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ABSTRACT

IZA DP No. 15124 MARCH 2022

Birth Weight and Cognitive Development 
during Childhood: Evidence from India*

Health at birth is an important indicator of human capital development over the life course. 

This paper uses longitudinal data from the Young Lives survey and employs instrumental 

variable regression models to estimate the effect of birth weight on cognitive development 

during childhood in India. We find that a 10 percent increase in birth weight increases 

cognitive test scores by 8.1 percent or 0.11 standard deviations at ages 5-8 years. Low birth 

weight infants experienced a lower test score compared with normal birth weight infants. 

The positive effect of birth weight on a cognitive test score is larger for girls, children from 

rural households, and those with less-educated mothers. Our findings suggest that health 

policies designed to improve birth weight could improve human capital in resource-poor 

settings.
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1. Introduction  

Low birth weight (LBW), weighing less than 2,500 grams, is a significant public health 

challenge in resource-poor countries as it is directly related to the sustainable development 

goal of good health and well-being. Around 20.5 million newborns, an estimated 15-20% 

of all infants born globally are LBW (WHO, 2014). Previous studies show that LBW 

infants have a higher mortality risk in their first month of life and those who survived face 

worse health, human capital, IQ, and labor market outcomes (Behrman and Rosenzweig, 

2004; Figlio et al., 2014, Bhardwaj, Eberhard, and Nielson, 2018).1 An estimated 18% of 

Indian infants are born as low birth weight (LBW) babies, the second-highest rate in South 

Asia (IIPS, 2015). 

  India has made tremendous progress in improving school enrollment (96%) in the 

last decade, yet learning outcomes remain poor and are on the decline in many states 

(ASER, 2018). Learning deficit is pervasive at the elementary level; only 42.5% of grade 

III children were able to read grade I text, only 32% of children in grade II could read 

simple words in English, and slightly more than one-fourth of the grade III children could 

do a 2-digit subtraction in 2016 (ASER, 2016). An important constraint to learning and 

human capital formation in developing countries is poor childhood health as studies have 

shown that health endowment at birth, as indicated by low birth weight (LBW), affects 

later-life health, schooling, and economic outcomes (Currie and Vogl, 2013). LBW infants, 

defined as weighing less than 2,500 grams, have worse human capital, schooling, adult 

health, and earnings compared with normal birth weight infants  

 

 
1Other important studies in this area include, see Oreopoulos et al. (2006), Black, Devereux, and Salvanes, 
(2007), Royer (2009), Almond and Currie (2011). 
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Although there is considerable evidence on the effects of low birth weight on adult 

outcomes, the evidence on mid-childhood outcomes through which the adult outcomes 

manifest is limited. Compared to adult outcomes, mid-childhood outcomes are more 

policy-relevant because the birthweight effects on adult outcomes manifest through the 

mid-childhood years and adult outcomes take many years to appear and therefore are less 

amenable to policy interventions. The fetal origins literature indicates that the catch-up 

growth of children is more likely to happen during mid-childhood compared with 

adulthood due to the gradual scarring of brain cells. Therefore, for effective policy 

intervention, a better understanding of the developmental trajectories in the intervening 

period of early- and mid-childhood is important because this period is malleable (Almond, 

Currie, and Duque, 2018).2 Another gap in the literature is the limited evidence on the 

heterogeneous effects of birth weight in a low-income setting, whether the effect of birth 

weight on cognitive ability varies by age or household characteristics.  

This study attempts to fill this gap by estimating the effects of birthweight on cognitive 

outcomes in the mid-childhood years (5-8 years) of children. We use the Young Lives (YL) 

data from the southern Indian state of Andhra Pradesh and estimate the causal effect of birth 

weight, an indicator of initial health endowment, FKLOGUHQ¶V Peabody Picture Vocabulary 

Test (PPVT) score, a measure of cognitive ability.3 Estimating the causal effect of birth 

weight on cognitive development is difficult due to the sample selection bias, endogeneity 

of birth weight, and potential unobserved heterogeneity. We address the issue of 

endogeneity by estimating an instrumental variable (IV) model and by controlling for a 

 
2Almond et al. (2018) termed the lack of knowledge about the growth trajectory from early to mid-childhood 
DV�³WKH�missing middle years´�� 
3The PPVT module requires respondents to select the pictures that best represent the meaning of a series of 
stimulus words read out by the examiner. 
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large set of potential confounding factors at the child, mother, and household level. We use 

a binary indicator of preterm birth (PTB) and the PRWKHU¶V�KHLJKW�MRLQWO\�DV�LQVWUXPHQWV�4 

Furthermore, we examine the heterogeneity in the effects of birth weight by the child 

(gender and age), mother (education), and household characteristics (wealth, social group, 

and location). Finally, we estimate the quantile regression model to uncover the 

distributional impacts of birth weight on the test score.  

Studies of the predictive role of birth weight on cognitive ability are largely based in 

high-income countries. However, a few studies have estimated the effect of birth weight 

on cognitive outcomes in LMICs (Currie and Vogl, 2013; Nandi et al., 2017). The effect 

of initial health endowment on human capital could be qualitatively different in LMICs 

because poor schooling may prevent cognitive ability from translating into high levels of 

human capital.  Furthermore, there may be gender and other biases in the allocation of 

resources within the household which could also attenuate the link between health at birth 

and human capital later in life.  The effect of birth weight on human capital outcomes could 

depend on the intra-household allocation of resources among children with differing 

abilities and on parental decisions to invest resources based on their birth endowment 

(Almond and Mazumdar, 2013).  

Furthermore, recent studies have found evidence of catch-up suggesting that parental 

investments, preferences, and public policies could weaken the adverse effects of fetal 

disadvantage in the long run (Mani, 2012; Anand et al., 2018). Parents who exhibit 

compensatory behavior would allocate a higher fraction of resources to low birthweight 

 
4Preterm births have gestation period of less than 37 weeks.  
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children, and therefore, these LBW children might catch up in the long run.5 Other parents 

may choose to reinforce the birth disadvantage by disproportionately allocating resources 

to higher birth weight children in the expectation there would be greater returns on their 

investment in these children. These behaviors have important implications for the role of 

complementarities in human capital formation (Cunha and Heckman, 2007). Whether 

parental inputs and birth endowments are complements or substitutes can be inferred by 

comparing the birth weight effects on cognitive ability across households of different 

characteristics (Figlio et al., 2014). If the effects of birth weight on cognitive outcomes are 

stronger(weaker) for socially disadvantaged children than for socially advantaged children, 

then parental inputs and birth endowment could be substitutes(complements). In this study, 

we analyze the complementarity between parental investments and birth endowment 

through the estimation of heterogeneity in birth weight effects by demographic and 

socioeconomic characteristics of the households.  

We find positive and statistically significant effects of birth weight on the PPVT score: 

a 10% increase in birth weight increases the PPVT score by 8.1% and the PPVT z-score 

by 0.11. LBW babies have 0.91 standard deviations lower test scores compared with non-

LBW babies. The birthweight effect is statistically insignificant at age 5 but becomes 

statistically significant at age 8, a finding similar to the findings in Figlio et al. (2014). 

Furthermore, we show that the effect of birth weight differs significantly by socioeconomic 

and demographic factors: rural and poor children, girls, and children of less-educated 

mothers are more likely to benefit from improved neonatal outcomes. The quantile 

 
5The debate on nature versus nurture and the combined effect of genetic factors and early life experiences 
are discussed in detail in Manski (2011). Baguet and Dumas (2019) found limited evidence of catch-up 
between ages 8-22 years in Cebu, Philippines.  
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regression results show that the effect of birth weight is higher and statistically significant 

at the lower distribution of the PPVT score.  

Our study contributes to the literature on early childhood conditions and human capital 

accumulation in several ways. First, to the best of our knowledge, this is the first study to 

explore this topic in India, possibly due to the paucity of data. Our findings contribute to 

the growing body of evidence on the adverse effects of low birth weight on the cognitive 

ability of children. It further contributes to our understanding of these linkages in resource-

poor settings that witness both poor birth outcomes and low human capital formation. 

