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ABSTRACT
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Importing Air Pollution? Evidence from 
China’s Plastic Waste Imports*

Plastic waste trade has grown considerably in the last decades and has caused severe 

environmental problems in recipient countries. As the largest recipient, China has 

permanently banned the imports of plastic waste since 2018. This paper examines the 

causal effect of plastic waste imports on air pollution by exploiting China’s experience 

of importing plastic waste and the recent import ban. Combining data on plastic waste 

imports with PM2.5 data at the city level for the years 2000-2011, we find that plastic 

waste imports increased PM2.5 density significantly. This effect is linked to expanded 

production in the waste processing sector and an increased number of incineration. To 

evaluate the impact of the import ban on air quality, we employ daily data on air pollution 

between 2015 and 2020. Our difference-in-differences results show that affected cities, 

relative to other cities, experienced a significant improvement in air quality following the 

ban. These findings suggest potential environmental gains from banning plastic waste 

imports in other countries.
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1 Introduction

Global trade in waste and scrap has rocketed since the early 1990s, reaching more than two

million tons in 2011, an increase of more than five times in the last two decades (Kellenberg,

2015; Gregson and Crang, 2015; Li et al., 2021). Plastic waste trade has contributed considerably

to this growth, with a growth rate of 546% from 1996 to 2018.1 The consequent environmental

problems have been at the forefront of public debates (e.g. UNEP, 2019; Roger, 2022; UNEP,

2022). Yet, quantitative analysis is still scarce. Although investigating the environmental effects

of trade is a pertinent research area in the international trade literature, and ample empirical

evidence is available to date in various contexts (see Copeland et al., 2021, for a review), the

role of waste trade has been yet largely neglected (Zhao et al., 2021). This paper fills this gap by

estimating the causal impact of plastic waste imports on air pollution in the context of China.

While plastic has become a major commodity globally, the management of plastic waste has

been very challenging. Plastic materials have a long natural degrading process, leading to a

high environmental cost of waste disposal. Plastic waste recycling has not yet been cost-effective

in many countries, especially in those with high environmental standards. According to Geyer

et al. (2017), only 9% of plastic waste is recycled, with the remaining either being incinerated

or dumped in landfills, causing serious environmental problems and adverse impacts on

human health and development (see Manzoor et al., 2020, for a review). Exporting plastic

waste to other countries has provided a simple outlet for many – in particular industrialised –

countries to deal with their overwhelming plastic waste and circumvent domestic environmental

problems (Brooks et al., 2018). The vast majority of plastic waste is shipped from Global North

to Global South (Gregson and Crang, 2015; Brooks et al., 2018). This has deteriorated the

environment in developing countries due to their less developed waste processing technologies

and management practices (Ray, 2008). In this paper, we are interested in the plastic waste trade

induced environmental effects in developing countries and specifically focus on air pollution.

China provides an ideal context to study this question for various reasons. First, following its

accession to the WTO in 2001, China experienced a boom in plastic waste imports, rendering

it the world’s largest recipient in the early 2010s. As of 2016, China received 45.1% of global

accumulated plastic waste exports (Brooks et al., 2018).2 Second, during the same period,

China experienced rapid deterioration in environmental quality. While this could be due to

1Own calculation with data retrieved from the World Integrated Trade Solution (WITS) database.
2Hong Kong imported 27.3%, ranked the second on the importing list. As Hong Kong is the entry port of mainland

China with a large majority of its imports being further shipped to China, more than half of global plastic waste
exports are designated in China (Brooks et al., 2018).

1



various reasons, such as heavy reliance on fuel consumption and lax environmental regulations

(Greenstone et al., 2021), increased imports of plastic waste is also potentially a vital driving

force given the drastic growth.3 Further, realizing the worsening environmental problems,

China declared a “war on pollution” in 2014 and has implemented a series of regulations that

aim to improve environmental quality, including a ban on plastic waste imports that has been

effectively enforced since January 2018. Afterwards, imports of plastic waste have reduced

significantly to a minimal level. The import ban provides us with a natural experimental setting

to empirically examine whether air quality improves in heavily affected cities following the ban

relative to less affected cities.

China’s imports of plastic waste and the environmental quality experienced a clear transition

around 2014. Before that, both plastic waste imports and air pollution show a rising trend,

whereas both have witnessed significant declines afterwards. Thus, our empirical analysis

is divided into two parts. First, we analyse the effect of rising plastic waste imports on air

pollution in recipient cities and in the second part we evaluate the effectiveness of the plastic

waste import ban in improving air quality.

To analyze the impact of plastic waste imports on air pollution, we rely on the transaction-level

customs data between 2000 and 2011 that record the universe of all imports at the Harmonized

System (HS) 8-digit product level, allowing us to identify plastic waste products. Additionally,

they record the final destination of shipments at the prefecture city level, enabling us to link the

processing of imported plastic waste in the destination city to local air pollution. Specifically, we

aggregate imports of all plastic waste types to the destination city level and regress the average

concentration of particulate matter (PM) 2.5, our main measure of air pollution, on city-level

plastic waste imports.

Estimating the causal effects of plastic waste imports on air pollution is challenging because

imports of plastic waste could be driven by local demand. Cities with a large waste processing

sector may be more likely to import plastic waste. At the same time, pollution in those cities

may be more severe due to the large scale of waste processing, which involves by nature

pollution-intensive activities. On the contrary, air quality may be better in those cities if they

develop more environmental friendly technology. These two alternative cases would create

upward or downward biases in our estimates.

To solve the endogeneity problem, we first include a set of city-level controls in our estimations,

such as GDP per capita, sectoral composition, the size of local plastic production, and the share

3Substantial geographical and temporal variations in both plastic waste imports and air pollution allow us to
uncover possible relations between the two.
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of pollution-intensive sectors, to capture local demand attributed to those factors. The inclusion

of GDP per capita additionally controls for the income channel through which imported plastic

waste could benefit the local environment by contributing to the growth of the waste processing

industry and/or the plastics industry, thereby allowing us to concentrate on the direct effects

on air pollution.

Second, we utilise an instrumental variable approach using two alternative instrumental

variables. Following the trade literature (Hummels et al., 2014; Mayer et al., 2021), we explore

the exogenous variation in global plastic waste export supply by aggregating total plastic

waste exports of all countries, minus exports to China. To create a city-level measure of the

instrumental variable, we multiply the aggregate plastic waste export supply with the average

tendency of importing for each city. The average tendency is calculated as the fraction of years

for which a city imported plastic waste between 2000 and 2011 following the aid literature (see

e.g. Nunn and Qian, 2014; Dreher et al., 2021). Causal inference using this instrumental variable

relies on the assumption that cities with a higher average probability of importing plastic waste

are more affected by growth in the global total export supply of plastic waste, conditional on city

and year fixed effects as well as a series of control variables. Our second instrumental variable

exploits the fact that bulk plastic waste imports enter China mainly through port cities. Given

the high transportation costs of plastic waste, cities with a larger distance from the port are

less likely to import. The second instrumental variable is thereby constructed as the interaction

between plastic waste export supply and the inverse of the distance to the nearest port. As

additional robustness checks, we replace the global total export supply with the total value of

plastic waste imports by Southeast Asian (SEA) countries, which is then interacted with the

average importing probability of Chinese cities or the inverse of the distance to the nearest port.

This derives from SEA countries being among the major destinations of plastic waste shipments

following China. With an increase in global export supply, both China and SEA countries would

experience higher imports.

To evaluate the impact of the 2018 import ban on air quality, we explore the uneven distribution

of cities that are affected by the ban. Utilising daily data from 2015 to 2020 on various measures

of air pollutants, we are able to identify the causal effect of the ban on air quality by comparing

the air quality of affected cities before and after the ban relative to unaffected cities in a

difference-in-differences (DiD) framework. Due to a lack of data on plastic waste imports at the

city level right before the ban, we rely on cities’ historical records of plastic waste imports in

the years 2000-2011 and define affected cities as those importing plastic waste products in any

years during that time. This approach leans on the assumption of serial correlations of imports
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over time, such that cities that imported plastic waste in earlier years are more likely to import

in later years and are more likely to be affected by the ban. In several robustness checks, we

identify treatment cities using alternative criteria, including importing plastic waste for at least

four years, the median length of importing, or at least six years, corresponding to a probability

of 50 percent, as well as using the probability of importing directly.

Our empirical results show that plastic waste imports significantly increased PM2.5 density in

Chinese cities from 2000 to 2011. These effects are confirmed by the 2SLS estimations using

alternative instrumental variables. Our preferred estimation implies that an average increase in

plastic waste imports during the sample period (i.e. 50.2 percent) raises PM2.5 concentration by

2.5 percent, evaluating at the mean and holding all other things constant. We show that our

estimates are not driven by pre-trends or imports of other types of waste, and are robust to

alternative measures of PM2.5 density, additional controls of economic and trade factors as well

as the possible impact of the Two Control Zones (TCZ) policy, which is the major environmental

regulations imposed during our sample period.

Our results based on the second sample period indicate a significant improvement in air quality

in affected cities after the import ban relative to unaffected cities. On average, the ban reduces

PM2.5 density by 3.7 µg/m3, corresponding to 8.5 percent of the sample average. Using other

measures of air quality, we find that the plastic waste import ban reduces emissions of SO2,

NO2, PM10, as well as the air quality index (AQI), reassuring the air quality improving effects.

To understand how plastic waste imports affect air pollution, we specifically examine two

channels, the “production channel” and the “incineration channel”. The first channel indicates

increased air pollution due to expanded processing of plastic waste, whereas the latter indicates

air pollution generated during the incineration of disposed plastic waste. We find that cities

that import more plastic waste tend to have a larger scale of plastic waste processing and a

larger number of newly registered plastic waste processing firms, especially private firms. We

also find that imports of plastic waste induce an increased number of open-air fires.

This paper is closely related to the large body of literature that studies the environmental effects

of international trade. This literature traces back to Grossman and Krueger (1991) who discuss

the environmental impact of NAFTA. With improved data availability, several empirical studies

have shown evidence on the relationship between trade and the environment. The findings,

however, are far from conclusive (e.g. de Sousa et al., 2015; Cherniwchan, 2017; Shapiro and

Walker, 2018; Gutiérrez and Teshima, 2018; Bombardini and Li, 2020; Cui et al., 2020; Wang,

2021). One reason is that the majority of existing studies consider measures of trade in all

products, which could affect the environment through a variety of channels that work in
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opposite directions (Copeland et al., 2021). In this paper, we focus on trade in waste, which

has been much less studied. Compared to the trade of other products, the impact of waste

trade on the environment is relatively straightforward as only a very small share of waste is

recycled and the overwhelming majority ends up in landfills or dumpsites, which contaminates

the environment (Brooks et al., 2018). To the best of our knowledge, this paper is among the

first that examines the causal effects of waste trade on the environment. Our results suggest

that although waste takes a relatively small share in total trade, its effect on the environment is

not negligible.

This study also contributes to the literature that documents the effects of environmental policies

on air quality, especially in China. The air-cleaning actions taken by the Chinese government for

the Olympic Games in 2008 and the implementation of fuel standards and driving restrictions

in China are found to significantly reduce air pollution (Chen et al., 2013; Viard and Fu, 2015;

Li et al., 2020). We complement this stream of literature by investigating a more recent, large-

scale environmental policy, the plastic waste import ban, and its effectiveness in improving

environmental conditions.

