexibility, OLS estimators can predict the global non-linearity in outcomes, but fail to capture the local nonlinearities.
In contrast, the random forest captures local nonlinearities in wages. All panels use the same sample of 30,000 students
observed at the end of two years of classes. See Section 4.1 for related discussion.

A: 1st order polynomial (OLS) B: 3rd order polynomial (OLS)

C: 9th order polynomial (OLS) D: Random forest

Notes: L-type students draw from the PDF in Panel C of Figure 3, and H-type students draw from the PDF in Panel
D of Figure 3—these PDFs are both triangles with modes of 2.3 and 3.7 respectively. We plot the predicted wage for
each GPA in the domain over which we observe at least one student—GPAs between 1.20 and 3.63. Outcomes are
level di↵erent between the two types and include a randomly drawn error that is normally distributed with a standard
deviation of 300. Out-of-bag predictions are used for the random forest results presented in Panel D.
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Figure 15: Can machine-learned methods capture student heterogeneity using transcript-level infor-
mation?

While the random forest on GPA in Figure 14 tracks average outcomes well, the addition of transcript-level data allows

a random forest to identify heterogeneity at individual GPAs. This panel reflects a sample of 30,000 students observed

at the end of two years of classes.

Notes: We plot the predicted wage for each GPA in the domain over which we observe at least one student—GPAs
between 1.20 and 3.63.
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Figure 16: How well does a causal forest distinguish heterogeneous treatment across student type?

We estimate conditional average treatment e↵ects (CATE) with and without heterogeneity in treatment e↵ects. The
causal forest estimator identifies the presence of treatment e↵ect heterogeneity when present, even when only provided
with GPA. Adding individual course grades enhances the causal forest’s ability to capture the treatment di↵erences between
types (or lack of di↵erence in the absence of treatment). We test for heterogeneous e↵ects in the CF estimators following
Chernozhukov et al. (2020) and Athey et al. (2019). More generally, causal forests reject the null hypothesis of no
heterogeneity in 100% of simulations.

A: With true heterogeneity in treatment across types

GPA GPA and course grades

B: With no treatment of either type

GPA GPA and course grades

Notes: In all panels we simulate 30,000 students observed at the end of two years of classes, with a GPA threshold for
treatment of 2.50 and above. We plot the density of estimated treatment (in wage). See the GRF manual (link) for
more details on causal forest estimation and formal tests for treatment e↵ect heterogeneity. See Section 4.2 for related
discussion.
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Table 1: The natural variation in GPA exposes RD estimators to over rejecting the � = 0 null

Treatment estimates are expressed as point estimates relative to standard deviations of the dependent variable. Values
in parentheses show the share of simulations in which the estimator (incorrectly) rejects the null hypothesis that � = 0.
The impact of combinatorics on the same RD estimator using a smaller bandwidth is more apparent when students have
taken fewer classes. However, as the number of classes taken increases the RD estimator is increasingly vulnerable to
the bias induced by mean convergence. The DGP underlying these simulations is shown in Figure 5.

Estimated e↵ect sizes
(fraction of times p < 0.05)

At the end of At the end At the end
one semester of one year of two years

(1) (2) (3)

Panel A: Regression discontinuities over-reject the � = 0 null

Optimal bandwidth 0.0531 0.0888 0.1146
(0.31) (0.56) (0.61)

Optimal bandwidth ⇥ .1 0.1340 0.1069 -0.0039
(0.13) (0.08) (0.06)

Panel B: Causal forests reject the � = 0 null appropriately

GPA -0.0004 -0.0001 0.0005
(0.04) (0.05) (0.05)

GPA and individual course grades -0.0003 0.0000 0.0005
(0.04) (0.05) (0.05)

Panel C: Causal forests, with bandwidth-restricted samples

Sample restricted to the RD’s optimal bandwidth

GPA -0.0001 0.0001 0.0009
(0.04) (0.05) (0.04)

GPA and individual course grades -0.0001 0.0002 0.0009
(0.04) (0.05) (0.04)