Second, our study uses an instrumental variable method to explicitly address endogeneity 

due to unobserved heterogeneity and measurement errors; this approach has not been used 

frequently in previous studies in this area.6 Previous studies have addressed endogeneity in 

a twin-fixed effect model, but these models fail to control for birth order and birth 

endowment effects. Third, unlike most previous studies that look at adult outcomes, we 

focus on mid-childhood outcomes, the channel through which the adult outcomes are 

manifested. In terms of policy intervention and evaluating the impacts of early-life 

programs, mid-childhood outcomes are preferred over adult outcomes (Almond et al., 

2018). Fourth, we investigate the effects of birth weight by household characteristics and 

socioeconomic status, which provides insight into the interaction between parental inputs 

and birth outcomes. Understanding the nature of the interaction between parental 

investment and neonatal health is crucial for human capital formation. Fifth, in contrast to 

years of schooling we use PPVT, a measure of cognitive ability because cognitive skills 

rather than school attainment are an important determinant of labor market outcomes in 

 
6Two previous studies that use IV method to examine the birthweight effects include Lin, Leung, and 
Schooling (2017) and Lin and Liu (2009).  
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high- and low-income countries (Hanushek and Woessmann, 2008). Finally, in contrast to 

previous studies, our study analyzes a recent cohort (born in 2000) whose developmental 

path is malleable and can still be influenced by targeted public policies.7  

The remainder of the paper is structured as follows. In section 2, we briefly discuss 

the relevant literature. Section 3 describes the data and variables used in the analysis. 

Section 4 discusses the econometric analyses and empirical specifications. Section 5 

presents and discusses the empirical findings on the effect of birth weight on cognitive 

development. In section 6 we present the robustness of our results. We conclude and 

discuss the policy implications of our findings in section 7.  

2. Related Literature 

2.1. Previous studies 

The literature on the long-run adverse implications of low birth weight on cognitive 

outcomes is growing, however, the majority of these studies are in high-income countries 

(Almond, Currie, Duque; 2018). In terms of methodology, the most common technique 

to estimate the causal impacts of birth weight on childhood and adult outcomes is twin- 

and sibling-fixed effects models. These models control for family background, 

socioeconomic status, and genetic factors. The evidence on the association between birth 

weight and cognition is mixed and the size of the effect depends on the empirical model, 

country context, grade, and age profile of the children. 

Using a sample of 804 monozygotic twins from Minnesota, Behrman and 

Rosenzweig (2004) find a positive relationship between birth weight and adult height, 

 
7Previous studies have mostly analyzed adults who have already completed schooling and are in labor market. 
For this set of samples, it might be too late to design policy to mitigate the effects of poor neonatal outcomes.  
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earnings, and schooling attainment in the US. They show that the twin who is heavier by 

about 1 lb. at birth is likely to be more educated (by 0.7 years), earn 7% more, and is taller 

by 0.6 inches at age 45 years.8 Black et al. (2007) confirms these findings in a Norwegian 

sample and find that a 10% increase in birth weight increased IQ by 0.06 points, probability 

of high school completion by less than 1 percentage point, and full-time earnings by about 

1%. Furthermore, using administrative data from Florida in the United States from 1992 to 

2002, Figlio et al. (2014) find that a 10% increase in (log) birth weight is associated with 

a 0.044 standard deviation increase in test scores in grades 3-8 (9-14 years old children). 

The birthweight effects appear by age nine and remain constant until age 14, and 

surprisingly do not vary by school quality or family characteristics. Another recent study 

that uses data on children born between 1992 and 2002 in Chile found that a 10% increase 

in birth weight increases math test scores by 0.02-0.04 standard deviations in grades 1-8 

(6-18 years old children) (Bharadwaj et al., 2018). 

Using Panel Study of Income Dynamics (PSID) from the USA, Chatterji et al. (2014) 

found that a 10% increase in birth weight is associated with a 0.04 standard deviation 

increase in math scores, and the birthweight effects are mostly concentrated among infants 

who were born as low birth weight. A similar study conducted in Canada by Oreopoulos 

et al. (2008) found a positive association between birth weight and years of schooling but 

found mixed effects of birth weight on the language test score. In a twin fixed-effects 

model, another study conducted in Chile among fourth-graders found that 400 grams 

increase in birth weight led to a 15% standard deviations increase in math test scores 

 
8 At the mean birthweight of 90.2 oz, one lb. increase in birthweight implies a 17.7% increase.  
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(Torche and Echevarria, 2011).9 In Cebu (Philippines), Baguet and Dumas (2019) show 

that an increase of 100 g in birthweight is associated with an increase of 0.019 standard 

deviations in the highest grade completed or 0.32 years of schooling at age 8 and found 

limited evidence of catch-up in adult years. 

Most of these studies have used twin- or sibling fixed-effect models to control for 

common time-invariant household characteristics and look at developed countries. 

However, these strategies fail to control for birth order effects and differential endowments 

of twins (Almond and Currie, 2011). In general, twins differ from singletons in terms of 

health endowment as twins are more likely to be premature, have low birthweight, genetic 

abnormalities. Twin births are also positively associated with the mRWKHU¶V� KHDOWK� DQG�

healthy behaviors which are likely to affect child quality (Bhalotra and Clarke, 2018). 

Thus, if twins are more susceptible to higher health risks compared with singletons, then 

WZLQV¶�ELUWKZHLJKW�HIIHFW�LV� OLNHO\�WR�XQGHUHVWLPDWH� WKH�HIIHFW�RI�VLQJOHWRQV¶�ELUWKZHLJKW� 

The instrumental variable method on singletons sample instead of twins could deal with 

these concerns of unobserved heterogeneity in a better way.  

Two studies based on the IV method found mixed evidence (Lin and Liu, 2009; Lin, 

Leung, and Schooling, 2017). Lin and Liu (2009) use the public health budget and the 

number of doctors as instrumental variables and found the effect of birth weight on grades 

only for the less educated and young mothers in Taiwan. Whereas Lin et al. (2017) use 

genetic variants (single nucleotide polymorphisms) and twin status as instruments and 

 
9Studies have also explored whether the effect of birth weight on education or IQ varies by the gestational 
weeks as preterm babies may have higher risks for cognitive problems. However, birth weight has not been 
found to be associated with IQ in China among preterm births, while birth weight was associated with IQ 
among 4-7 years old full-term children in China; 1 unit increase in Z-score of birth weight (450 g) was 
associated with an increase of 1.60 points in IQ (Huang et al., 2013). Similarly, the risk of preterm births and 
test score were not associated in the PSID sample in the USA (Chatterji et al., 2014).  
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found no association between birthweight and academic attainment in adolescence among 

Chinese children in Hong Kong. Nakamuro et al. (2013) employs twin fixed-effect and 

find positive impacts of birth weight on academic performance at age 15 but no effects on 

the highest years of schooling and earnings in Japan. In another Taiwanese study, using 

sibling and twin fixed-effects Xie et al. (2017) show positive and significant impacts on 

medium- and long-term schooling outcomes. The medical evidence on the association 

between birth weight and cognitive development is discussed in Appendix A.  

In summary, in addition to high-income countries especially the USA and the Nordic 

countries; only a small number of empirical studies have examined the effects of birth 

weight in a few Asian countries such as China, Hong Kong, Japan, and Taiwan as well. 

However, these Asian countries are high-income countries and share health and 

educational infrastructures similar to developed countries. The effects of birth weight could 

be drastically different in a setting that lacks resources to provide quality health and 

educational infrastructures and has disparate socioeconomic and social group composition. 

Although the biological effects of birth weight on cognitive outcomes may be constant 

across countries, country-specific factors could intensify or weaken the effects of birth 

weight (Royer, 2009). It is, hence, important to extend this literature to other unexplored 

settings where low birth weight is a significant public health challenge. To the best of our 

knowledge, no prior study has ever attempted to investigate the causal effect of birth weight 

on test scores, particularly in the mid-childhood phase of the life cycle in India.    

3. Data 

3.1. Young lives survey 

We use data from the Indian Young Lives (YL) survey, a longitudinal sample of children 
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born in 1994-95 (older cohort) and 2001-02 (younger cohort). The YL study is designed to 

investigate the dynamic nature of childhood poverty and its consequences on adult outcomes 

in four LMICs ± Ethiopia, India, Peru, and Vietnam ± over 15 years. In each country, the 

cohort comprises about 2000 children aged between 6 and 18 months (younger cohort) and 

up to 1000 children aged between 7 and 8 years (older cohort), recruited in 2002 and 

sampled from 20 community sites (Barnett et al, 2013). The YL data covers nutrition, health 

and well-being, cognitive and physical development, health behaviors and education, as 

well as the social, demographic, and economic status of the household. The cognitive 

outcomes were measured by the PPVT score and the Cognitive Developmental Assessment 

Quantitative (CDA-Q) at age 5 in round 2. However, in round 3 the CDA-Q test was 

replaced by a mathematics test. Since only the PPVT test was comparable between the two 

rounds, we use the PPVT score as the main outcome variable.   

The Indian YL survey sampled 2,011 6-18 months and 1,008 eight years old children. 