Several studies have discussed the Chinese import ban on plastic waste (e.g. Brooks et al., 2018;

Wen et al., 2021) and shown descriptive evidence on its effect on trade flows. One paper that

is close to the second part of our analysis is Li and Takeuchi (2021), which investigates the

effects of the ban on air quality in Chinese cities. Using daily data on ozone concentrations,

they employ a DiD approach and find that the import ban reduces ozone concentration in

coastal compared to inland cities. Our paper distinguishes itself from Li and Takeuchi (2021)

in several aspects. First, they consider cities in three coastal provinces as the treatment group

and cities in three inland provinces as the control group. In contrast, we include all Chinese

cities in our analysis and define treatment cities based on their historical records of plastic

waste imports. Hence, we can identify the differential effectiveness of the ban across cities

more precisely. Second, they use data of 2017 and 2018, whereas in this paper, we use data

spanning a longer period (2015 to 2020), which covers the implementation of the second ban

effective from December 31, 2018. Third, they consider ozone concentration as the sole measure

of air quality. By contrast, our paper uses PM2.5 as the primary measure but also considers six

additional measures, allowing us to evaluate the impact of the ban on air quality in a more

nuanced way. More importantly, besides assessing the effects of the ban, we also examine

the effects of plastic waste imports on air pollution using city-level import data for the years

2000-2011. This complements the findings of the import ban and provides a complete picture of

the environmental effects of China’s experience of waste imports.
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The rest of the paper is organised as follows. In Section 2 we provide more information on

China’s plastic waste imports and its import ban on plastic waste in 2018. Section 3 describes

the data and measures of key variables. In Section 4 we perform the first empirical analysis

using city-level data between 2000 and 2011 and focus on the effect of the plastic waste imports

on air pollution. Section 5 presents the second empirical analysis where we evaluate the impact

of the plastic waste import ban on air quality. Finally, Section 6 concludes.

2 Plastic waste imports in China and the import ban

Plastic production skyrocketed in the mid-1990s, provoking a rise in the supply of plastic

waste. World total export of plastic waste peaks in 2011 with a trade volume of 7.6 billion USD.

Afterwards, it decreases continuously, as shown in Figure 1 that depicts the global trend in

plastic waste exports from 1996 to 2020 based on data from the WITS database.

Figure 1: Plastic waste exports by destination over time: 1996-2020

Notes: This figure shows the time trend of world total plastic waste exports, exports to China, exports to non-China markets as

well as exports to the south east Asian (SEA) countries (all in billion USD) over the time period of 1996 to 2020. Data are from the

WITS database. Plastic waste products are identified according to HS6 codes 391510, 391520, 391530, and 391590. The red dashed

line indicates the time of China’s plastic waste import ban in 2018.

A substantial share of plastic waste is traded from high-income countries to developing countries

(Wen et al., 2021), consistent with the prediction of the “Pollution Haven Hypothesis”. It states

that high-income countries where environmental protections are stringent tend to locate their

pollution-intensive productions in low-income countries with laxer environmental regulations

(Copeland and Taylor, 1994).
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China has played an important role in the rapid growth of the world export of plastic waste.

Since its accession to the WTO in 2001, China has experienced a substantial increase in plastic

waste imports and quickly became the world’s largest recipient. Until 2018, China received

around half of the world’s total plastic waste exports (Brooks et al., 2018; Wen et al., 2021).

The substantial growth of waste imports in China is partly due to the lax environmental

policies relative to its trade partners, which attracts waste inflows from countries with stricter

environmental regulations, notably the EU countries and the U.S. (Kellenberg, 2012, 2015; Li

et al., 2021). Another reason is the increased domestic demand for cheap intermediate inputs,

particularly in the 2000s when China experienced rapid economic growth. Importing plastic

waste is one way to meet the demand given the possibility to recycle materials at a very low

cost (Li et al., 2021), though the environmental costs are not necessarily low.

Expecting a surge in waste imports following China’s WTO accession, the Chinese government

published a catalogue of solid wastes in 2002, whose imports were regulated with import

licences, and a catalogue of solid wastes that were prohibited from being imported. The two

catalogues were updated irregularly over time, and plastic waste was added to the regulated list

in 2005. Despite these regulations, the imports of waste, including plastic waste, still experienced

substantial growth. In recent years, the Chinese government has become more concerned about

environmental pollution and declared a “war on pollution” in 2014, whereby several policies

aiming at alleviating environmental pollution have been implemented (Greenstone et al., 2021).

Among those policies, the “National Sword Operation” initiative in 2017/18 that permanently

banned the imports of four categories of solid waste, including plastic waste, was prominent

and has induced remarkable impacts on the global recycling industry.

The Chinese government notified the WTO on July 27, 2017 about implementing a permanent

import ban on 24 types of solid waste in four categories: non-industrial waste plastics, unsorted

scrap papers, discarded textile materials, and vanadium slags. The ban became officially

effective on January 1, 2018. It was the first time that plastic waste appeared on the Chinese

import ban list, and the policy has brought about considerable public concerns about plastic

waste crises in developed countries (see numerous media reports such as de Freytas-Tamura

(2018) and Agence France-Presse (2019)). Additionally, contamination regulations of waste

imports were tightened. A new limit of 0.5% contamination in imported waste loads took effect

on March 1, 2018.

The ban created a strong effect on the global waste trade market. With limited ability to

manage waste domestically in a short time, many countries diverted their waste exports to

other countries, mostly to SEA countries, as shown in Figure 1. This caused worries about
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possible waste crisis in those countries (Jain, 2020). Some of them lately enacted similar bans

(The Economist, 2019). Consequently, total world exports of plastic waste decreased sharply

(Brooks et al., 2018; Liang et al., 2021, see also Figure 1). To further reduce waste imports, China

enforced a second import ban on additional solid waste materials, including the remaining

types of plastic waste, namely industrial plastic waste, on December 31, 2018.4

In this paper, we focus on plastic waste, although the ban did not solely target plastic waste

and the imports of several other types of solid waste were also banned. This is because

plastic materials have a crucial role in waste management due to their vast amount and

persistence. Inappropriate processing of plastic waste, especially incineration, could generate

severe air pollutants, which can be measured well by our data. Additionally, it was the first

time in 2018 that plastic waste imports were permanently banned in China. In contrast, the

Chinese government started to limit the imports of other types of waste much earlier. From

the perspective of identification, focusing on the plastic waste import ban would allow us to

evaluate its causal impact on air pollution in a quasi-experimental setting.

Given the divide in the trend of plastic waste imports and environmental policies around

2014, our empirical analysis consists of two parts. The first part investigates the rise in plastic

waste imports to China over the period 2000 - 2011, and the second part evaluates the sharp

decrease in plastic waste imports in 2018 with the enactment of the import ban on several plastic

waste materials.

3 Data and measures

3.1 Measuring air pollution

Our main outcome variable is air pollution measured by PM2.5 density.5 We choose this measure

for two reasons. First, PM2.5 is one of the major pollutants emitted from plastic waste processing,

especially from incineration. Second, data on PM2.5 is the only measure available at the city level

for the entire sample period spanning 2000 to 2020. In our analysis of later years with better

data availability, we also consider other air pollution measures, such as densities of sulphur

dioxide, carbon monoxide, etc.

4According to the data from the WITS, China imported 39.04 million USD (51.60 thousand tons) of plastic waste in
2018 and only 0.52 million (0.92 thousand tons) in 2019. By contrast, China imported 3263.26 million USD (5828.59
thousand tons) in 2017 and an average of 4645.09 million (7624.00 thousand tons) between 2013 and 2017.

5PM2.5 indicates small, non-visible particles and liquid droplets in the air composed of different chemicals. Among
others, they can be emitted by traffic, fires or industrial production (EPA, 2021). Being inhaled, they can cause severe
health problems, mainly respiratory diseases. The World Health Organization considers annual average ambient
PM2.5 concentrations lower than 5 µg/m3 and daily levels less than 15 µg/m3 to be safe for health (WHO, 2021).
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Our PM2.5 measure is from the global annual grid-level data on PM2.5 provided by the

Socialeconomic Data and Applications Center (SEDAC) of the National Aeronautics and Space

Administration (NASA) (Center for International Earth Science Information Network - CIESIN

- Columbia University, 2020). This data set reports global PM2.5 concentration measures at a

0.01 degree grid cell level for the years 1998 to 2016 by combining multiple satellite-based data

sources, and provides a reliable measure of air pollution for earlier years in China when data of

air pollution are scarce (Fu et al., 2021). Based on this data set, we calculate the annual average

(as well as minimum and maximum) PM2.5 density for 334 Chinese prefecture-level cities for

the years between 2000 and 2011 when we have data on plastic waste imports. The average

annual PM2.5 concentration is 31.58 µg/m3, ranging from 1.03 to 90.86 µg/m3. Figure 2 shows

the spatial and temporal heterogeneity in PM2.5 concentrations across Chinese cities, mapping

PM2.5 density per city in 2000 and 2011. In both years, we observe the largest PM2.5 density in

the east coastal region. The average PM2.5 density increases from 2000 to 2011 overall, notably

in the east and middle parts of China.

(a) 2000 (b) 2011

Figure 2: PM2.5 density by city based on the SEDAC data in 2000 and 2011
Notes: This map shows city-level average PM2.5 density in 2000 and 2011. Data on average PM2.5 are retrieved from the satellite-
based estimates of PM2.5 maintained by the Socialeconomic Data and Applications Center (SEDAC) at Columbia University.

As an alternative data source, we utilise the average city-level PM2.5 density generated from

the Atmospheric Composition Analysis Group (ACAG) (Hammer et al., 2020) to check the

robustness of our main results. The ACAG data provide 0.01◦× 0.01◦ pixel-level PM2.5 estimates

on both yearly and monthly bases from 1998 to 2020 and allow us to generate city-level

measures of PM2.5 covering the analysis sample period. The average PM2.5 density based

on this alternative source shows a very similar pattern across cities and years to that of the

SEDAC based measure (see Figure A.1 in Appendix A), with an average density of 43.40µg/m3.6

To analyse of the effect of the plastic import ban in later years, we rely on finer-grained data

6The simple correlation between the two measures is 0.77.
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provided by China National Environmental Monitoring Centre (CNEMC) which reports daily

air quality measures of more than one thousand monitoring stations across China. Besides PM2.5,

this dataset also reports various further measures of average daily air pollutants, including

carbon monoxide (CO), sulphur and nitrogen dioxide (SO2 and NO2), ozone (O3), PM10, as well

as the composite air quality index (AQI) calculated based on the six types of air pollutants. The

raw data report daily information of 1,488 stations in 334 cities from May 2014. In this paper we

use data from January 2015 to December 2020, allowing three years both before and after the

implementation of the import ban.

Figure A.2 in Appendix A shows the average PM2.5 density over the years 2000 − 2020 based

on the above three data sources. The ACAG measure is larger than the SEDAC measure

throughout, but shows a similar time trend. Average PM2.5 density increases from 2000 to

around 2007, followed by a modest decrease until 2013. Since then, PM2.5 density has been

decreasing considerably, a pattern confirmed by data from both ACAG and CNEMC. Our

analysis samples thereby cover the period when China experienced substantial deterioration of

air quality with rapid growth of plastic waste imports and the period when air quality has been

improved and plastic waste imports have been permanently banned.

3.2 Measuring city-level plastic waste imports

Our main explanatory variables capture plastic waste imports per city over time. We rely on

transaction-level Chinese customs data from 2000 to 2011, maintained by the General Admission

of Customs of China (GACC). They cover the universe of Chinese importers and report detailed

information for each transaction at the HS 8-digit product level, including importers, total

values, source countries, etc. Most importantly, they report the final destination of imports at

the city level until 2011. This is crucial for identifying the effect of plastic waste imports on local

air quality, as most plastic waste imports entered China through harbour cities and were then

shipped to inland regions for processing (see Figure A.3).7 Measuring plastic waste imports

according to their final destination allows us to precisely evaluate which cities were affected. We

identify plastic waste products according to the list published by the Ministry of Ecology and

Environment of the People’s Republic of China that includes five HS-8 digit codes: 39151000

(plastic wastes, parings, and scraps of polymers of ethylene), 39152000 (plastic wastes, parings,

and scraps of polymers of styrene), 39153000 (plastic wastes, parings, and scraps of polymers of

vinyl chloride), 39159010 (plastic wastes, parings, and scraps of polyethylene terephthalate),

792.39% of imported plastic waste between 2000 and 2011 arrived at the east and southeast coasts of China, with
40.05% entering China through six ports in Guangdong province and 26.04% through Shanghai.
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and 39159090 (other plastic wastes, parings, and scraps).8 Based on the product-level customs

data, we sum up the value of all imported plastic waste products for each city and year.