Sample restricted to the RD’s optimal bandwidth ⇥ .1

GPA -0.0015 0.0004 0.0011
(0.05) (0.04) (0.06)

GPA and individual course grades -0.0010 0.0005 0.0015
(0.05) (0.04) (0.06)

Notes: Estimates are means across 1,000 samples of 30,000 students using the same DGP as in Panel A of Figure 16.
Optimal bandwidth selection for the fuzzy RD estimator follows that of Imbens and Kalyanaraman (2012). If the smaller
bandwidth RD estimator would lead to empty bandwidth on either side of the treatment threshold, we default to the
smallest populated bandwidth. We test for heterogeneous e↵ects in the CF estimators following Athey et al. (2019),
Chernozhukov et al. (2020).
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Appendices

A Performance of OLS and ML wage prediction models

In Table A1 we report quantitative measures of the performance of the wage prediction models shown
in Figure 14. The data generating process through which students accumulate grades and realize
post-graduation wages is unchanged from that described in Section 4.1.39 We test the performance
of these methods across 1,000 simulations when evaluating a population of 30,000 students observed
at the end of 1 semester (Panel A), one year (Panel B), and 2 years (Panel C). Here we highlight
the results from Panel A, where the population of students in question has taken four classes, but we
note that the results and relative performance of our prediction models are similar when students have
taken more classes. In Column (1) we report the frequency at which a 0.01 increase GPA is associated
with a decrease in the weekly wage of the average student. At the end of one semester, a 0.01 increase
in GPA predicts a decrease in weekly wages 43.7 percent of the time, across simulations.40 While
the fitted polynomials rarely predict such a decrease, the random forest predicts that wages rise as
GPA rises 43.5 percent of the time, close to the true share in the data. Moreover, as we report in
Column (2), roughly 98 percent of these predictions are accurate. As a complement to Column (2),
in Column (3) we report the fraction of GPAs at which average wages decrease that are missed by
each of our models. Again, the random forest performs especially well, and fails to “catch” a GPA at
which average wages fall only 2 percent of the time.

In columns (1) through (3) we demonstrate that the random forest predictor is e↵ective at capturing
local non-monotonicities in average wages. But the question of how closely each estimator tracks
average wages is also important. To address this question, in Column (4) we report the mean distance
between the predicted and true average outcome at each GPA.41 We express the distances in Column
(4) relative to that of the linear model. For example, when evaluating students at the end of one year
of classes, the random forest predicts wages that are over ten-times closer to the true average wage
than the predictions of the linear model.

39 Due to the sparsity of students in the tails of GPA, we report these measures of model performance for the inner-95
percent of observations. In the tails, this sparsity leads to erratic changes in the average wage across GPAs, which all of
our models have di�culty in tracking.

40 Absent any statistical noise, combinatorics alone would lead a 0.01 increase in GPA to predict a decrease in weekly
wages 41.8 percent of the time when this population of students was observed after one semester of classes.

41 We compute distance as the absolute di↵erence between the predicted wage and the average actual wage at a GPA.
This statistic captures how well the prediction lines in Figure 14 track the true average wage line, but in a way that can
be easily averaged across multiple simulations. In plain language, Column (4) captures how far apart the purple and
grey lines are in Figure 14.
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Table A1: Across methods, how well does GPA predict (simulated) weekly income variation?

How often does How often is the How often does it Distance between
wage decrease? a predicted decrease not catch the the predicted and actual

correct? decrease? wage at a GPA, relative
to 1st order polynomial b

(1) (2) (3) (4)

Panel A: At the end of one semester (4 classes)

DGP 43.5% – – –

OLS
1st order polynomial 0.0% - 100% 1.000
3rd order polynomial 0.1 53.1 99.9 0.911
9th order polynomial 0.3 57.5 99.7 0.898

Random forest 43.5 98.1% 2.0 0.082

Panel B: At the end of one year (8 classes)