The sample is selected from 20 community sites spread across three agro-climatic zones 

(Coastal Andhra Pradesh, Rayalaseema, and Telangana) in the southern state of Andhra 

Pradesh.10 Our analysis uses the sample of the younger cohort from the first three rounds 

of the YL survey: the baseline round in 2002 and two follow-ups in 2006 and 2009 when 

the average ages of the younger cohort were 1, 5, and 8 years respectively. The attrition 

rate between baseline and follow-up rounds was less than 3% for the younger cohort. Of 

the 2,011 younger cohort children, birth weight information was available for 868 children 

in 2002. Round 1 data is used for the birthweight and exogenous control variables, while 

round 2 and 3 data are used for the outcome variable at age 5 and age 8, respectively. This 

 
10 Since the YL survey oversampled children from poorer areas of Andhra Pradesh to understand the causes 
and consequences of childhood poverty, the YL sample is less likely to be nationally representative. 
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provides a sample size of 1776 (868x2) children. Finally, we drop children with missing 

observations in any of the explanatory variables used in our main analysis, which leaves 

us with the main sample of 1,611 children for the pooled model. We discuss issues related 

to sample attrition in subsection 4.4.  

3.2. Variables 

The PPVT score, a measure of cognitive development, is our main outcome of interest. 

The PPVT was administered to the younger cohort at age 5 and 8 years. We use the log of 

PPVT score and standardized PPVT score (PPVT z-score) as the outcome variables. The 

PPVT is a widely used test to measure verbal ability and general cognitive development 

(see Crookston et al. (2013); Paxson & Schady (2007)), and the PPVT test score is 

positively correlated with other common measures of intelligence such as the Wechsler 

and McCarthy Scales (Campbell 1998). 

The primary explanatory variable is the log of birth weight, log(BW), from the 2002 

survey. Previous studies have used birth weight, log(BW), fetal growth, and an indicator of 

low birth weight (< 2500 grams) as explanatory variables; however, log(BW) is preferred by 

researchers as it accounts for nonlinearity in the effect of birth weight and to have better 

goodness of fit (Black, Devereux, and Salvanes, 2007; Chatterji et al., 2014; Figlio et al., 

2014). 

We control for confounding variables at the child, household, and community levels, 

which could affect the association between birth weight and PPVT score. The control 

variables are drawn from the 2002 survey. The child-level variables are age, gender, and birth 

order of the child. Evidence suggests that later-born children attain more years of schooling 

in India (Kumar, 2016). This is in contrast to the near consensus in high-income countries that 
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earlier-born children have higher IQ and schooling than their later-born siblings. This happens 

because earlier-born children are more likely to join the labor market to support household 

income. In a developing country context, where child labor is prevalent, the effects of birth 

order are the opposite of the effects in developed countries. Household variables that could 

affect the test score, including PRWKHU�DQG�IDWKHU¶V�HGXFDWLRQ (whether completed primary), 

household social group (whether Scheduled caste and Scheduled tribe (SCST)) and religion 

(whether Hindu), household wealth (wealth terciles), and rural residence. The wealth index 

is a simple average of three indices: housing quality, access to services, and ownership of 

consumer durables. The average produces a value between 0 and 1, where a higher wealth 

index indicates a higher socio-economic status (Briones, 2017).  

 Although breastfeeding duration is positively associated with education and cognitive 

development in Andhra Pradesh (Nandi et al., 2017) and elsewhere (Anderson et al., 1999), 

our model does not include breastfeeding because it is endogenous and likely to be affected 

by the birthweight. We only include pre-treatment control variables (i.e., before birth) in the 

model to avoid endogeneity issues due to the inclusion of post-treatment covariates.   

The analysis includes community fixed-effects to control for time-invariant 

characteristics such as overall development (visible and invisible infrastructures) of the 

communities. All explanatory and confounding variables are from round 1 in 2002 when 

children were, on average, one year old while the outcome variable, the PPVT score, is from 

round 2 and 3 when the average of the children was 5 and 8 years old, respectively. The 2002 

survey also collected data on maternal height in centimeters and information on whether the 

birth was premature, which we discuss in the next section. The number of gestational weeks 

was reported only for children born prematurely. Due to missing information on gestational 
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weeks for full-term babies, we are unable to control for weeks of gestation in our regression 

models. 

4. Econometric analyses 

4.1. Ordinary Least Square approach 

The effect of birth weight (BW) on cognitive outcomes can be analyzed in an Ordinary 

Least Square (OLS) framework in the following way: 

 

௜ܻ௝௦ ൌ ଴ߚ ൅ ܤଵߚ ௜ܹ௝௦ ൅ ௜௝௦ܥଶߚ �൅ ௝௦ܪଷߚ ൅ ௦ߠ ൅  ௜௝௦                             (1)ߤ

 

where each observation is for individual child i in household j in sentinel s. 

Sentinel/community s is defined as a cluster of villages. The dependent variable ௜ܻ௝௦ 

denotes the log of PPVT score or PPVT z-score (standardized). ܤ ௜ܹ௝௦ is either expressed 

as log of birth weight or a binary indicator of low birth weight (< 2,500 grams). ܥ௜௝௦ denotes 

child characteristics, ܪ௝௦ denotes household characteristics, ߠ௦ is sentinel/community 

fixed-effects, and ߤ௜௝௦�are the idiosyncratic error terms. 

Direct estimation of equation (1) is subject to potential bias because unobserved 

determinants of the cognitive outcomes could be correlated with birth weight. Unobserved 

heterogeneity originating from genetic or environmental factors could potentially affect 

both birth weight and cognitive ability. For example, if more educated parents adopt 

healthy behaviors that could have a positive impact RQ� ELUWK� ZHLJKW� DQG� FKLOGUHQ¶V�

education, the OLS estimator ߚଵ in equation (1) will overestimate the true causal impact of 

birth weight on the outcomes. Previous studies have either used twins or siblings fixed-

effect models to address these concerns of unobserved heterogeneity (Figlio et al., 2014; 
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Bharadwaj et al., 2018). We are unable to exploit within family variation or twins because 

the YL data has information on only one child per household. Instead, we use an 

instrumental variable method and control for a wide range of confounding factors.  

4.2. Instrumental variable approach 

We estimate the following two-stage least square (2SLS) models in the instrumental 

variable framework. The first and second-stage regressions are of the following form:  

First stage: 

ܤ ௜ܹ௝௦ ൌ ଴ߙ ൅ ଵܼ௜௝௦ߙ ൅ ௜௝௦ܥଶߙ ൅ ௝௦ܪଷߙ ൅ ௦ߠ ൅  ௜௝௞                         (2)ߟ

Second stage: 

௜ܻ௝௦ ൌ ସߚ ൅ ܤହߚ పܹఫ௦෣ ൅ ௜௝௦ܥ଺ߚ �൅ ௝௦ܪ଻ߚ ൅ ௦ߠ ൅ ߳௜௝௦                            (3) 

Where ܼ௜௝௦ denotes the instruments and birth weight (ܤ ௜ܹ௝௦ሻ is the endogenous variable 

expressed as the log-transformed birth weight measured in grams. ܥ௜௝௦ denotes child 

characteristics (age, gender, and birth order), ܪ௝௦ denotes household characteristics (father 

DQG�PRWKHU¶V�HGXFDWLRQ��social group, religion, wealth, and rural), ߠ௦ represents sentinel or 

community fixed-effects, and ߟ௜௝௞�and ߳௜௝௦ are the idiosyncratic error terms assumed 

independent of all other variables in equation (2) and (3). Sentinel fixed effectsߠ�௦�is 

included to control for time-invariant characteristics of the communities. Standard errors 

are clustered at the child level, which account for the fact that the same child is included in 

the model twice.11 The parameter of interest is the second-stage parameter ߚହ, which captures 

the effect of birth weight on the test score.  

In the first stage, the endogenous variable BW is regressed on the instruments and the 

 
11 It should be noted that we cannot estimate the model with child fixed-effects because the birthweight 
variable does not vary over time. Only the outcome variable is longitudinal and varies over time. 
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exogenous variables, and in the second stage, the outcome variables (Y) is regressed on the 

predicted value of birth weight ሺܤ పܹఫ௦ሻ෣  from the first stage and the exogenous variables. The 

instruments used in this study are the PRWKHU¶V�KHLJKW and a binary indicator of preterm birth 

(PTB), which we argue that instruments are plausibly exogenous and affect the outcome 

variables only through birthweight. The parameter ߚହ is identified if the instruments satisfy 

the following three conditions: (i) the instruments should be correlated with the endogenous 

variable (relevance condition) (ii) the instruments should be correlated with the cognitive 

outcomes only through birth weight (exclusion condition), and (iii) instruments are more or 

less randomly assigned (independence). In other words, the instruments should be associated 

with the endogenous variable (BW) but should not be associated with any confounder of the 

birthweight-outcome association, nor is there any causal pathway from the instrumental 

variable to the outcome other than via the BW.  