Figure A.4 in Appendix A maps the value of plastic waste imports for each city for the years

2000 and 2011. It shows that only a small number of cities, notably cities on the southeast coast,

imported plastic waste in 2000. In 2011, however, many more cities imported plastic waste,

including cities in inland regions.9 Importantly, the geographical distribution of importing cities

covers all broad regions in China and provides enough variation across regions that allows us

to identify the environmental effects due to differential intensities of plastic waste imports.

For the later years without data of plastic waste imports at the city level, we construct an

indicator variable Pwaste importer denoting plastic waste importing cities if they imported any

plastic waste during 2000 - 2011. According to this criteria, 275 out of 334 cities are classified as

plastic importers. We also consider alternative criteria, such as importing plastic waste for at

least four or six years during the sample period or importing plastic waste in 2011, and use the

average probability of importing between 2000 and 2011 as a continuous measure of treatment.

3.3 Covariates and mediators

Following the literature (e.g. He et al., 2020; Li et al., 2020; Guo, 2021), we control for a set of

weather conditions in our estimations using data from the NCEP daily global reanalysis data

set and the CPC Global Precipitation Data provided by the National Oceanic and Atmospheric

Administration’s (NOAA) Climatic Prediction Center (Kalnay et al., 1996). On a 2.5 degree

grid cell level, the NCEP data set reports daily surface temperature in degree Kelvin, relative

daily humidity, as well as meridional and zonal wind speed in meters per second. Meridional

wind captures wind speed from north to south, and zonal wind measures wind speed along the

latitudinal line. Information on precipitation is measured at the 0.5 degree grid cell level and

records the total amount of precipitation per day. We aggregate data on these measures to the

city level by calculating the average value over the prefectural area.

In the analysis for the years between 2000 and 2011, we additionally control for time variant

city-level characteristics. They include local population, GDP per capita, and employment, all in

logs, as well as the output shares of the primary and the secondary sectors, which captures the

sectoral composition of the local economy. The data are collected from the China City Statistical

Yearbooks (issues from 2001 to 2012).

8See https://www.mee.gov.cn/gkml/hbb/bgg/201708/t20170817_419811.htm.
9In 2000, 80 cities out of 334 imported plastic waste products. This number increased to 200 in 2011.
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To understand possible channels, we rely on production data from the Annual Survey of

Industrial Firms (ASIF) maintained by the National Bureau of Statistics (NBS) of China that

collects firm-level data on all state-owned enterprises and above-scale private firms with an

annual sales above 5 million Chinese Yuan. Importantly, this database reports the location

and the four-digit industry code for each firm, allowing to identify waste processing firms and

measure the size of the waste processing sector in each city. We also use the firm registration

database that covers the universe of firm registrations in China until 2020. This database

makes it possible to examine changes in the number of new plastic waste processing firms as

an alternative measure of the change in the waste processing sector. Moreover, we use the

information on the exact location and timing of observable fires from the active fire dataset

provided by the Earth Observatory Center of NASA (NASA, 2020). This dataset documents

occurrences of active fires across the globe. Fires are detected via satellite sensors based on heat

signatures. We count the yearly and daily number of active fires per city. Summary statistics

of variables used in the analysis of the two periods are reported in Table A.1 and Table A.2 in

Appendix A.

4 Plastic waste imports and air pollution: City-level analysis for the

years 2000-2011

4.1 Empirical strategy

To estimate the effects of the plastic waste imports on air quality, we regress the average level of

PM2.5 density on plastic waste imports at the city level conditional on a set of control variables

using the empirical specification as follows:

PM2.5,ct = α + βPwaste importsct + γXct + θc + φt + ǫct (1)

where the dependent variable PM2.5,ct denotes the average PM2.5 density level of city c in year

t. Pwaste importsct indicates the total value of plastic waste imports. To account for the fact

that some cities did not import plastic wastes, thereby 0 imports, we transform import values

using the inverse hyperbolic sine transformation (asinh), which is continuous at 0 and can be

interpreted as log point changes with large values (Bellemare and Wichman, 2020). Xct denotes a

set of city-level characteristics that may be correlated with local air quality, including population,

employment, GDP per capita, all in logs, as well as the share of non-agriculture population
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to measure urbanisation and the output shares of the primary and the secondary sectors to

capture the effects of local sectoral structures. We also control for a set of weather conditions to

absorb possible effects on air quality changes. These include average temperature, wind speed

and direction, average humidity, and total rainfalls. θc is city fixed effects, capturing the effects

of all time-invariant characteristics at the city level. φt denotes year fixed effects that control

for aggregate shocks affecting all cities identically in a particular year, such as macroeconomic

changes due to business cycles. ǫct is the error term. We cluster standard errors at the city level

to allow for possible inter-temporal correlations within cities.

One concern of identifying a causal effect by estimating Equation (1) is the endogeneity of

plastic waste imports. As shown in Figure A.4 in Appendix A, cities that imported plastic

waste are not randomly distributed. If unobserved determinants of importing plastic waste

are correlated with local environmental quality, the estimated effects of plastic waste imports

on air quality in Equation (1) would be spurious. One possible factor is the local capacity of

processing plastic wastes. Regions with advanced technology in processing plastic waste are

more likely to import plastic wastes, especially when there is a surplus capacity to deal with

domestic waste. Meanwhile, regions with advanced waste processing technology could recycle

waste more efficiently and consequently produce a lower amount of pollutants. As such, failing

to control for local technology levels would yield underestimates of the effects of plastic waste

imports on air quality.

To deal with the endogeneity of plastic waste imports, we employ an instrumental variable ap-

proach by exploring exogenous determinants of cities’ importing of plastic wastes. Specifically,

we follow the trade literature and construct our instrumental variable by exploiting the world

total plastic waste exports supply (Hummels et al., 2014; Mayer et al., 2021). To account for the

world export growth of plastic waste due to China’s import demand, we exclude exports to

China from total world exports. This ensures that world export growth of plastic waste is driven

by exogenous changes in export supply. As shown in Figure 1, total world exports of plastic

waste, excluding exports to China, show a high correlation with China’s imports of plastic

waste. Alternatively, we consider plastic waste imports by SEA countries as an alternative

instrumental variable since they are among the primary recipients of plastic waste besides

China (see Figure 1).10

To predict city-level imports of plastic waste following world total plastic waste supply growth,

10Autor et al. (2013) and Bernard et al. (2018) use a similar approach and construct the instrumental variable for
the imports of American commuting zones and the exports of Norwegian firms by exploring the imports of other
developed countries and the exports of other Nordic countries, respectively.
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we consider two alternative approaches. The first approach follows the spirit of the aid literature

(e.g. Nunn and Qian, 2014; Ahmed, 2016; Dreher and Langlotz, 2020; Dreher et al., 2021) and

explores the average probability of importing plastic waste. Specifically, we count the number of

years (Numc) that each city imported plastic waste during our sample period and calculate the

propensity of plastic waste imports as Pc = Numc/12. Our instrumental variable is constructed

as follows:

IV1
ct = Pwaste exportsW→O

t × Pc (2)

where Pwaste exportsW→O
t denotes the value of world total plastic waste exports minus exports

to China. In the robustness check, we replace it with plastic waste imports by SEA countries net

of imports from China. In analogue to plastic waste imports, we transform these variables using

the inverse hyperbolic sine transformation. This instrumental variable indicates that cities with

a higher average probability of importing plastic wastes tend to import more with world export

supply growth.

Our second approach exploits the fact that plastic waste imports are often transported through

waterways and enter China via ports.11 Given that waste products are in a high weight but

with a low value, transporting them is expensive and is thereby very sensitive to distance

(Kellenberg, 2015). It follows that cities further away from China’s major ports are less likely to

import plastic wastes. The second instrumental variable is consequently constructed as world

total export supply divided by each city’s distance to the nearest port, as follows:

IV2
ct = Pwaste exportsW→O

t ×
1

Dc
(3)

One concern with this instrumental variable is that distance to the port could be correlated

to other factors that affect the environment, and the exclusion restriction assumption would

be violated. For example, east coastal cities in China are in general more developed than

inland regions. While economic development could be related to better air quality due to

higher income levels and more advanced production technology, intense production activities

could also produce more pollutants. The city fixed effects in our baseline regression could

partially solve this problem. In addition, we include a set of control variables at the city level to

account for local economic growth, industrial structure, labour market conditions, as well as

urbanisation, which could further capture other possible channels through which proximity to

11Our data show that 67.98% of plastic waste imports to China are transported through waterways.
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ports affects environmental quality. As such, this instrumental variable is reasonably exogenous

conditional on the rich set of control variables.

4.2 Empirical results

4.2.1 Baseline results

Table 1 reports the estimation results of Equation (1), in which columns (1)− (3) report the

OLS estimation results and (4)− (6) report the 2SLS estimation results using world total plastic

waste exports times the probability of importing plastic waste of each city as the instrumental

variable. In both sets of results, we start from a baseline specification controlling for only city

and year fixed effects, as in columns (1) and (4). Then we add city-level control variables in

columns (2) and (5) and weather-related control variables in columns (3) and (6).

Both OLS and 2SLS estimations report a positive and highly significant coefficient of plastic

waste imports, indicating that cities that import more plastic waste have a higher PM2.5 density.

The coefficient estimate in our preferred specification with a full set of control variables in

column (6) indicates an elasticity of 0.05 evaluated at the average level of plastic waste imports

and PM2.5 density holding other things constant,12 meaning that a one percent rise in plastic

waste imports induces a 0.05 percent increase in PM2.5 concentration. Alternatively, a city with

an average annual growth rate of 50.2 percent in plastic waste imports would experience a rise

in PM2.5 density by 2.5 percent each year.

Notably, the first-stage estimation results, as shown in Table A.3 in Appendix A, indicate that

our instrumental variable is a good predictor of city-level plastic waste imports. The high

values of Klein-Paar F statistics of first-stage estimations as reported in Table 1 rule out a weak

instrument problem. Notice that the 2SLS estimated coefficients on plastic waste imports are

much larger than those of OLS estimations, indicating that the OLS results are underestimated.

The results on our control variables are generally consistent with existing studies and

expectations. Interestingly, most socio-economic factors are not significantly correlated with air

quality, except cities with a higher share of agricultural production in the local economy having

better air quality. In contrast, we identify much stronger correlations with weather conditions.

Temperature, precipitation, humidity, and wind speed are all negatively correlated with the

PM2.5 density.