DGP 44.7% – – –

OLS
1st order polynomial 0.0% - 100% 1.000
3rd order polynomial 0.1 46.4 99.9 0.864
9th order polynomial 0.3 46.8 99.7 0.836

Random forest 44.6 97.6% 2.6 0.119

Panel C: At the end of two years (16 classes)

DGP 44.8% – – –

OLS
1st order polynomial 0.0% - 100% 1.000
3rd order polynomial 5.5 50.3% 93.9 0.629
9th order polynomial 3.8 50.2 95.8 0.469

Random forest 44.8 98.5 1.5 0.021

Notes: Based on 1,000 simulations of 30,000 students. We calculate all values using only the students with GPAs in the
central 95% of the data. At 8 classes, the average minimum GPA in the central 95% of the data is 1.64and the maximum
is 3.29, while at 16 classes the minimum GPA is 1.82 and the maximum is 3.11. Actual wage decreases are defined as
instances in the simulated data wherein the average wage at a GPA falls compared to the average wage at the next lower
and at which we observe students.
a In the actual wage data generated by the DGP, and then in the wages predicted at each GPA by each of the methods.
b In plain language, Column (4) captures the average distance (across 1,000 simulations) between the purple and grey
lines shown in Figure 14, normalized by the value of the first-order polynomial.
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B Top-coding in GPA

In the above analysis, one will have noted that we allowed for “true 5s” in the underlying data
generating process—given the abstraction exercise this worked fine. However, while we anticipate that
very strong students might well be expected to achieve at that level (in outcomes yi, that is), their
measured performance (in GPAi) might not fully reflect their relative aptitude within the traditional
domain of GPAs.

In Figure B1 we have enforced the top-coding of grades at 4.30, which binds on these “true 5s” in
particular. Of consequence, then, is this: if the relationship between outcomes and underlying ability
continues while the measure of ability (i.e., GPA) is top-coded, then the econometrician is unable
to model yi = f(GPAi) well among the highest-ability students.42 Here, this biases estimates of
treatment down, which is demonstrated in the estimated discontinuity in Panel A. Had GPA not been
top-coded at 4.30, the econometrician would have been able to fit this relationship to outcomes and
thereby identify the true null e↵ect within the data. However, where bandwidths are such that top-
coded students receive weight in the estimator, the resulting bias is best thought of as unsignable—our
recommendation is that regression-discontinuity exercises limit bandwidths to GPAs strictly less than
the limit of the domain of all GPA (e.g., 4.30). In Panel B of Figure B1 we confirm that we do not reject
the �̂ = 0 null when limiting the bandwidth to exclude the top-coded students at 4.30. Alternatively,
one could consider formally modeling whether there are heaps at the limits—unexpected mass in the
distribution of students at 4.30 would be informative, for example, and the potential sensitivity of �̂
to the inclusion of (potentially) top-coded students may be a valuable experiment.43

For a more flexible environment in which to explore the variation in RD estimates in simulated
GPA data, see https://glenwaddell.shinyapps.io/RD-in-GPA-data/.

42 In the data-generating process we’ve again allowed for an equal level increase in yi for the “5” types.
43 Note that it is only in the absence of top-coding that positive and negative grade shocks contribute symmetrically

to GPA-measured performance. For example, the measurable e↵ect of positive shocks is attenuated for better-performing
students (e.g., a “true 5” is only recorded as a 4.3) while negative shocks transmit fully to GPA. (Likewise, low-performing
students will receive the full weight of positive shocks, while the measured e↵ect of negative shocks will be be tempered.
This seems less concerning, in practice.)
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Figure B1: The e↵ect of top-coding GPA on RD estimates in the absence of treatment

A: The e↵ect of top-coded students on �̂

B: Bandwidth selection to remove potential top-coding

Notes: In both panels, students draw uniformly from the grades that are within ±1 of their median grade, which is
anchored by their type. In both panels there are 125 students of each type (i.e., n = 125⇥ 5 = 600 students). Students
take four classes per semester and two semesters per academic year. See Section 2.1 for related discussion.
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