 

4.3. Instrument validity 

The rationale for using the PRWKHU¶V�KHLJKW and PTB jointly as instruments for birth weight is 

that they are likely to affect the intrauterine environment of mothers and fetus growth. In-

utero exposure to health shocks such as maternal stress or deficient maternal nutrition could 

affect birth weight by affecting the gestational length or intrauterine growth (Camacho, 2008; 

Bozzoli and Quintana-Domeque, 2014; Amarante et al., 2016). Maternal stress causes low 

birth weight through the premature delivery of babies. Preterm birth (born before 37 weeks 

of pregnancy) is a leading cause of low birth weight, and it indirectly affects neonatal 

mortality (WHO, 2018), which guides its choice as the instrument in our study.  

0RWKHU¶V� KHLJKW� is correlated with pregnancy outcomes because maternal height 

https://www.sciencedirect.com/science/article/pii/S0167629617303521#bib0115
https://www.sciencedirect.com/science/article/pii/S0167629617303521#bib0050
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affects the physical environment of the uterus (shorter women may have smaller uterus 

size) and may reflect the PRWKHU¶V�FXPXODWLYH�VRFLDO�DQG�QXWULWLRQDO�FRQGLWLRQLQJ�WKDW�PD\�

impact the intrauterine environment and birth outcomes (Ozaltin, Hill, Subramanian, 2010; 

Zhang et al., 2015). Thus, maternal height and birth outcomes, including birth weight are 

likely to be positively correlated.  

The first condition of instrument relevance can be statistically tested; however, the 

second condition of exclusion restriction - that the maternal height and PTB affect 

cognitive outcomes only through birth weight - cannot be empirically established. The 

exclusion restriction requires orthogonality between the instruments and the dependent 

variables conditional on other explanatory variables and does not assume unconditional 

orthogonality. Therefore, we use a rich set of control variables as discussed in the data 

section in our IV model and believe that conditional on the inclusion of these control 

variables, Corr (Y, Z) = 0. One way to provide suggestive evidence on WKH�LQVWUXPHQW¶V�

excludability is to check if the observed characteristics between preterm births and full-

term births are statistically different (McClellan et al., 1994). We report the balance of 

observed characteristics between the preterm and the full-term in Appendix Table A2. We 

discuss the results on the LQVWUXPHQW¶V�UHOHYDQFH�DQG�H[FOXGDELOLW\�FRQGLWLRQ in more detail 

in the results section. 

Another potential concern is that preterm birth is not completely excludable because 

premature birth may directly affect brain development, breathing disorders, and brain 

hemorrhage risks which are likely to affect the learning ability of preterm babies. We are 

unable to control for these factors, however, this will bias the 2SLS estimates downward. 

Furthermore, it is possible that maternal height could DIIHFW�FKLOGUHQ¶V�FRJQLWLRQ�GLUHFWO\�LI�
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taller mothers have higher education or are more likely to be employed. Working mothers 

may spend less time with their children. In our estimation, we include parents¶ education 

that may help eliminate any such direct effect of maternal height on the test score.     

In the case of multiple instruments (an overidentified model), Wooldridge (2010) 

shows that the overidentification restriction can be tested by comparing NR2u to the critical 

YDOXH� RI� Ȥ� 2(1). R2u is the usual R-square of 2SLS residuals (equation 3) on all of the 

instruments and the full set of exogenous variables. We report the results in Appendix 

Table A3 and discuss them in the results section.  

 

4.4. Sample selection bias  

In our study sample, birth weight is observed only for 43% (for 868 children of 2,011 children) 

of the sample. The OLS and 2SLS estimates would be biased if there are unobserved factors 

that are correlated with missingness of BW and also affect the cognitive outcomes or if the 

probability of missingness is associated with birth weight and/or with the outcomes. In case 

the birth weight information is missing non-randomly, it may bias the 2SLS estimates. To 

check if the BW information is missing randomly, we compare household characteristics of 

the sample with and without the BW information in Table A4. Results show that socio-

demographic characteristics are different for the two samples. For many variables, the 

difference between the two samples is statistically significant. We use the Heckman-type 

correction method (Heckman, 1979) to correct for missingness. We calculate the inverse Mills 

ratio from the sample selection model that predicts the likelihood of observing birth weight in 

the data and then include the inverse mills ratio as regressors in the 2SLS model.12   

 
12We predict probability of observing BW using a probit model. The probit model includes birth weight 
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In a robustness check, we weight the regression models by inverse probability weight 

(IPW) to correct for non-random sample selection bias. IPW weights the complete cases by 

the inverse of their probability of not being missing and rebalances the sample to make it 

representative of the population. While exploring the reason for missing information on 

birthweight, we observe that the BW information is missing for children who were either born 

at home or if their birth information was not officially documented. For example, BW 

information is missing for 81% of the home births and 33% of institutional births. Of the total 

sample of 2,011 children, 1,000 were born at home and the remaining 1,011 children were 

born at health facilities. Another important determinant of missing data on birthweight was 

the availability of government birth records. Thus, recording birthweight data in the YL 

survey was primarily dependent on the place of delivery and government documentation of 

births. )XUWKHUPRUH��WKH�SUREDELOLW\�RI�PLVVLQJ�GDWD�RQ�ELUWK�ZHLJKW�DOVR�GLIIHUV�E\�PRWKHU¶V�

education, rural residence, and household wealth. Since these variables are included in the 

2SLS models, we calculate weights by regressing a binary indicator of missingness on the 

probability of undocumented birth records and births at home.  

 

4.5. Heterogeneous effects and Instrumental variable quantile regression  

The average effects of birth weight estimated in equation (3) may not necessarily be 

uniform across different population subgroups. Household characteristics and parental 

preferences (compensatory or reinforcing) may affect the association between birth weight 

and cognitive outcomes and thus may vary by socioeconomic or sociodemographic factors. 

For example, parents who prefer to compensate for poor birth endowment might invest 

 
documentation, parental education, rural residence, household wealth, and home births as explanatory 
variables to predict BW missingness.  
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more on LBW children and hence weaken the birth weight effects on outcomes. 

Furthermore, examining this association by household characteristics also helps us 

understand the complementarity between neonatal health and parental investment (Figlio 

et al., 2014). To test whether parental inputs and neonatal health are complements or 

substitutes, we estimate equation (3) by gender of the child, parental education, the location 

of residence (rural vs urban), parental education, household social group, and household 

wealth.   

Additionally, subgroup analyses to estimate heterogeneous effects are important in the 

IV method because of the distinction between the average treatment effect (ATE) and the 

local average treatment effect (LATE) (Angrist, 2004). If compliance to the instrumental 

variable is not homogenous, the 2SLS method essentially estimates LATE, which estimates 

the effect of birth weights for groups whose treatment status is manipulated by the 

instrument (Angrist, 2004). Since LATE is not identical across sub-groups because of the 

difference in the strength of the instruments across the sub-groups, the effects of birth 

weight might vary by household characteristics. Finally, the mean effects estimated in 

equation (3) may mask the birthweight effects at different quantiles of the PPVT score. For 

example, the marginal contribution of higher birth weight may be higher or lower at the 

lower quantiles compared to the higher quantiles of the PPVT distribution. The median 

regression is additionally estimated to complement the mean regression to analyze data 

with outliers. We, therefore, estimate instrumental variable quantile regression to examine 

whether the effects of birth weight vary by quantiles of the PPVT score.  

 

5. Results 



21  

5.1. Descriptive summary 

Table 1 shows the summary statistics of all variables used in the analysis. The average PPVT 

score at age 5 and age 8 is 32.34 and 64.61, respectively, indicating that the PPVT raw 

score has improved over time. The mean and median birth weight is 2,763.65 and 2,750 

grams, respectively. The average birth weight in rural areas (2688 grams) is 6.3% lower 

than the average birth weight in urban areas (2868 grams). The prevalence of low birth 

weight is 16.8% and 13% of the total sample were preterm births. LBW incidence is higher 

in rural areas (20.2%) than in urban areas (12.1%). About 80% of the preterm children were 

born between 32-37 weeks of gestation. Children, on average, are 64 (range: 54-76 months) 

and 95 (range: 86-106 months) months old in rounds 2 and 3, respectively, with 45% of 

them being female. The average age is 80 months in the pooled sample. 

The average birth order is 1.8; mothers are less likely to be educated compared to 

fathers, as the primary school completion rate among mothers is 58% while it is 66% among 

fathers. 7KH�DYHUDJH�PRWKHU¶V�KHLJKW�LV�������FHQWLPHWHUV��Households are predominantly 

rural (58%) and practice the Hindu religion (84%). About 25% of the children belong to 

socially disadvantaged communities (scheduled social group/scheduled tribe) and 53% of 

them belong to the top wealth group. The wealth index in the YL survey is a weighted sum 

of three components: housing quality measure, consumer durables, and services. Using the 

wealth indices, we define the rich as the top wealth group.  