12In a linear–arcsinh specification, the elasticity is: ξ =
β̂
ȳ

x̄√
x̄2+1

, where β̂ is the estimated coefficient of the

independent variable, x̄ is the mean of the independent variable, and ȳ is the mean of the dependent variable
(Bellemare and Wichman, 2020).
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Table 1: Plastic waste imports and air quality: Baseline results

Dep. variable: OLS 2SLS

PM2.5 density (1) (2) (3) (4) (5) (6)

Pwaste imports (asinh) 0.168*** 0.171*** 0.154*** 1.705*** 1.805*** 1.444***

(0.041) (0.041) (0.038) (0.227) (0.235) (0.211)

Population (ln) 0.244 0.538 -1.583 -1.097

(2.613) (2.496) (2.461) (2.251)

Employment (ln) -0.810* -0.829* -0.632 -0.690

(0.456) (0.430) (0.487) (0.466)

GDP per capita (ln) -0.599 0.422 0.342 1.282

(1.056) (0.940) (1.361) (1.171)

Primary sector output share (%) -0.099** -0.067* -0.132** -0.088*

(0.044) (0.039) (0.054) (0.048)

Secondary sector output share (%) 0.002 -0.002 0.011 0.006

(0.007) (0.006) (0.010) (0.007)

Average temperature (K) -1.496*** -0.990***

(0.206) (0.264)

Precipitation rate (mm/hr) -0.485* -0.909***

(0.257) (0.334)

Average humidity (kg/kg) -0.320*** -0.305***

(0.044) (0.049)

Wind speed west to east (m/s) -0.102 -0.217**

(0.087) (0.096)

Wind speed south to north (m/s) -1.530*** -1.282***

(0.188) (0.221)

First-stage KP F-statistics 374.628 318.750 331.962

Year FE Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes

Observations 3,869 3,869 3,869 3,869 3,869 3,869

Notes: This table reports OLS and 2SLS estimation results of Equation (1) using city-level data between 2000 and 2011 in

columns (1)− (3) and (4)− (6), respectively. Dependent variable is average PM2.5 density. Columns (4)− (6) use world total

plastic waste exports times the probability of importing plastic waste of each city as the instrumental variable, as in Equation (2).

Standard errors clustered at the city level are reported in parentheses. * p <0.1, ** p <0.05, *** p <0.01.

4.2.2 Exploring possible channels

Plastic waste is imported mainly for the purpose of sorting out useful intermediate materials

that can be re-used for production (Higashida and Managi, 2014; Kellenberg, 2015; Li et al.,

2021). Due to a lack of efficient sorting and categorising technology, especially in the early years,

sorting is predominantly finished by hand. Manual sorting can, however, filter out only a small

portion of re-usable materials, while the overwhelming majority has to be disposed as waste

16



(Geyer et al., 2017). Non-recycled plastic waste is sent to landfills, incineration, or is dumped.

Air pollutants can be generated during the processing of recycled plastic waste materials (the

“production channel”) and during the processing of non-recycled waste, particularly when

plastics are incinerated (the “incineration channel”).

While we are not able to detect air pollutants emitted by plastic waste processing firms directly,

we hypothesise that plastic waste imports contribute to the expansion of the local waste

processing industry. This is detrimental to local air quality due to increases in the emission of

pollutants. At the same time, the expansion of the waste processing industry could contribute

to local economic growth, which we capture with our control variables in the main estimation.

To empirically examine this channel, we regress the size of waste processing production for

each city on imported plastic waste. The size of waste processing production is measured

by the total output of firms belonging to the non-metallic waste processing industry for each

city.13 Notice that data of the waste processing industry are only available since 2003, when

China implemented a new industry classification, reducing our sample to the years 2003 to

2011.14 Column (1) in Table 2 reports the 2SLS estimation result for the production size of

waste processing industries using world export supply times the import probability for each

city as the instrument. It shows that local plastic waste processing significantly expands with

increasing plastic waste imports.15

While the annual survey data allow us to measure the production size of the waste processing

industry, they do not cover below-scale private firms and small-sized individual businesses.

Hence, they disregard production expansion due to the entry of small plants. To address

this issue, we rely on an alternative firm registration dataset that covers the universe of firm

registrations in China. We count the number of newly registered plastic waste processing firms

for each city and regress it on city-level plastic waste imports.16 Additionally, this data set

allows for a distinction between ownership types, including state-owned enterprises (SOEs),

private firms, and individual businesses. Columns (2)− (5) in Table 2 report the results for the

total number of plastic waste processing firms and the number by ownership. The impact on the

total number of new plastic waste processing firms is positive, but is not statistically significant.

13Production data is aggregated from firm-level data collected by the ASIF that reports firm-level information for
all state-owned enterprises and above-scale private firms.

14Output data is not available for 2010.
15Considering that imports of other waste products also affect the development of the waste processing industry,

we replicate the same regression by adding imports of other waste. The results are very similar.
16We identify plastic waste processing firms relying on the description of each firm’s registered business activities.

We first constrain our sample to firms that belong to the waste processing industry and then select plastic waste
processing firms based on the text describing their businesses. Firms with a keyword “suliao” or “sujiao” (both mean
plastics) in their business descriptions are identified as plastic waste processing firms.
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Table 2: Plastic waste imports, plastic waste production, and PM2.5

Dep. var. (asinh): Pwaste New entry of Pwaste plants No. of

production Total SOE Private Indi. fires

(1) (2) (3) (4) (5) (6)

Pwaste imports (asinh) 0.698*** 0.020 -0.011** 0.050*** 0.024 0.148***

(0.177) (0.037) (0.004) (0.017) (0.036) (0.034)

First-stage KP F-statistics 175.947 331.962 331.962 331.962 331.962 331.962

City controls Yes Yes Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Observations 2,583 3,869 3,869 3,869 3,869 3,869

Notes: This table reports 2SLS estimation results. Dependent variable is the output of the non-metallic waste processing industry

(in log) in column (1), the number of newly registered plastic waste processing plants (total and by ownership, transformed

by asihn) in columns (2)-(5), and the number of fires (transformed by asihn) in column (6), all measured at the city level. The

instrumental variable for plastic waste imports is world total plastic waste exports multiplied by the average import propensity

of each city defined as Equation (2) in all columns. Standard errors clustered at the city level are reported in parentheses. *

p <0.1, ** p <0.05, *** p <0.01.

This is because of the offsetting results on SOEs and private firms. Specifically, imported plastic

waste reduces the entry of SOEs but attracts more private firms to enter the market. In addition,

the coefficient estimate for individual businesses is positive, albeit insignificant.

To examine the channel that affects air pollution through waste incineration, we rely on the data

that record observable fires through satellite data. To this end, we count the number of fires in

each city over the years 2000 to 2011 and regress it on plastic waste imports. While we are not

able to identify the causes of fires, we expect that cities with more waste processing activities

would observe more open-air fires, especially in rural areas. The result in column (6) in Table 2

confirms such an expectation and shows that plastic waste imports induce a higher number

of fires.

As a further step to examine these possible channels, we regress the average PM2.5 density on the

channel variables. The results are set out in Table A.4. We fully acknowledge the endogeneity of

the channel variables and only interpret the results as suggestive evidence. It shows that cities

with more entries of private plastic waste processing firms have a significantly higher level of

PM2.5 density. In contrast, the size of plastic waste production, the number of plastic waste

processing firm entries, and the number of entries of other types of firms are not significantly

correlated to PM2.5 density. Not surprisingly, the number of fires is highly correlated to PM2.5

density, consistent with findings in existing literature (e.g. He et al., 2020; Guo, 2021).
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The results in Table 2 and Table A.4 combined provide supportive evidence for both channels.

Plastic waste imports seem to contribute to the expansion of local waste processing production

and more entries of private waste processing firms. Further, we show that plastic waste imports

increase open-air fires, leading to higher local PM2.5 density.

4.2.3 Robustness checks

In this section, we examine our main findings by using alternative measures of PM2.5,

alternative instrumental variables, as well as specifications controlling for additional possible

confounding factors.

Columns (1)− (3) of Table 3 report the 2SLS estimation results using alternative measures

of PM2.5. Our main measure of PM2.5 density is the average value of all pixels within a city.

Alternatively, we use the minimum and the maximum value and report the baseline estimation

results in columns (1) and (2), respectively. The estimated coefficients of plastic waste imports

are very similar to the one of our preferred specification (column (6) of Table 1). Column (3)

considers average PM2.5 density calculated from pixel-level data provided by ACAG (Hammer

et al., 2020). The coefficient estimate on plastic waste imports is positive and highly significant,

with the coefficient size slightly smaller, supporting our main results based on the SEDAC data.

Columns (4)− (6) report the 2SLS estimation results using alternative instrumental variables.

In our main specification, we use the world total export supply of plastic waste multiplied by

each city’s import probability as the instrument. In column (4), we replace world total export

supply with world total export of plastic waste to SEA countries, given that those countries are

among the major recipients following China. In columns (5) and (6), we replace the probability

of importing with the inverse of distance to the closest port, as in Equation (3), considering that

cities further away from the port are less likely to import plastic waste. The first-stage results

in Table A.3 show that all these three alternative instrumental variables are good predictors

of actual plastic waste imports. The high values of F-statistics in Table 3 rule out problems of

weak instrument. The second-stage results in Table 3 show positive and significant coefficients,

supporting the main findings that plastic waste imports lead to higher PM2.5 density.

Table 4 presents results by controlling for a series of additional control variables. Columns (1)

and (2) report the results accounting for the role of other waste imports and total imports in

general. This arises from the concern that China has been the main importer of other types

of waste besides plastic waste, such as waste and scrap of rubber, paper, textile, and metallic

materials. It is likely that cities that import plastic waste also import other types of waste,
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Table 3: Plastic waste imports and air quality: Alternative PM2.5 measures and instrumental
variables

Dep. variable: Alt. PM 2.5 measures Alt. instrumental variables

PM2.5 density (1) (2) (3) (4) (5) (6)

Min. Max. ACAG Exp_SEA× Exp_WLD× Exp_SEA×
Imp. Prob. Port Dist. Port Dist.

Pwaste imports (asinh) 1.406*** 1.375*** 0.802*** 1.273*** 3.494*** 1.469***

(0.195) (0.229) (0.205) (0.190) (0.522) (0.252)

First-stage KP F-statistics 331.962 331.962 331.962 331.551 32.078 84.444

City controls Yes Yes Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes

Observations 3,869 3,869 3,869 3,869 3,869 3,869

Notes: This table reports 2SLS estimation results of Equation (1) using alternative PM2.5 measures (columns 1-3) and alternative

instrumental variables (columns 4-6). Columns (1) and (2) use the maximum and the minimum value of PM2.5 density of all

pixels within a prefecture city as dependent variable. Column (3) uses the average PM2.5 density retrieved from the Atmospheric

Composition Analysis Group (ACAG) as dependent variable. The instrumental variable in column (4) is plastic waste exports to

SEA countries multiplied by the average import propensity of each city. The instrumental variable in column (5) is world total

plastic waste exports divided by the distance to the closest port. The instrumental variable in column (6) is world total plastic

waste exports to Southeast Asian countries divided by the distance to the closest port. Standard errors clustered at the city level

are reported in parentheses. * p <0.1, ** p <0.05, *** p <0.01.

with the latter often increasing air pollution as well. In column (1), we control for the imports

of other types of waste at the city level. The identification of other types of waste relies on

the list provided by OECD.Stat (2020). It includes waste and scrape products of chemicals,

metals, minerals, papers, textile, and others, which covers 56 HS 6-digit codes. The estimation

results show that imports of other types of solid waste do not affect average PM2.5 density

significantly. This may be because PM2.5 is not the major pollutant emitted from processing

those other types of solid waste. While they can contaminate the environment by emitting other

types of pollutants, we are not able to empirically examine such effects due to data availability

constraints. Controlling for the imports of other waste, the effect of plastic waste imports on

local air pollution remains highly significant, highlighting the dominant role of plastic waste in

affecting air quality.