 

5.2. First-stage of IV results 

The first-stage regression shows the predictive power of our two instruments, the motKHU¶V�

height, and pre-term births, on the birth weight of the newborns. The first stage results 
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presented in Table 2 show that the instruments are highly correlated with BW. MRWKHU¶V�

height and BW are positively correlated, while PTB and BW are negatively correlated. The 

F-statistics for the PRWKHU¶s height is less than 10 in column 1, suggesting that the 

instrument is weakly correlated with BW.13 The F-statistics for the second instrument, 

PTB, is greater than 10 indicating its strong relevance with BW (column 2). Thus, to 

improve the strength of the instruments and statistical precision of the IV estimates, we 

include both instruments in the 2SLS model. In an over-identified model, the use of 

multiple instruments increases the precision of the IV estimates compared with the separate 

IV estimates (Wooldridge, 2010). When we use both instruments (our preferred 

specification) in column 3, the F-statistics is 12.77, greater than the typical cut-off of 10 

for instrument relevance. These two instruments pass the weak identification tests in 

Column 3; the Kleibergen-Paap Wald rk F statistics is 12.77 and the Cragg-Donald Wald 

F statistics is 33.02. The F-test shows that the two instruments are strong, statistically 

significant, and robust to the inclusion of covariates and community fixed effects.  

Although the IV condition of excludability is difficult to test statistically, we provide 

indirect checks in Table A2. Results in Table A2 indicate that the preterm sample of 

children is similar to the full-term sample on several socioeconomic and sociodemographic 

characteristics. Of the 21 variables in Table A2, the difference is statistically significant 

only IRU���YDULDEOHV��QDPHO\�SDUHQW¶V education, gender, and birth order of the child, rural, 

and hRXVHKROG�ZHDOWK��+RZHYHU��WKH�VLJQ�IRU�PRWKHU¶V�HGXFDWLRQ��IDWKHU¶V�HGXFDWLRQ��DQG�

wealth is negative meaning that the preterm sample has more educated and wealthy parents. 

It is unclear in which direction the significant difference in parental characteristics will bias 

 
13The typical rule of thumb F-stat cut off for weak instrument is 10 (Stock and Yogo, 2005).   
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the 2SLS results because the direction of the bias will be determined by whether parents 

engage in compensatory or reinforcing behavior. None of the health behavior variables are 

significantly different. The remaining variables are also similarly distributed across the two 

categories in Table A2. 

We also test for overidentification restrictions in Table 2 and Table A3. The Sargan-

test p-value and Basmann p-value are mostly above 0.10, implying that both instruments 

could be included in the IV models (Table 2). Table A3 reports the results from the 

regression of 2SLS residuals on the instruments and the exogenous variables as suggested 

by Wooldridge (2010). The R-squared in Table A3 is 0.00 and NR2u is well below the 

critical value Ȥ�2(1). This gives us confidence in the overall validity of the instruments in 

our IV models.  

 

5.3. Two-stage least square results (full sample) 

Table 3 reports estimates for the causal impact of birth weight on the log PPVT score. All 

models in Table 3 include community fixed effects to capture time-invariant characteristics 

of the communities and inverse mills ratio to correct for sample selection biases. Column 

1 shows the OLS estimates, and columns 2-4 report 2SLS estimates. The OLS results that 

do not account for the endogeneity of BW suggest a statistically significant and positive 

relationship between BW and the log of the PPVT score. The OLS results imply that an 

increase in BW by 10% (276 grams) raises the PPVT score by 1.9% (column 1).14 

Columns 2 and 3 report the results from the 2SLS models when BW is instrumented 

by the PRWKHU¶V�KHLJKW�DQG�SUHWHUP�ELUWK��UHVSHFWLYHO\��Results in columns 2-3 indicate that 

 
14An effective policy could affect birth weight in the range of 200-250 grams (Royer, 2009). However, the 
average birth weight among LBW children in our sample is 1954 grams.  
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BW is positively associated with the log of the PPVT score; however, the estimates are 

statistically significant only in column (3). The results in column 3 indicate that a 10% 

increase in BW would increase the log of the PPVT score by 7.2%. Our preferred 

specification is the model in column (4) when BW is instrumented by both instruments - 

PRWKHU¶V�KHLJKW�DV�ZHOO�DV�SUHWHUP�ELUWKV� The 2SLS results in column (4) show that BW 

has a statistically significant causal effect on the PPVT score. The estimated 2SLS 

coefficient is 0.801, meaning an increase of BW by 10% will raise the log(PPVT) score by 

8.0%. The 2SLS coefficient is about four times larger than the OLS estimate. The 

difference between the OLS and the 2SLS coefficients implies that the OLS model suffers 

from relatively large endogeneity biases and the OLS estimate is likely to underestimate 

the true causal impact of BW on the test score. When we include the PRWKHU¶V�KHLJKW�DQG�

PTB jointly in the model in column (4), we lose a few observations due to missing 

information. The coefficient on the inverse Mills ratio in column (4) is statistically 

insignificant (not reported), implying that selection of children into the estimation sample 

is not a major concern.  

For ease of interpretation, the literature in education frequently uses standardized test 

scores rather than the raw or log of the test scores as the dependent variable.15 In Table 4, 

we report the effect of birth weight on standardized PPVT scores (PPVT z-score). The OLS 

coefficient is 0.244 meaning that the standardized test score increases by 0.02 standard 

deviations (SD) due to an increase in BW by 10%. The 2SLS results are reported in 

columns (2)-(4). Results are statistically insignificant when we use the PRWKHU¶V�KHLJKW�DV�

the instrument (column 2), whereas results in columns (3) and (4) pass the statistical 

 
15Z-scores capture how far the test score deviates from the mean test score of sampled children. 
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significance at a 5% level of significance. With preterm birth as the instrument, the 

birthweight effect is 0.10 SD for a 10% increase in BW.  

  When we use the PRWKHU¶V�KHLJKW�DV�ZHOO�DV�SUHWHUP�ELUWKV�WRJHWKHU�DV�LQVWUXPHQWV�LQ�

column 4, we find that BW has a significantly positive impact on the standardized test 

score. A 10% increase in BW leads to 0.11 SD increases in the PPVT z-score. These 

findings are robust to the addition of various child- and household-level controls, and 

community fixed-effects in the regression model. Compared to other studies, our results 

are slightly larger in magnitude. For example, a 10% increase in birth weight increased 

math and language test score by 0.02-0.04 SD in Chile (Bharadwaj et al., 2018); by 0.03 in 

Florida, USA; (Figlio et al., 2014); 400 grams increase in birth weight led to 2.6 or 5% SD 

increase in math scores in Chile (Torche and Echevarria, 2011). However, it should be 

noted that the type and design of tests may not be comparable across studies. In contrast to 

the studies in the USA and Chile, the PPVT test administered in India is a vocabulary and 

receptive test and does not include math or language component.  

The WHO classifies children weighing less than 2,500 grams at birth as low birth 

weight and recommends designing health policies targeting LBW babies, as low birth 

weight is significantly associated with worse child and adult outcomes. Instead of using 

BW as a continuous variable, panel B in Tables 3 and 4, we estimate the impact of low 

birth weight (a binary indicator for having BW < 2,500 grams) on the log of the PPVT 

score and the standardized PPVT score, respectively. The OLS and the 2SLS results show 

that LBW is negatively associated with both the outcome variables. Column 4 in Table 3 

shows that low birth weight children have a 65% lower PPVT score compared to children 

who are not low birth weight. Results in column 4 in Table 4 shows that LBW children 
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have 0.9 SD lower test scores compared to non-LBW children. The 2SLS coefficient is 

about five times larger than the OLS estimates.16     

 

5.4. Two-stage least square results by age of the children 

In addition to the importance of the main effects, Figlio et al. (2014) and Bharadwaj et al. 

(2018) emphasize the importance of trajectory and the critical period of human capital 

development. The ages at which the birthweight effect appears and whether the effects are 

persistent or not as children grow older have been addressed empirically in these two 

studies. Bharadwaj et al. (2018) examine the birthweight effects in grades 1-8, while Figlio 

et al. (2014) examine grades 3-8. In Table 5, we conduct a similar analysis by age of the 

children. We are unable to conduct the analyses by grades because our sample children 

were 5 years old in 2006 and did not start school at age 5. Therefore, no schooling data is 

available from round 2 of the survey. However, since we have PPVT score data for two 

time periods (age 5 and age 8) we estimate our model by age instead of by grade. This 

analysis would be useful in knowing the ages at which the effects of birth weight start 

appearing. Whether the birthweight effects set in early childhood or mid-childhood ages 

remain an important inquiry? 