Imports of other products could also affect the environment. Firms, in particular less productive

ones, may adopt less costly but more pollution-intensive production technology in response to

increased import competition, while larger and more productive firms may upgrade production

technology and increase energy efficiency, which reduces pollutant emissions (Gutiérrez

and Teshima, 2018; Cui et al., 2020). Improved access to cheaper intermediate inputs could
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Table 4: Plastic waste imports and air quality: Additional controls and two-way clustering

Dep. variable: PM2.5 density (1) (2) (3) (4) (5) (6) (7)

Pwaste imports (asinh) 1.470*** 1.469*** 1.467*** 1.448*** 1.402*** 1.266*** 1.266***

(0.221) (0.227) (0.230) (0.229) (0.239) (0.290) (0.314)

Other waste imports (asinh) -0.070 -0.070 -0.068 -0.065 -0.057 -0.055 -0.055

(0.047) (0.047) (0.047) (0.047) (0.046) (0.047) (0.051)

Other imports (asinh) 0.006 0.007 0.010 0.005 0.015 0.015

(0.097) (0.097) (0.097) (0.097) (0.096) (0.102)

Plastic production (asinh) 0.061 0.056 0.057 0.061 0.061

(0.044) (0.044) (0.045) (0.045) (0.049)

Plastic exports (asinh) -0.020 -0.021 -0.024 -0.024 -0.024

(0.044) (0.044) (0.044) (0.043) (0.060)

Pollution sector share (%) -0.025 -0.027 -0.027 -0.027

(0.018) (0.018) (0.018) (0.018)

Fiscal expenditure p/c (ln) 1.415 1.519* 1.519

(0.881) (0.902) (0.991)

Pwaste imports (asinh)× TCZ 0.231 0.231

(0.229) (0.251)

First-stage KP F-statistics 317.882 277.106 261.378 253.245 241.952 110.300 84.342

City controls Yes Yes Yes Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes

Clustered SE c c c c c c pt

Observations 3,869 3,869 3,869 3,869 3,811 3,811 3,811

Notes: This table reports 2SLS estimation results of Equation (1). Dependent variable is average PM2.5 density. The instrumental

variable for plastic waste imports is world total plastic waste export supply multiplied by the average import propensity of each

city defined as Equation (2). Standard errors clustered at the city level in columns (1) − (6) and two-way clustered standard

errors at the city level and the province-year level in column (7) are reported in parentheses. * p <0.1, ** p <0.05, *** p <0.01.

also reduce pollution through raising production efficiency or substituting locally produced

pollution-intensive inputs (Cherniwchan, 2017). Column (2) includes total imports net of waste

imports as an additional control. The coefficient of other imports is negative but statistically

insignificant. Controlling for the imports of both other types of waste and non-waste products

does not change much the estimated impact of plastic waste imports on air quality.

In column (3), we consider possible effects related to local plastic production and exports. Local

plastic production could affect our estimates in two ways. First, it is likely that cities with large

plastic production, and hence with a high demand for plastic intermediate inputs, are more

inclined to import plastic waste. It follows that part of the estimated effects of plastic waste

imports on air quality can be attributed to plastic production. Second, plastic waste imports
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could help the expansion of local plastic production and subsequently the exports of plastic

products since part of imported plastic waste can be used as the intermediate inputs for plastic

production. While the expansion of the plastic production could contribute to local economic

development, which may improve the environment quality, expanded production and exports

of plastic products could cause environmental problems (Bombardini and Li, 2020; Wang, 2021).

We address the role of local plastic production by adding the total output of the plastic industry

and total exports of plastic products in the regression. City-level data on the output of the plastic

industry are calculated from the ASIF data. City-level export data on plastic products are from

the customs data. The estimation results in column (3) show that neither plastic production nor

plastic exports significantly impact air quality. Conditional on plastic production, the estimated

effects of plastic waste imports remain virtually the same.

An additional concern is related to the size of local pollution-intensive production. It is possible

that cities with a higher share of pollution-intensive production have laxer enforcement of

environmental regulations and are more likely to import plastic waste. We address such a

possibility by including the share of pollution-intensive production in our estimation. Pollution-

intensive industries are ones that emitted industrial smoke above the average in 2000. The

production share is calculated again using the ASIF data. The results in column (4), however, do

not show evidence that pollution-intensive production is significantly correlated to air quality.

We continue to find a positive and highly significant coefficient on plastic waste imports.

In columns (5) and (6), we directly test the possible confounding effects of environmental

policies and the local government’s capability of protecting the environment. We do so first

by including local government’s fiscal expenditure per capita in column (5) assuming that

governments with higher fiscal expenditures are more likely to invest more on environmental

protection. Column (6) includes a dummy variable indicating whether a city belongs to the

Two Control Zone (TCZ), which is an environmental policy implemented since the late 1990s

that aims to reduce the emission of SO2 and acid rain in selected regions. Adding these two

additional variables does not affect the main results much, though the size of the effect of plastic

waste imports reduces slightly.

In column (7), we check the robustness of our results by clustering the standard errors at the

city and the province-year level. This arises from the concern of possible spillover effects of

air pollution across regions. Clustering standard errors at the province-year level essentially

allows for correlation between cities within provinces in a specific year. As shown in column (7),

the estimated coefficient of plastic waste imports remains unchanged with two-way clustered

standard errors.
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Lastly, we test the timing of the effects by lagging the plastic waste import measure by one year.

While we believe that the majority of imported plastic waste is processed within the imported

year, we cannot rule out the possibility that a large bulk of imports require a longer time to

process, thereby creating lagged effects on air pollution. We report the results in Table A.5 in

Appendix A, in which columns (1) and (2) correspond to estimations using PM2.5 calculated

from the SEDAC data and the ACAG data, respectively. The estimated coefficients on plastic

waste imports are positive and highly significant, with the magnitude being slightly smaller

than the ones obtained using the contemporary measure.

5 The effect of the plastic waste import ban on air quality: 2015-2020

With the rising concerns about environmental problems, the Chinese government introduced a

ban on the imports of plastic waste materials that entered into force in January 2018. In this

section, we empirically evaluate whether the ban has improved air quality using daily data on

air pollutants at the monitoring station level between 2015 and 2020.

5.1 Empirical strategy and identification issues: DiD specification

To estimate the effect of the plastic waste import ban on air quality, we use a DiD approach.

Specifically, we compare the level of air pollution between cities that are affected by the ban

and those not before and after the ban. As mentioned earlier, we do not have data that allow

us to observe city-level imports of plastic waste right before the ban. To identify cities that are

potentially affected by the ban, we rely on our data for earlier years and consider cities that

imported plastic waste between 2000 and 2011 as treatment cities. In the robustness checks, we

consider alternative definitions. The empirical specification is as follows:

PM2.5,scd = βPwaste importerc × Band + γWeathercd + θd + µs,day + εscd, (4)

where PM2.5,scd denotes the average PM2.5 density recorded by monitoring station s in city c on

date d. Pwaste importerc is a dummy variable indicating cities that imported any plastic waste

in the years 2000 − 2011, and Band denotes dates post the implementation of the plastic waste

import ban. The coefficient of the interaction term, β, measures the effect of the import ban on

PM2.5 concentration. Considering that China announced the import ban to the WTO in July

2017 and that China implemented a second ban in December 2018, which banned the imports of
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all remaining types of plastic waste materials, we include additional time indicators denoting

the dates post these two events as robustness checks.

Similar to Equation (1), we control for a set of measures of weather conditions at the city level.

Those variables include temperature, precipitation, humidity, and wind speed, all measured at

a daily basis. In addition, we include date fixed effects (θd) to account for common shocks to all

stations each day and station times day of the year fixed effects (µs,day) to allow for location-

specific seasonality. As such, the identification of the effect of the ban derives from variations in

air pollution recorded by the same monitoring station on the same day of different years. εscd

is the error term. We cluster standard errors at the city level to allow for possible correlations

within cities.

The DiD approach rests on the assumption that the control and treatment groups follow a

parallel trend before the implementation of the policy. To check this assumption, we plot daily

time trends in PM2.5 density separately for plastic waste importing and non-importing cities

in Figure A.5 and monthly trends in Figure A.6 in Appendix A. In both figures, the left graph

depicts the unconditional trend, whereas the right graph shows the conditional PM2.5 trend that

controls for seasonality.17 Both figures show that PM2.5 levels are highly fluctuated across time,

with a higher level in winter months, most likely due to heating in northern China (Ebenstein

et al., 2017). Consistent with Figure A.2, average PM2.5 density shows a decreasing trend in

both types of cities over time. Plastic waste importing cities have, in general, slightly higher

PM2.5 levels as compared to cities that did not import plastic waste prior to the introduction

of the ban, whereas the difference shrinks post the ban. Controlling for seasonality, average

PM2.5 density in plastic waste importing cities even falls below non-importing cities, showing

descriptively supportive evidence that air quality improves following the ban. Notably, the two

types of cities do not show differential trends during the pre-ban period, suggesting that the

parallel trend assumption is satisfied. In Section 5.2.1, we test the parallel trend assumption

more rigorously in an event study design.

5.2 Empirical results

5.2.1 The DiD estimation results and identification concerns

Table 5 reports the estimation results of Equation (4). Column (1) corresponds to the specification

including weather controls, station fixed effects, and date fixed effects. Column (2) replaces

17We control for seasonality by including day or month fixed effects in estimations and plot the residuals.
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station fixed effects with station times day of the year fixed effects, the latter controlling for

station-specific seasonality. In both specifications, the coefficient of the interaction term is

negative and statistically significant, indicating that plastic waste importing cities on average

experience a reduction in PM2.5 density following the ban relative to non-importing cities.

Controlling for station-specific seasonality in column (2), the magnitude of the coefficient

increases. It shows that PM2.5 concentration decreases by 3.7 µg/m3 on average with the

implementation of the import ban in plastic waste importing cities. This corresponds to 8.5

percent of the average level between 2015 and 2020 (see Table A.2).

Table 5: Plastic waste import ban and PM2.5: DiD estimation results

Dep. variable: PM2.5 density (1) (2)

Pwaste importer×Ban -2.976*** -3.683***

(0.978) (0.988)

Weather controls Yes Yes

Date FE Yes Yes

Station FE Yes No

Station×Day of year FE No Yes

Observations 2,933,330 2,933,330

R2 0.463 0.622

Notes: This table reports the OLS estimation results of Equation (4). Dependent variable is the daily PM2.5 density recorded

by each monitoring station. Column (1) includes station fixed effects and date fixed effects. Column (2) includes station times

day of the year fixed effects and date fixed effects. Both specifications control for weather conditions including temperature,

precipitation, humidity, and wind speed. Standard errors clustered at the city level are reported in parentheses. * p <0.1, **

p <0.05, *** p <0.01.

To further validate the common trend assumption of the DiD estimation, we conduct an event

study by including a set of lags and leads:

PM2.5scd =
−7

∑
m=−1

βmPwaste importerc × Dm +
11

∑
n=1

βnPwaste importerc × Dn

+ γWeathercd + θd + µs,day + εscd,

(5)

where Dm is a dummy for m months before the ban, and Dn is a dummy for n months after the

ban. In particular, D−7 indicates all months up to June 2017, and D11 indicates all months in

December 2018 and onward. The reference group is the month of the ban, i.e. January 2018. The

coefficient of the interaction terms, β, measures the difference in PM2.5 density between plastic

waste importing and non-importing cities in that month relative to the average difference in

January 2018 conditional on a full set of control variables and fixed effects. Figure 3 presents

the full series of coefficient estimates of the interaction terms and the corresponding 95 percent
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confidence intervals. All pre-treatment estimated differences are statistically insignificant from

zero, reassuring us that the treatment and control cities did not have systematic differences in

PM2.5 density before the ban. Notably, we do not find significant differences between the two

types of cities around the time of China’s announcement to the WTO in July 2017. This rules out

possible anticipation effects of the policy change. The post-treatment estimates show that three

months after the policy implementation, PM2.5 concentration is significantly lower in plastic

waste importing cities as compared to non-importing ones and remains at a roughly same level

over time. The insignificant estimates for February and March 2018 could be explained by the

fact that the vast amount of plastic waste may take time to be processed, which still produced

air pollution. Overall, the dynamics over time in Figure 3 confirm the validity of our DiD

identification strategy and reassure a causal interpretation of the estimated effects.

Figure 3: Plastic waste import ban and PM2.5: Event study

Notes: This figure shows a full set of coefficient estimates of the interaction terms in Equation (5) and the corresponding 95 percent

confidence intervals. All coefficients are measured relative to the treatment month (January 2018). The left endpoint indicates

months up to June 2017, and the right endpoint indicates months in December 2018 and onward. The regression includes a full

set of weather conditions, date fixed effects, as well as station times day of the year fixed effects. Standard errors are clustered at

the city level.

In Table 6, we assess possible confounding effects of other policies related to waste imports that

were implemented during our sample period. The first concern is again related to the possible

anticipation effects of the import ban due to China’s announcement of the ban to the WTO

around half a year before implementation. It could be the case that the announcement of the

ban initiated a reduction in plastic waste imports, resulting in improved air quality already

before the implementation of the ban. As shown in Figure 3, we do not find a clear difference

in PM2.5 density between plastic waste importing and non-importing cities around the time

of announcement. We test this possibility again in column (1) of Table 6 by interacting plastic

waste importing cities with a post announcement dummy. The coefficient of the interaction

26



Table 6: Plastic waste import ban and PM2.5 in 2015-2020: Possible effects of other policies

Dep. variable: PM2.5 density (1) (2) (3) (4)

Pwaste importers×Ban -3.549*** -3.303*** -3.405*** -2.921***

(1.010) (0.986) (0.892) (0.903)

Pwaste importers×Announcement -0.157 -0.178

(0.932) (0.932)

Other waste importers×Contamination limit -0.767 -0.762

(0.640) (0.639)

Pwaste importers×Second ban -0.434 -0.364

(0.726) (0.721)

Weather controls Yes Yes Yes Yes

Date FE Yes Yes Yes Yes

Station×Day of year FE Yes Yes Yes Yes

Observations 2,933,330 2,933,330 2,933,330 2,933,330

R2 0.622 0.622 0.622 0.622

Notes: This table reports OLS estimation results of Equation (4) by including other relevant policies. Announcement is a

dummy variable indicating the time after China’s announcement to the WTO in July 2017 about its ban on plastic waste imports.

Contamination limit indicates the time after China tightened the contamination of other waste imports in March 2018. Second

ban indicates the time after January 2019 when China implemented the second ban on plastic waste imports. Pwaste importers

indicate cities that imported plastic waste imports between 2000 and 2011. Other waste importers are those that imported any

other types of waste between 2000 and 2011. All regressions include a full set of weather controls as in Table 5, date fixed effects,

as well as station times day of the year fixed effects. Standard errors clustered at the city level are reported in parentheses. *

p <0.1, ** p <0.05, *** p <0.01.

term is negative but statistically insignificant. Controlling for possible expectation effects, the

impact of the ban becomes smaller, but remains significant.

The second policy that we consider is the regulation implemented in March 2018 that aims to

reduce waste contamination by tightening the share of contamination of all types of solid waste

imports, including plastic waste that was not banned in January. Figure 3 shows a clear drop in

relative PM2.5 density in April 2018, which could be the impact of this policy. To address this

possibility, we include an interaction term between other waste importers and a time dummy

indicating March 2018 onward in column (2). Other waste importers are cities that imported

any type of waste between 2000 and 2011. We find a negative coefficient but it is statistically

insignificant. Controlling for the possible effects of the contamination limit regulation does not

alter much the coefficient estimate of the ban.

In column (3), we consider the second plastic waste import ban effective on December 31, 2018,

which mainly aims to ban plastic waste from industrial production. Indeed, China’s imported
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plastic waste was reduced immediately following the first ban and imported only a small

amount in 2018 (see Figure 1). We thereby do not expect a strong impact of the second ban. This

is confirmed by the insignificant coefficient in column (3).

Column (4) controls for all the above three policies. Similar to columns (1) to (3), we do not find

evidence that any of the policies affect air quality significantly. The air quality improving effect

of the first ban is still significant.

A further concern is related to the possible imprecise identification of treatment cities due to

a lack of data on plastic waste imports at the city level between 2015 and 2020. In the main

analysis, we rely on historical importing records and define treatment cities as those importing

plastic waste in any year between 2000 and 2011. Yet, if, for instance, cities importing plastic

waste in earlier years were aware of the negative environmental impact and stopped importing,

they would not be affected by the import ban and should be treated as control cities. We test

the sensitivity of our results by considering alternative identification strategies and report the

results in Table 7.

In column (1), we replace the plastic waste importer dummy with a continuous measure defined

as the probability of importing plastic waste, calculated as the share of years for which each city

imported plastic waste between 2000 and 2011. The underlying assumption is that importing

activities are persistent, such that cities with a longer history of plastic waste importing activities

are more likely to import plastic waste in later years. Columns (2) and (3) are based on the same

assumption and limit the treatment group to cities with a relatively long history of plastic waste

importing activities. Specifically, we define cities that imported plastic waste for at least four

years during 2000 − 2011, the median length of import history, as treatment cities in column

(2), and cities that imported plastic waste for at least six years, corresponding to an importing

probability of 50% or above, as treatment cities in column (3).

In column (4), we define treatment cities based on their imports in 2011, the latest year for which

we have data on plastic waste imports. Cities that imported plastic waste in 2011 are classified

into the treatment group, relying on the assumption that cities importing plastic waste in 2011

are more likely to import before the ban than those that imported plastic waste only in earlier

years.18 In all four specifications, we estimate adverse and statistically significant effects of

the ban on air quality, providing assuring evidence to our main finding that the plastic waste

import ban improves air quality.

18The number of cities that imported plastic waste for four years and six years during 2000-2011, and in 2011 is 184,
131, and 200, respectively.
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Table 7: Plastic waste import ban and PM2.5 density in 2015-2020: Alternative definitions of
plastic waste importing cities

Dep. variable: PM2.5 density (1) (2) (3) (4)

Pwaste import probability×Ban -2.918***

(0.991)

Pwaste importer (Median length)×Ban -2.522***

(0.681)

Pwaste importer (Prob≥50%)×Ban -1.947***

(0.702)

Pwaste importer (in 2011)×Ban -2.222***

(0.676)

Weather controls Yes Yes Yes Yes

Date FE Yes Yes Yes Yes

Station× Day of year FE Yes Yes Yes Yes

Observations 2,933,330 2,933,330 2,933,330 2,933,330

R2 0.622 0.622 0.622 0.622

Notes: This table reports OLS estimation results of Equation (4) with alternative definitions of treatment cities. Column (1) uses

the probability of importing plastic waste defined as the share of years when a city imported plastic waste between 2000 and

2011. Columns (2) and (3) define treatment cities as those that imported plastic waste for at least four years (the median import

length) and six years (an importing probability of 50%) between 2000 and 2011, respectively. Column (4) defines treatment cities

as those importing plastic waste in 2011. All regressions include a full set of weather controls as in Table 5, date fixed effects and

station times day of the year fixed effects. Standard errors clustered at the city level are reported in parentheses. * p <0.1, **

p <0.05, *** p <0.01.

As an additional check of the sensitivity to the selection of treated cities, we perform a

falsification test and estimate Equation (4) based on randomly selected treatment cities following

e.g. La Ferrara et al. (2012) and Wang et al. (2021). Specifically, we randomly select 275 treatment

cities and the timing of the ban, and generate a placebo treatment variable. The randomly

assigned treatment should, on average, show no significant impact on air quality, if differences

in PM2.5 concentrations are caused by the introduction of the ban. We repeat the estimation of

Equation (4) using the placebo treatment variable 500 times and plot the density distribution of

the estimated coefficients in Figure 4. It shows a normal distribution centred around 0 with a

mean of 0.027, and our benchmark estimate (column (4) of Table 5) lies in the far left, which is a

clear outlier. This further confirms that our main estimate is unlikely biased.

5.2.2 Additional robustness checks

In this section, we examine the sensitivity of our main findings to alternative model

specifications, clustered standard errors at different levels, additional measures of air pollution,

as well as estimations at the city level.
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Figure 4: Distribution of estimated coefficients using the placebo policy variable

Notes: The figure shows the density distribution of the coefficient estimates from a simulation of 500 regressions of Equation (4)

in which treatment cities and the policy timing are randomly selected. The red line marks the benchmark treatment effect.

In columns (1)− (4) of Table 8, we present the results of estimations allowing cities or stations

to follow differential time trends. This addresses the concern that treatment and control cities

may not follow a completely parallel trend. As shown in Figure 3, treatment and control cities

do not show statistical differences in average PM2.5 density before the ban, but do show a

slightly increasing trend since China’s announcement of the ban to the WTO and a reduction in

December 2017. In column (1), we add a city-specific linear time trend, and in column (2) we

include a station-specific linear trend. Column (3) adds a quadratic time trend at the station

level, and column (4) allows stations to follow various time trends up to polynomial degree

four. Throughout all regression specifications, the estimated coefficient remains statistically

significant and negative. Yet, these demanding specifications reduce the magnitude of the effect

by around half.

We cluster the standard errors at the city level in our main analysis to allow for possible

correlations between monitoring stations within cities. This also allows for serial correlations

over time for each city. However, correlations at a more aggregate level, for instance, at the

province level, are plausible due to spatial spillovers or environmental policies at a higher

administrative level. We investigate whether this influences our main findings by clustering

the standard errors at different levels. Specifically, we re-estimate our preferred specification as

in column (4) of Table 5 but cluster the standard errors at the province level in column (5) of

Table 8. In column (6), we consider a two-way clustering approach at both the city and province-

year levels. This essentially allows for correlations within cities but also possible correlations

across cities within provinces each year. The results show that clustering the standard errors at

different levels does not affect the significance of the coefficient much.
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Table 8: Plastic waste import ban and PM2.5 density in 2015-2020: Controlling for time trends
and clustering standard errors at different levels

Dep. variable: Time trend SE clustering

PM 2.5 density City Station Station Station Province Two-way

(1) (2) (3) (4) (5) (6)

Pwaste importers×Ban -2.073** -2.091** -1.943** -1.972** -3.683*** -3.683***

(0.889) (0.893) (0.869) (0.875) (1.194) (1.075)

Weather controls Yes Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes Yes

Station×Day of year FE Yes Yes Yes Yes Yes Yes

City time trend Yes No No No No No

Station time trend No Yes Yes Yes No No

Station quadratic time trend No No Yes Yes No No

Higher-level station time trends No No No Yes No No

Observations 2,933,330 2,933,330 2,933,330 2,933,330 2,933,330 2,933,330

R2 0.629 0.631 0.636 0.636 0.622 0.622

Notes: This table reports OLS estimation results of Equation (4) by including city- and station-specific time trends (columns 1-4)

and clustering standard errors at different levels (columns 5-6). Estimation sample includes daily data for the years 2015-2020.

All specifications include a full set of weather controls, date fixed effects, and station times day of the year fixed effects. Standard

errors clustered at the city level are reported in parentheses in columns (1)− (4). Standard errors clustered at the province level

are in parentheses in column (5). Two-way clustered standard errors at the city level and the province-year level are in column

(6). * p <0.1, ** p <0.05, *** p <0.01.

In this paper, we use PM2.5 as the primary measure of air pollution mainly due to data

constraints, especially for the earlier years. Existing studies suggest that incineration,

degradation and processing of plastic waste do not only release fine particles in the air but also

increase the concentration of carbon monoxide, larger particulate matters and other pollutants

(Verma et al., 2016). The CNEMC reports data on six specific types of pollutants from 2014 and

a composite air quality index calculated based on the six pollutants.

In Table 9, we investigate the effects of the plastic waste import ban on other air quality measures.

We start from the composite air quality index (AQI) in column (1). It ranks the air quality around

each monitoring station on a scale from 0 (very good) to 500 (very bad) based on ozone, carbon

monoxide, particulate matters (PM2.5 and PM10), nitrogen and sulphur dioxide concentrations.