 Bharadwaj et al. (2018) find that the effect of birth weight on cognition as early as 

age 6, whereas, in Figlio et al. (2014) study, the birthweight effect appears at age nine, and 

in both studies, the effects are stable and persistent through grade 8 (ages 14-18).17  Our 

 
16The results in column 4 are slightly bigger in magnitude. Column 4 in Table 3 shows that low birth weight 
children have 65% lower PPVT score relative to non-LBW children. The standard deviation of birthweight 
is 547 grams in our sample, so a unit change in LBW implies a gain in birth weight of ~547 grams. Another 
way to interpret the results in column 4 is that an increase in BW by ~547 grams (or by 28% [547/1954]) 
could increase log of PPVT score by 65%. The average BW among LBW infants is 1,954 grams in our 
analytical sample.  
17The age-range of grade 8 students in Florida was between 14 and 18.  
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results in Table 5 show that the negative effects of poor birth outcomes do not appear by 

age 5 (columns 1 and 3) but are statistically significant and economically meaningful at 

age 8. For example, a 10% increase in birth weight increases standardized test scores by 

0.13 standard deviations at age 8 but no significant association was estimated at age 5. Our 

results are somewhat similar to those of Figlio et al. (2014) and Bharadwaj et al. (2018) 

although the context, empirical specification, and outcomes are not always comparable. 

Since elementary schooling in India starts at age 5 or 6 in India, our sampled children are 

likely to be in grades 2 or 3 in 2009. This implies that the birth weight effect in our study 

starts appearing in grades 2-3 among Indian children which is consistent with the findings 

in Figlio et al. (2014) and Bharadwaj et al. (2018). Examining the effect of low birth weight 

on the test score, we find that LBW children have a 1.09 SD lower test score relative to 

children who are not LBW (Panel B, Table 5). In summary, poor neonatal health is not a 

statistically significant determinant of test scores at age 5 but plays an important role in 

predicting the PPVT score at age 8. However, the results for other cognition-related 

outcomes are mixed (Table A6). The birth weight has positive effects on CDA-Q at age 5 

but there is no evidence of statistically significant effects on math test scores at age 8.             

 

5.5. Heterogeneous effects by gender, maternal education, household wealth, household 

caste, and location 

The results show the average impacts and indicate a robust causal association between birth 

weight and test scores in the Indian YL sample. Nonetheless, the effects of birth weight on 

test scores may vary by child and household characteristics. On the one hand, if 

socioeconomic factors (income and SDUHQW¶V education) are substitutes with birth weight in 
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the production of cognitive skills then the impact of birth weight on test scores will be 

larger for the disadvantaged groups. On the other hand, if parental behaviors and resources 

were complements with initial health endowment, then one would expect to see larger effects 

for the advantaged groups (Figlio et al., 2014). We examine the heterogeneity in the 

association between birth weight and test score by estimating equation (3) by gender of the 

child, maternal education (whether mother has completed primary schooling), household 

social group (SCST vs other social groups), household wealth (top tercile vs the bottom 

two terciles), and by location of residence (rural vs urban). Table 6 reports the 

heterogeneous results.   

The results indicate that household socioeconomic characteristics appear to moderate 

the effects of birth weight on the PPVT test. Column (1) shows the results for the 

log(PPVT) score and column 2 shows the results for the standardized PPVT score. It should 

be noted that the F-stat and N would be identical for models in columns (1) and (2) because 

first-stage regressions are the same for both outcomes. To save space, we only report the 

2SLS results.18 The pooled 2SLS coefficients are statistically significant for rural, girls, 

less educated mothers, and poor households sample. For example, the birthweight effect 

on the PPVT z-score is 0.19 SD for children born to less educated mothers, whereas the 

association is statistically insignificant for children born to mothers who have completed 

primary schooling. Similarly, the relationship is larger and statistically significant (at a 

10% level of significance) for children belonging to richer households than the poorer 

households. The causal impact of BW on test scores also differs by gender of the child: the 

effect size is positive but statistically significant only for the girls and not for the boys. In 

 
18The OLS results are available upon request.  
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contrast, neither Bharadwaj et al. (2018) nor Figlio et al. (2013) found any evidence of a 

differential effect of BW on test scores by household characteristics. Their findings imply 

that some of the biological and fetal disadvantages are difficult to overcome through nurture 

or family resources. In contrast, RXU� UHVXOWV�VKRZ�WKDW�³QXUWXUH´�RU family resources can 

partially remediate poor birth outcomes.  

 

5.6. Instrumental variable quantile regression results 

We next examine whether the effect of birth weight in our study varies by the distribution 

of the PPVT score in a quantile regression framework. The quantile regression method is 

useful in estimating the effects of birth weight at different quantiles of the PPVT score 

distribution. The average birthweight effects reported in Tables 3 and 4 may mask 

important causal impacts at different parts of the conditional distribution of the PPVT 

score. The policy response and design would be different if the effects of birth weight on 

test scores are stronger (weaker) at higher (lower) quantiles. Figure 1 reports the estimates 

for the quantiles {0.20, 0.40, 0.60, 0.80}, whereas Table A7 reports the results for several 

other quantiles. The dependent variables are the log of the PPVT score and the PPVT z-

score. The results from instrumental variable quantile regression show that the positive 

effects of birth weight vary by the quantiles of the PPVT score. The estimated positive 

effects of birth weight on test scores are statistically significant mostly at the lower and the 

median quantiles. An increase in birth weight raises test scores throughout the range of 

quantiles at nearly all the quantiles below 0.6. Similarly, low birth weight has statistically 

significant and negative impacts on test scores at quantiles below 0.6. For quantiles above 

0.6, the sign of the effects is in the right direction, but they are imprecisely estimated (large 
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standard errors) and are statistically insignificant.    

 

6. Robustness Checks 

In the robustness, we examine the stability of our main findings in two ways. First, instead 

of employing a Heckman-type correction method, we use inverse probability weighting to 

correct for selection bias. Columns (1) and (3) in Table 7 report the results of this analysis. 

The control variables in Table 7 are the same as those in Tables 3-4. Results are quite stable 

and similar to the main findings reported in Tables 3-4. A 10% increase in birth weight 

increases the log(PPVT) score by 8.7% (column 1) against the benchmark estimates of 

8.01% in Table 3. Similarly, the effect of a 10% increase in birth weight on standardized 

PPVT score is 0.12 standard deviations (column 3), which are similar to the benchmark 

results in Table 4 (column 4).   

In the case of a weak instrument and multiple instruments particularly when 

instruments are correlated with each other, the 2SLS estimator may exhibit bias. As a 

robustness check, we use a jackknife instrumental variable estimator (JIVE) that is more 

robust to weak instrument problems as well as the correlation among multiple instruments 

(Angrist, 2004). Results in columns (2) and (4) in Table 7 indicate that our main findings 

are quite stable and robust to the estimation of an alternative version of the IV method, the 

JIVE approach. The JIVE results are larger in magnitude than the 2SLS estimators, 

confirming the positive and persistent impacts of birth weight on test scores. 

In Table A8, we further show that our main results on LBW (panel B in Tables 3 & 4) 

are robust to non-inclusion of observation, which had missing birth weight information. 

Although we correct for the sample selection bias through the Heckman-type correction 
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method or inverse probability weighting, we bound the 2SLS estimates for LBW analysis 

in Table A8. Column (1) provides the benchmark coefficient from Table 4. In column (2), 

we assume that all observations with missing BW information are non-LBW, whereas, in 

column (3), they are assumed to be LBW.19 The assumptions of all missing being either 

LBW or non-LBW are a bit extreme, so in column (3), we randomly assume 17% of the 

missing sample as LBW. The mean LBW prevalence in our analytical sample is about 

17%. Assuming that all missing children are non-LBW results in a coefficient of 1.24 SD, 

37% larger than the coefficient in column (1). The 2SLS point estimate is similar when we 

randomly assume that only 17% of the missing sample is LBW (column 4).20  

Royer (2009) found a larger birthweight effect for infants weighing more than 2,500 

grams, while no such differential effects were found in Figlio et al. (2014). Bharadwaj et 

al. (2018) show that being born as a low birth weight infant reduces math score by 0.1 

standard deviations but they do not report their findings for infants with normal birth 

weight (greater or equal to 2,500 grams). To estimate these non-linear effects of birth 

weight, we split the sample into two groups: less than 2,500 grams and greater than or equal 

to 2,500 grams. The results are reported in Table A9. Results are very sensitive to the 

heaping of birth weight at 2,500 grams and clear evidence of non-linear effects does not 

emerge from this analysis. In many cases, the estimates are statistically insignificant. 

However, for completeness, we report these results as well.  