As expected, we find a negative, statistically significant coefficient on the interaction term. Thus,

overall air quality in cities that imported plastic waste in the past improved after the ban relative

to other cities. Columns (2) to (6) report coefficient estimates on the five additional individual

air pollutants, respectively. The results show that the plastic waste import ban also significantly

reduced the emission of sulphur dioxide, nitrogen dioxide, and PM10, which are among the
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Table 9: Plastic waste import ban and air pollution in 2015-2020: Alternative measures of air
pollution

Dep. variable: AQI CO O3 SO2 NO2 PM10

As in column title (1) (2) (3) (4) (5) (6)

Pwaste importers×Ban -3.643*** -0.022 2.233** -3.708** -1.913*** -6.361***

(1.043) (0.030) (1.109) (1.436) (0.567) (1.683)

Weather controls Yes Yes Yes Yes Yes Yes

Date FE Yes Yes Yes Yes Yes Yes

Station×Day of year FE Yes Yes Yes Yes Yes Yes

Observations 2,930,644 2,930,539 2,930,789 2,930,796 2,930,799 2,928,752

R2 0.617 0.576 0.670 0.600 0.712 0.555

Notes: This table reports OLS estimation results of Equation (4) using alternative air pollution measures, as shown in column

titles. All regressions include a full set of weather controls, date fixed effects, and station times day of the year fixed effects.

Standard errors clustered at the city level are reported in parentheses. * p <0.1, ** p <0.05, *** p <0.01.

major pollutants resulting from plastic incineration. We do not find statistically significant

effect on the concentration of carbon monoxide in the air but a significant and positive effect on

ground-level ozone concentration. This latter positive effect on ozone may be attributed to the

fact that ground-level ozone is not emitted directly but involves a complex chemical reaction

process of nitrogen oxides (NOx) with volatile organic compounds (VOCs) with the presence

of sunlight.19 The results in Table 9 provide evidence that the plastic waste import ban can

improve air quality by reducing the emission of various additional pollutants.

The outcome variable of our main specification is measured at the monitoring station level,

whereas the treatment is identified at the city level. If monitoring stations are not located

randomly, especially if monitoring stations are located strategically in locations with worse

air quality and these locations are close to plastic waste processing productions, our estimates

would be biased. An additional concern is that cities have an uneven number of monitoring

stations, such that cities with a larger number of stations weigh more in the estimation. To

address these concerns, we average PM2.5 densities over all stations for each city for each date

and run our preferred regression model at the city level, controlling for a full set of weather

19Using a similar DiD approach, Li and Takeuchi (2021) find that the plastic waste import ban reduced ground-level
ozone in China. To understand the different findings, we add nitrogen dioxide as an additional control to account for
the fact that ozone formation requires nitrogen oxides and constrain our sample period to 2017-2018 following their
approach. We find a negative, statistically insignificantly coefficient. The main reason for the different findings could
be the different sample coverage. Li and Takeuchi (2021) define treatment cities as all cities in Shandong, Zhejiang,
and Guangdong provinces and control cities in Sichuan, Hubei, and Hunan provinces, amounting to 90 cities, in
contrast to our sample including all Chinese prefecture-level cities. Restricting the estimation sample to the years
2017-2018, we continue to find highly significant and negative impacts on PM2.5, PM10, SO2, and the AQI index.

32



conditions. The results are set out in Table A.6 in Appendix A, where column (1) includes date

fixed effects and city fixed effects and column (2) replaces city fixed effects with city times day

of the year fixed effects. Both specifications present a negative, highly significant coefficient of

the interaction term, suggesting that plastic waste importers experienced a reduction in PM2.5

density following the ban compared to other cities. The magnitude of the effect is comparable

to our baseline result using station-level data.

5.3 Channel analysis

In Section 4.2.2, we find that plastic waste imports raise PM2.5 density through expanded

production of the plastic waste processing sector and an increased number of incineration.

With the introduction of the import ban, we would expect reverse effects: a contraction of the

plastic waste processing sector and a reduced number of incineration, which then contribute to

improved air quality. Unfortunately, we do not have data on the output of the waste processing

industry for the years 2015 − 2020. We, therefore, examine changes in the number of newly

registered plastic waste processing plants and those in the number of fires. As data on the

number of new plant registration are only available at a yearly frequency, we examine this

channel by running regressions at the city-year level. Analogous to Table 2, we regress the

total number of new plastic waste processing plants and the number by ownership type, all

transformed by asinh, on the plastic waste importer indicator times the post ban dummy. The

results are set out in Table A.7 in Appendix A. Contrary to our expectation, firm registrations in

previous plastic waste importing cities increased relative to non-importers following the ban,

particularly the number of private firms (columns 1 − 4).

To examine whether the increased number of plastic waste processing plants is correlated to

changes in PM2.5 density, we regress the average PM2.5 density at the city level on the number

of plant registrations and the results are reported in columns (5)− (8). We do not find any

significant correlations, neither with the total number nor the number by ownership. The results

combined suggest that changes in the size of the waste processing sector are not a channel

explaining the air quality improving effects of the plastic waste import ban.

To analyze the “incineration channel”, we estimate Equation (4) by using the number of fires

(in asinh) as the dependent variable. As the number of fires is only observed at the city level

instead of the station level, we replace station times day of the year fixed effects with city times

day of the year fixed effects. We find negative coefficients of the policy but significant only

when we use the probability of importing plastic waste as the treatment variable, as shown in

columns (1) and (2) of Table A.8 in Appendix A. In column (3), we regress the average PM2.5
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density on the number of fires (in asinh) and find that cities with a larger number of fires have a

higher PM2.5 concentration. This set of results indicates that the reduction of incineration could

potentially be a channel that explains the positive impact of the ban on air quality.

6 Concluding remarks

With the wide use of plastics in industrial production and daily life, global plastic waste

production has been rocketing in the past decades. Subsequently, global plastic waste trade

has experienced a rapid increase, more than 12 times the amount of 1996 as of 2011, largely

due to shipments from developed to developing countries. Before 2018, China was the major

destination of plastic waste shipment, receiving almost half of global plastic waste exports

each year in the early 2010s. Recognising the possible harm to the environment, China has

permanently banned the import of non-industrial plastic waste since January 2018 and the

import of all other types of plastic waste since December 2018. Using data spanning the period

2000 to 2020, this paper examines the causal impact of plastic waste imports on air pollution

and evaluates the effect of the plastic waste import ban on air quality.

To examine the environmental effects of plastic waste imports, we focus on the 2000 − 2011

period, when China experienced a drastic increase in plastic waste imports. Exploring the

temporal and geographical variations using city-level data on plastic waste imports, which are

then linked to data on PM2.5 density, we specifically investigate whether cities importing more

plastic waste have a higher PM2.5 density. To solve the endogeneity problem, we construct two

alternative instrumental variables for city’s imports of plastic waste by combining exogenous

variation in world total export supply of plastic waste over time with the probability of

importing for each city or with the distance of each city to the closest port. We find strong and

robust evidence that plastic waste imports increased the average PM2.5 density in importing

cities. Such an impact is linked to the import induced expansion in waste processing production

and an increased number of open-air incineration.

As a second step, we evaluate the effects of the plastic waste import ban on air quality using

a DiD estimation approach. Relying on daily data on various air quality measures between

2015 and 2020, we find that cities that previously imported plastic waste experienced significant

improvement in air quality following the ban compared to other cities. This finding is robust to

a rich set of robustness checks and validation exercises. We also find that the ban reduced the

number of fires, which contributed to the reduction in pollutant emissions.
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This paper focuses on air pollution, a major determinant of climate change, poor health and

premature death (Fan et al., 2020; Bombardini and Li, 2020; He et al., 2020; Deschenes et al.,

2020). Air pollution also affects economic development by reducing productivity (Fu et al., 2021,

2022), increasing crime (Bondy et al., 2020), and leading to emigration (Chen et al., 2021). Our

results that plastic waste imports significantly increase air pollution imply that there may be

further effects on additional socio-economic outcomes. The import ban on plastic waste, on the

other hand, could have additional benefits beyond air quality improvement.

As a vast majority of non-recycled plastic waste ends up in landfills, dumps, or the natural

environment, inappropriate processing of plastic waste could also cause serious microplastic

contamination on land (Chae and An, 2018) and plastic pollution in the ocean (Jambeck et al.,

2015; IUCN, 2021), which further threatens food safety, health, and the entire ecosystem. The

findings in this paper imply that plastic waste imports by developing countries like China where

solid waste management technology is less developed could not only bring about air pollution,

but could also result in pollution to the soil, river, and the ocean. Existing studies find that

China is the largest source of marine plastic pollution (Jambeck et al., 2015). This is admittedly

related to its own production of plastic waste. Imported plastic waste, however, accounting for

more than 10% additional mass in China (Brooks et al., 2018), also plays a crucial role.

Following China’s plastic waste import ban, global plastic waste shipments were quickly re-

directed to South and Southeast Asian countries, such as Malaysia, Thailand, and India (Brooks

et al., 2018, also see Figure 1). In recent years, some of those countries have also implemented

or have a plan to implement a similar ban. With rising concerns over the global environmental

problems brought about by the rapidly rising amount of plastic waste, 187 countries reached

an international agreement in 2019, the Basel Convention, which became effective in January

2021, to restrict international trade in plastic waste (UNEP, 2019). In the meantime, several

countries, including the EU and Australia, have enacted new laws that ban the exports of plastic

waste. The findings in our paper provide quantitative evidence supporting those regulations in

other countries. Questions regarding the environmental consequences in previous large plastic

waste exporters following the ban and developing a sustainable way to manage plastic waste

domestically in the long run still remain.
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Appendix A Additional figures and tables

(a) 2000 (b) 2011

Figure A.1: PM2.5 density by city based on the ACAG data in 2000 and 2011
Notes: This map shows city-level average PM2.5 density in 2000 and 2011. Data on average PM2.5 are retrieved from the
Atmospheric Composition Analysis Group (ACAG) (Hammer et al., 2020).

Figure A.2: Average PM2.5 density over time: 2000-2020
Notes: This figure shows the time trend of average PM2.5 density based on data from three sources. SEDAC denotes the
Socialeconomic Data and Applications Center at Columbia University (Center for International Earth Science Information
Network - CIESIN - Columbia University, 2020), which provides yearly pixel-level PM2.5 estimates from 2000 to 2016. ACAG
denotes the Atmospheric Composition Analysis Group (ACAG) (Hammer et al., 2020), which provides yearly pixel-level PM2.5

estimates from 2000 to 2020. CNEMC denotes the China National Environmental Monitoring Centering, which provides daily
station-level PM2.5 data from 13 May, 2014.
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Figure A.3: Total plastic waste imports by entry city between 2000 and 2011
Notes: This map shows total value (in billion US dollar) of plastic waste imports by entry city between 2000 and 2011. Entry city
indicates a city where imported waste products were first unloaded from cross-border means of transport. Data are retrieved
from China customs data. Plastic waste products are identified according to HS8 codes 39151000, 39152000, 39153000, 39159010,
and 39159090.

(a) 2000 (b) 2011

Figure A.4: Plastic waste imports by city in 2000 and 2011
Notes: The maps show city-level imports of plastic wastes (in million USD) in 2000 and 2011. Data are retrieved from China
customs data. Plastic waste products are identified according to HS8 codes 39151000, 39152000, 39153000, 39159010, and 39159090.
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Announcement Ban050100150Average PM2.5 density 2017/01/01 2017/07/27 2018/01/01 2018/12/31Plastic waste importers Plastic waste non-importers
Trends in PM 2.5 (daily data) Announcement Ban-50050Average PM2.5 density 2017/01/01 2017/07/27 2018/01/01 2018/12/31Plastic waste importers Plastic waste non-importers

Trends in PM 2.5 (daily data, controlling for day fixed effects)
Figure A.5: PM2.5 density in plastic waste importing cities and non-importing cities: Daily data

Notes: Figures show the average daily PM2.5 density for plastic waste importing cities and non-importing cities over the period

2017-2018. The left figure shows the raw data and the right figures shows the de-trended data controlling for day of the year

fixed effects. Plastic waste importing cities are those that imported any plastic waste during 2000 to 2011. The vertical lines mark

policy changes: announcement of the import ban to the WTO in July 2017 (red dashed line), and the beginning of the ban (red

line) in January 2018.

Announcement Ban 2nd Ban20406080100Average PM2.5 density 2015m1 2016m1 2017m1 2018m1 2019m1 2020m1Plastic waste importers Plastic waste non-importers
Trends in PM 2.5 (monthly data) Announcement Ban 2nd Ban-20-1001020Average PM2.5 density 2015m1 2016m1 2017m1 2018m1 2019m1 2020m1Plastic waste importers Plastic waste non-importers

Trends in PM 2.5 (monthly data, controlling for month fixed effects)
Figure A.6: PM2.5 density in plastic waste importing and non-importing cities: Monthly data

Notes: Figures show the average monthly PM2.5 density for plastic waste importing cities and non-importing cities over the

period 2015-2020. The left figure shows the raw data and the right figures shows the de-trended data controlling for month fixed

effects. Plastic waste importing cities are those that imported any plastic waste during 2000 to 2011. The vertical lines mark

policy changes: announcement of the import ban to the WTO in July 2017 (red dashed line), the beginning of the ban (red line) in

January 2018 and the second ban (orange dashed line) on December 31, 2018.
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Table A.1: Summary statistics of key variables for the sample 2000-2011

Mean SD Min. Max.

Plastic waste imports (asinh) 3.38 4.18 0.00 14.31

Other waste imports (asinh) 5.03 4.89 0.00 16.09

Other imports (asinh) 11.64 3.57 0.00 20.16

Average PM2.5 (SEDAC) 31.58 16.86 1.03 90.86

Maximum PM2.5 (SEDAC) 45.80 18.25 2.70 113.20

Minimum PM2.5 (SEDAC) 23.99 15.38 0.00 82.30

Average PM2.5 (ACAG) 43.40 15.50 2.51 100.22

Population (ln) 5.70 0.81 2.04 8.11

Employment (ln) 5.06 0.88 -1.86 7.45

GDP per capita (ln) 9.46 0.84 7.06 12.03

Primary sector output share (%) 19.95 10.24 0.05 65.28

Secondary sector output share (%) 57.19 39.15 7.17 606.31

Average temperature (K) 12.38 5.85 -8.17 26.28

Precipitation rate (mm/hr) 2.52 0.47 0.96 4.06

Average humidity (kg/kg) 35.76 4.75 15.33 55.00

Wind speed west to east (m/s) -3.10 4.97 -17.75 14.53

Wind speed south to north (m/s) 1.06 1.38 -2.53 7.40

Output of waste processing sector (asinh) 2.49 4.78 0.00 15.35

No. of plastic waste processing plants (asinh) 1.47 1.21 0.00 5.70

SOE 0.03 0.20 0.00 3.47

Private 0.39 0.72 0.00 5.04

Individual business 1.20 1.15 0.00 5.35

No. of fires (asinh) 4.86 1.92 0.00 9.83

Notes: This table reports summary statistics of key variables for the sample 2000-2011. All variables are measured at the city

level on a yearly basis. N = 3, 869.
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Table A.2: Summary statistics of key variables for the sample 2015-2020

Mean SD Min. Max.

Plastic waste import city 0.89 0.31 0.00 1.00

Plastic waste import city (Median length) 0.69 0.46 0.00 1.00

Plastic waste import city (Prob≥50%) 0.55 0.50 0.00 1.00

Plastic waste import city (in 2011) 0.71 0.45 0.00 1.00

PM2.5 43.55 36.87 1.00 2211.65

PM10 76.61 66.41 1.00 30008.17

Air quality index (AQI) 70.06 45.96 1.00 500.00

Ozone (O3) 84.60 39.11 1.00 1200.00

Sulphur dioxide (SO2) 17.34 21.06 1.00 1594.05

Nitrogen dioxide (NO2) 30.35 18.62 1.00 462.88

Carbon monoxide (CO) 0.93 0.58 0.00 73.64

Average temperature (K) 13.35 10.99 -32.58 34.00

Precipitation rate (mm/hr) 2.76 6.68 0.00 175.47

Average humidity (kg/kg) 75.28 19.38 0.00 100.00

Wind speed west to east (m/s) -0.28 2.61 -19.22 17.00

Wind speed south to north (m/s) 0.04 3.06 -18.32 14.87

No. of plastic waste processing plants (asinh) 2.35 1.25 0.00 5.63

Individual business 1.43 1.10 0.00 5.31

SOE 0.01 0.14 0.00 3.69

Private 1.73 1.32 0.00 5.51

No. of fires (asinh) 0.28 0.72 0.00 7.52

Notes: This table reports summary statistics of key variables for the sample 2015− 2020. Plastic waste import city indicates those

that imported plastic waste in any year between 2000 and 2011. Plastic waste import city (median length) indicate cities that

imported plastic waste for at least four years, the median time length across cities between 2000 and 2011. Plastic waste import

city (Prob≥50%) indicate cities that imported plastic waste for at least six years. Plastic waste import city (in 2011) denotes those

that imported plastic waste in 2011. PM2.5, PM10, AQI, O3, SO2, NO2, and CO are measured at the monitoring station level on a

daily basis between 2015 and 2020. Average temperature, precipitation rate, humidity, wind speed, and the number of fires are

measured at the city level on a daily basis. The number of plastic waste processing plants (total and by ownership) is measured

at the city level on a yearly basis. N = 2, 933, 330.
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Table A.3: First-stage estimation results

Exp_WLD× Exp_SEA× Exp_WLD× Exp_SEA×
Dep. variable: Imp. Prob. Imp. Prob. Port Dist. Port Dist.

Pwaste imports (asinh) (1) (2) (3) (4)

Instrumental variable 2.719*** 1.689*** 7.871*** 2.328***

(shown in column header) (0.149) (0.093) (1.390) (0.253)

Control variables Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

City FE Yes Yes Yes Yes

Observations 3,872 3,872 3,872 3,872

R2 0.056 0.061 0.035 0.061

Notes: This table reports the first-stage estimation results of 2SLS regressions in Table 1 and Table 3. The dependent variable is

the value of plastic waste imports, transformed by asinh. The instrumental variable is shown in column headers. All regressions

control for a full set of city-level control variables and weather conditions as in Table 1. Standard errors clustered at the city level

are reported in parentheses. * p <0.1, ** p <0.05, *** p <0.01.

Table A.4: Plastic waste production, number of fires, and PM2.5: 2000-2011

Dep. variable: PM2.5 density (1) (2) (3) (4) (5) (6)

WP production (asinh) 0.039

(0.027)

No. of PW plants (asinh) -0.080

(0.113)

No. of PW plants: SOE (asinh) -0.482

(0.371)

No. of PW plants: Private (asinh) 0.384***

(0.133)

No. of PW plants: Individual (asinh) -0.169

(0.117)

No. of fires (asinh) 0.785***

(0.135)

Control variables Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Observations 2,583 3,869 3,869 3,869 3,869 3,869

Notes: This table reports OLS estimation results of PM2.5 density on the output of the waste processing industry, the number of

newly registered plastic waste processing plants (total and by ownership), and the number of fires, all transformed by the inverse

hyperbolic sine. Estimation sample is at the city level for the years 2000 − 2011. All specifications include a full set of city-level

control variables, weather controls, city fixed effects and year fixed effects. City-level control variables and weather controls are

the same as in Table 1. Standard errors clustered at the city level are reported in parentheses. * p <0.1, ** p <0.05, *** p <0.01.
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Table A.5: Plastic waste imports and air quality: Lagged effects

Dep. variable: SEDAC PM2.5 ACAG PM2.5

PM2.5 density (1) (2)

Lagged pwaste imports (asinh) 1.173*** 0.683***

(0.175) (0.179)

First-stage KP F-statistics 296.403 296.819

Control variables Yes Yes

Year FE Yes Yes

City FE Yes Yes

Observations 3,551 3,553

Notes: This table reports 2SLS estimation results of Equation (1) using lagged plastic waste imports (in asinh) by one year.

Columns (1) and (2) use the average PM2.5 density calculated from the SEDAC data and the ACAG data as the dependent

variable, respectively. The instrumental variable in both columns is world total plastic waste export supply multiplied by the

average import propensity of each city defined as Equation (2). Both specifications include a full set of city-level control variables,

weather controls, city fixed effects and year fixed effects. City-level control variables and weather controls are the same as in

Table 1. Standard errors clustered at the city level are reported in parentheses. * p <0.1, ** p <0.05, *** p <0.01.

Table A.6: Plastic waste import ban and PM2.5: City-level regression results

Dep. variable: PM2.5 density (1) (2)

Pwaste importer×Ban -2.434** -3.113***

(0.962) (0.956)

Weather controls Yes Yes

Date FE Yes Yes

City FE Yes No

City×Day of year FE No Yes

Observations 705,985 705,985

R2 0.465 0.624

Notes: This table reports OLS estimation results of equation Equation (4) at the city level. The dependent variable is the average

PM2.5 density in a city for each date. All specifications include a full set of weather controls and date fixed effects. Column (1)

includes city fixed effects and column (2) includes city times day of the year fixed effects. Standard errors clustered at the city

level are reported in parentheses. * p <0.1, ** p <0.05, *** p <0.01.
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Table A.7: Plastic waste import ban, number of plastic waste processing plants, and air quality

Dep. variable: No. of new PW plants (asinh) PM 2.5 density

As in column title (1) (2) (3) (4) (5) (6) (7) (8)

Total SOE Private Ind. Total SOE Private Ind.

Pwaste importer×Ban 0.273** 0.015 0.417*** 0.139

(0.113) (0.010) (0.105) (0.115)

No. of PW plants (asinh) -0.272 1.386 -0.295 -0.231

(0.187) (0.873) (0.187) (0.185)

Weather controls Yes Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1,996 1,996 1,996 1,996 1,996 1,996 1,996 1,996

R2 0.716 0.579 0.723 0.590 0.927 0.927 0.927 0.927

Notes: This table reports OLS estimation results using data at the city-year level between 2015 and 2020. Columns (1) − (4)

correspond to the estimations that regress the number of newly registered plastic waste processing plants (total and by

ownership, all in asinh) on plastic waste importers interacted with the post ban dummy. Plastic waste importers are cities that

imported plastic waste between 2000 and 2011. Columns (5)− (8) correspond to the estimations that regress the average PM2.5

density on the number of new plastic waste processing firms (total and by ownership, all in asinh). All specifications include a

full set of weather control variables as in Table 5, year fixed effects and city fixed effects. Standard errors clustered at the city

level are reported in parentheses. * p <0.1, ** p <0.05, *** p <0.01.

Table A.8: Plastic waste import ban, number of fires, and air quality

Dep. variable: No. of fires (asinh) PM 2.5 density

As in column title (1) (2) (3)

Pwaste importer×Ban -0.022

(0.013)

Pwaste import probability×Ban -0.028**

(0.013)

No. of fires (asinh) 0.835***

(0.195)

Weather controls Yes Yes Yes

Date FE Yes Yes Yes

City×Day of year FE Yes Yes Yes

Observations 705,962 705,962 705,962

R2 0.379 0.379 0.624

Notes: This table reports OLS estimation results using data at the city-date level between 2015 and 2020. Column (1) corresponds

to the estimation that regresses the number of fires, transformed by inverse hyperbolic sine, on plastic waste importers interacted

with the post ban dummy. Plastic waste importers are cities that imported plastic waste between 2000 and 2011. In column (2),

the plastic waste importer indicator is replaced with the probability of importing plastic waste, which is defined as the share of

years of importing plastic waste between 2000 and 2011. Column (3) corresponds to the estimation that regresses the average

PM2.5 density on the number of fires (in asinh). All specifications include a full set of weather control variables as in Table 5, date

fixed effects and city times day of the year fixed effects. Standard errors clustered at the city level are reported in parentheses. *

p <0.1, ** p <0.05, *** p <0.01.
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