 

 
19With these adjustments, the prevalence of LBW children changes to 7.2% and 64.3% in column 2 and 3, 
respectively.   
20We cannot assume the birth weight of the missing sample; therefore, we are unable to do a similar 
robustness check for the log of birth weight results. Multiple imputation is an option, but we do not undertake 
imputation exercise in this paper.  
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7. Conclusion 

Despite a large body of evidence on the effect of birth weight on cognitive outcomes in 

developed countries, there is a dearth of comparable studies on children in LMICs. This study 

is among the first to examine the role of birth weight in cognitive and human capital 

development in a resource-poor country such as India. We address endogeneity in birth 

weight by adopting an instrumental variable approach. Two instruments, pre-term births 

and the PRWKHU¶V�KHLJKW��DUH�XVHG�WR�LQVWUXPHQW�ELUWK�ZHLJKW�LQ�WKH�,9�PRGHO�� 

We find that improved birth outcomes have a positive and statistically significant 

impact on the PPVT score among children in the mid-childhood phase of their life cycle.  

An increase in birth weight by 10% results in 0.11 standard deviation increases in the PPVT 

score, which is economically meaningful and comparable to the effects found in the 

education interventions in developing countries. For example, large-scale educational 

interventions (financial incentives to teachers, remedial education, and computer-assisted 

learning) increased test scores by 0.17-0.47 standard deviations (Banerjee et al., 2007; 

Muralidharan and Sundararaman, 2011; Duflo, Hanna, and Ryan, 2012). The analytical 

model examines sampled children at two stages of their childhood, at age 5 and 8, and 

results show that the birthweight effect is not visible at age 5 but becomes stronger and 

statistically significant at age 8. The heterogeneity analysis further establishes that parental 

inputs and neonatal outcomes are substitutes as the effect sizes are larger in magnitude for 

rural, girls, poor, and children born to less-educated mothers. The differential effects by 

gender of the child, maternal education, household caste, wealth tercile, and rural residence, 

imply that nurture or parental investment may moderate the biological determinants of mid-

childhood outcomes.   
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While the results presented in our study are compelling and policy-relevant, there are 

a few limitations. First, unlike the previous studies, we are unable to use either twin as an 

exogenous variation in the birth weight or household fixed-effects model due to a lack of data 

on twins or siblings. There could also be concern about the representativeness of the YL 

sample. Second, since the YL data oversampled poor children and was drawn from only one 

state of India, the data may not be representative either of the state or the country as a whole. 

Third, mothers¶ self-report of birth weight may introduce measurement error due to recall bias 

and this could potentially bias the estimated parameters in this study. However, previous 

research suggests that maternal recall data regarding birth weight can be reliable in predicting 

infant and childhood health in India (Subramanyam and Subramanian, 2010). Finally, we are 

unable to control for weeks of gestation in our model due to data limitations. Data on 

gestational weeks is available only for preterm births and the lack of similar information for 

full-term births precludes us from including gestational weeks as an additional control in our 

preferred specification. Despite these OLPLWDWLRQV��ZH� EHOLHYH� WKDW� WKH� ¿QGLQJV� IURP� WKLV�

study will engender health policy design to improve neonatal outcomes in India. 

Future studies should explore the risk factors associated with low birth weight and 

subsequently examine preventive strategies that could be effective in reducing the 

incidence of low birth weight in developing countries. Improving access to prenatal care 

and maternal nutrition could be important interventions to reduce the risk of premature 

births and low birthweight in low-income countries. Prenatal care is critical for ensuring 

improved birth outcomes as infants born to mothers who received prenatal care are less 

likely to be low birth weight. (Gonzalez and Kumar, 2018). Additionally, parents¶ 

compensatory behavior, postnatal interventions, and remedial education policies could 
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reverse the adverse effects of poor neonatal conditions.  

To conclude, our study contributes to the literature in several important ways. First, it 

is one of the handful of studies on the effect of birth weight on cognition in India. Given 

that LBW is disproportionately high in India, estimating its negative effects on human 

capital will help policymakers design interventions that can offset and compensate for the 

poor birth endowment. Secondly, most of the previous studies have explored adult 

outcomes that are mediated through mid- and late-childhood ages. In this paper, we present 

results on short to medium-term effects of lower birth weight and highlight the mechanism 

(cognition) through which adult outcomes are likely to be generated. Our understanding of 

the evolution of the developmental path of children at different phases of the life cycle is 

limited; therefore, future research should attempt to disentangle the effect of early life or 

neonatal conditions on mid-childhood outcomes from adult outcomes. The limited 

information on the ³PLVVLQJ�PLGGOH�\HDUV´�RI� FKLOGKRRG� VKRXOG�be addressed in future 

studies so that policymakers can identify and design cost-effective policies for children of 

different ages.  
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Table 1: Summary Statistics   

 Mean S.D. N 
 (1) (2) (3) 
Outcome variables     

PPVT raw score at age 5 (2006) 32.34 24.59 795 
PPVT raw score at age 8 (2009) 64.61 32.65 816 
PPVT raw score (pooled) 48.68 33.14 1611 
PPVT z-score (pooled) 0.181 1.08 1611 
Log of raw PPVT score (pooled) 3.64 0.71 1611 
CDA-Q at age 5 (2006) 9.74 2.66 826 
Math score at age 8 (2009) 13.45 6.36 821 

Explanatory variables (Round 1, 2002)    
Low birth weight   0.168  868 
Birth weight (grams) 2763.65 547.13 868 
Log of birth weight 7.90 0.21 868 

Instrumental variables (Round 1, 2002)    
0RWKHU¶V�KHLJKW 151.46 6.91 838 
Preterm birth (PTB) 0.13  828 

Child characteristics    
Age of child (in months), 2006 64.21 4.01 838 
Age of child (in months), 2009 95.51 3.83 830 
Age of child (in months, pooled) 80.09 16.11 1611 
Birth order 1.81 0.95 868 
Female (%) 0.46  868 

Household characteristics (Round 1, 2002)    

Mother is primary schooled (%) 0.58  868 
Father is primary schooled (%) 0.66  868 
Rural (%) 0.58  868 
Hindu (%) 0.84  868 
Rich (%) 0.53  868 
Schedule caste and tribe (%) 0.25  868 

Communities (#) 20   
Districts (#) 6   
Regions (#) 3   

Notes: Standard deviations are shown in parenthesis only for continuous variables
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Table 2: First stage results- correlation between the instruments and the 
endogenous variable  
 Instrument: 

0RWKHU¶V�KHLJKW 
Instrument: 

Preterm birth 
Instruments: 

0RWKHU¶V�KHLJKW�+ 
Preterm birth 

 (1) (2) (3) 

0RWKHU¶V�KHLJKW 0.002**  0.002* 
 (0.001)  (0.0009) 
Preterm birth  -0.123*** -0.122*** 
  (0.027) (0.027) 
Weak identification test  
Kleibergen-Paap Wald 
rk F statistic 

4.10 21.32 12.77 

Cragg-Donald Wald F 
statistic 

7.48 61.92 33.02 

Tests of overidentifying restrictions  
Sargan test p-value   0.685 
Basmann p-value   0.688 
p-value for endogeneity 
test 

  0.092 

Notes: Robust standard errors, clustered at the child level, are in parentheses.  
Controls: Gender, birth order, and age of the child, household caste��IDWKHU�DQG�PRWKHU¶V�HGXFDWion, 
religion, household wealth, rural residence, inverse mills ratio, and community fixed effects. 
*p< 0.10, **p<0.05, ***p<0.01 
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Table 3: OLS and 2SLS effect of birth weight on PPVT score (log) 

 PPVT score (log) 

 OLS  Two-Stage Least Squares  

   Instrument: 
0RWKHU¶V�

height 

Instrument: 
Preterm birth 

Instruments: 
0RWKHU¶V�KHLJKW���

Preterm birth 

 (1)  (2) (3) (4) 

Panel A: Birth weight (log) 0.195*** 1.68 0.717** 0.801** 
 (0.060) (1.12) (0.359) (0.358) 

R-squared 0.50 0.33 0.48 0.47 
Observations 1609 1609 1521 1521 

Panel B: Low birth weight 

(dummy) 

-0.112***   -0.654** 
 (0.031)   (0.329) 
R-squared 0.50   0.43 
Observations 1609   1521 
Notes: Robust standard errors, clustered at the child level, are in parentheses. All models include community fixed 
effects and inverse mills ratio. Controls: Gender, birth order, and age of the child, household caste��IDWKHU�DQG�PRWKHU¶V�
education, religion, household wealth, and rural location. 
*p< 0.10, **p<0.05, ***p<0.01 
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Table 4: OLS and 2SLS effect of birth weight on standardized test scores 

 PPVT z-score 

 OLS  Two Stage Least Squares  

   Instrument: 
0RWKHU¶V�

height 

Instrument: 
Preterm birth 

Instruments: 
0RWKHU¶V�KHLJKW���

Preterm birth 

 (1)  (2) (3) (4) 

Panel A: Birth weight (log) 0.244** 1.67 1.03** 1.08** 
 (0.102) (1.58 (0.56) (0.547) 

R-squared 0.42 0.35 0.40 0.39 
Observations 1609 1609 1521 1521 

Panel B: Low birth weight 

(dummy) 

-0.160***   -0.896* 
 (0.046)   (0.50) 
R-squared 0.42   0.37 
Observations 1609   1521 
Notes: Robust standard errors, clustered at the child level, are in parentheses. All models include community fixed 
effects and inverse mills ratio. Controls: Gender, birth order, and age of the child, household caste��IDWKHU�DQG�PRWKHU¶V�
education, religion, household wealth, and rural location. 
*p< 0.10, **p<0.05, ***p<0.01 
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Table 5: �6/6�HIIHFW��E\�FKLOG¶V�DJH 
 PPVT 

score (log) 
PPVT 

score (log 
PPVT z-

score 
PPVT z-score 

 Age 5 Age 8 Age 5 Age 8 
 (1) (2) (3) (4) 

Panel A     
Birth weight (log) 1.05 0.564*** 0.867 1.287** 
 (0.789) (0.219) (1.034) (0.573) 

R-squared 0.29 0.25 0.46 0.47 

Panel B     
Low birth weight (dummy) -0.843 -0.473** -0.702 -1.091** 
 (0.722) (0.208) (0.891) (0.485) 
R-squared 0.19 0.22 0.42 0.44 
Community fixed effects Yes Yes Yes Yes 
Inverse mills ratio Yes Yes Yes Yes 
Observations 750 771 750 771 
Notes: Robust standard errors, clustered at the community level, are in parentheses.  
Controls: Gender, birth order, and age of the child, household caste�� IDWKHU� DQG� PRWKHU¶V� HGXFDWion, 
religion, household wealth, and rural location. 
 *p< 0.10, **p<0.05, ***p<0.01 
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Table 6: Heterogeneity in effects: 2SLS effects of log(BW) birth on the test scores by 
child, mother, and household characteristics 
 PPVT score 

(log) 
PPVT z-
score 

F-stat N 

 (1) (2) (3) (4) 
Urban 0.889 0.662 4.41 625 
 (0.738) (1.138)   
Rural 0.623** 1.155** 10.14 896 
 (0.352) (0.561)   
Boys  0.694* 1.049 9.03 809 
 (0.406) (0.636)   
Girls 1.345** 1.619* 5.30 712 
 (0.693) (0.954)   
Mother is primary schooled 0.429 0.329 7.13 877 
 (0.506) (0.803)   
Mother is not primary schooled 1.149*** 1.88*** 10.03 644 
 (0.432) (0.671)   
SCST 1.076 1.782 0.77 339 
 (1.755) (2.634)   
Other social group 0.567* 0.841 11.67 1182 
 (0.326) (0.518)   
Poor 0.825 1.192 6.40 754 
 (0.530) (0.749)   
Rich 0.811* 1.011 9.40 767 
 (0.460) (0.722)   
Notes: Robust standard errors, clustered at the child level, are in parentheses.  
Controls: *HQGHU�� ELUWK� RUGHU�� DQG� DJH� RI� WKH� FKLOG�� KRXVHKROG� FDVWH�� IDWKHU� DQG�PRWKHU¶V� HGXFDWLRQ��
religion, household wealth, rural location, inverse mills ratio, and community fixed effects. F-stat and N 
are the same for columns (1) and (2) because models in columns (1) and (2) have the same first-stage. 
*p< 0.10, **p<0.05, ***p<0.01 
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Notes: The bold dashed lines are the OLS estimates, and the light dashed lines are the 95% confidence 
intervals.  
 

Figure 1: Instrumental variable quantile regression (IVQR) results 
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Table 7: Robustness Checks (IV estimates) 
 PPVT score (log) PPVT z-score 
 IPW JIVE IPW JIVE  
 (1) (2) (3) (4) 

Birth weight (log) 0.869** 1.499* 1.189* 2.087* 
 (0.406) (0.772) (0.615) (1.184) 
     
Community fixed effects Yes Yes Yes Yes 
Inverse mills ratio  No Yes No Yes 
R-squared 0.45 0.36 0.39 0.17 
Observations 1523 1521 1523 1521 
Notes: Robust standard errors, clustered at the child level, are in parentheses.  
Controls: Gender, birth order, and age of the child, household caste�� IDWKHU� DQG� PRWKHU¶V� HGXFDWion, 
religion, household wealth, and rural location. Instruments:  0RWKHU¶V�height and Preterm birth 
*p< 0.10, **p<0.05, ***p<0.01 
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Appendix 

A. Birth weight and cognitive development 

There are two complementary hypotheses to explain the significant association between 

low birth weight and adult outcomes. The foremost explanation is based on the ³Fetal 

2ULJLQV�+\SRWKHVLV�RU�%DUNHU¶V�+\SRWKHVLV´�WKDW�established a strong association between 

poor health at birth and onset of chronic disease in adulthood (Barker, 1992). According to 

%DUNHU¶V�K\SRWKHVLV��DGXOW�RXWFRPHV�DUH�DGYHUVHO\�LPSDFWHG�WKURXJK�KHDOWK�channels. Low 

birth weight babies are more likely to have poor childhood and adult health and therefore 

have adverse consequences on adult productivity and labor market outcomes. An additional 

channel hinges on medical evidence that low birth weight is associated with improper 

development of the brain, which might affect the cognitive outcomes later in life. The poor 

learning outcomes for the low birth weight babies might be due to impaired and restricted 

growth or damage of brain cells (Hack et al., 1995; Abernethy, Palaniappan, and Cooke, 

2002). The development of certain brain structures, such as caudate nuclei and the 

hippocampus are adversely affected by low birth weight (Abernethy et al., 2002). LBW 

has detrimental effects on neurodevelopmental outcomes (Fattal-Valevski et al., 

1999; Leitner et al., 2007) as well as psychomotor performance (Villar et al., 

1984; Fernald and Grantham-McGregor, 1998). This mechanism implies that the effect 

of low birth weight should appear before the onset of adult chronic conditions (Chatterji 

et al., 2014).  
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Table A1: Validity test: Observable predictors of preterm ELUWK�DQG�PRWKHU¶V�KHLJKW 
 0RWKHU¶V�KHLJKW Pre-term births 

 (1) (2) 
Female child 0.073 -0.073*** 
 (0.457) (0.025) 
Birth order 0.071 -0.036 
 (0.351) (0.023) 
Child was wanted -1.156 0.007 
 (0.896) (0.039) 
0RWKHU¶V�DJH�DW�ELUWK -0.002 0.004 
 (0.096) (0.004) 
Maternal education 0.434 0.039 
 (0.601) (0.027) 
)DWKHU¶V�HGXFDWLRQ 0.719 0.026 
 (0.488) (0.037) 
Household size 0.109 0.0005 
 (0.083) (0.006) 
Household social group (SCST) -1.380** 0.036 
 (0.565) (0.038) 
Rural 3.939*** -0.110*** 
 (0.677) (0.037) 
Hindu religion -1.401** 0.017 
 (0.694) (0.037) 
Household wealth (top tercile) 0.816* -0.005 
 (0.480)  (0.024) 
Food shortage 0.664 0.091 
 (1.361) (0.060) 
Antenatal care -0.304 -0.008 
 (0.642) (0.029) 
Skilled birth attendant -0.175 0.011 
 (0.615) (0.034) 
Observations 838 822 
Notes: OLS coefficients and the robust standard errors, clustered at the child level, are reported in columns 1 
and 2, respectively. Cluster fixed effects included in columns (1) & (2). *p< 0.10, **p<0.05, ***p<0.01 
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Table A2: Balance between preterm birth and full-term birth sample 
 Preterm 

births 
(N=109) 

Full-term 
births 

(N=759) 

Difference (p-value) 

 (1) (2) (1)-(2) 
Child characteristics    

PPVT score (age 5) 33.5 32.2 1.35 (0.609) 
PPVT score (age 8) 61.7 65.02 -3.3 (0.337) 
Female child 0.31 0.48 -0.17*** (< 0.001) 
Birth order 1.65 1.84 -0.19** (0.05) 
Child was wanted 0.95 0.92 0.03 (0.27) 

3DUHQW¶V�FKDUDFWHULVWLFV    
Maternal age (years) 22.10 22.08 0.013 (0.98) 
Maternal education (more than 
primary school) 

0.71 0.57 0.15*** (0.004) 

Maternal height 151.07 151.52 -0.46 (0.517) 
Father education (more than 
primary school) 

0.77 0.65 0.12** (0.01) 

Household¶V�FKDUDFWHULVWLFV    
Household size 4.95 5.18 -0.25 (0.27) 
Household social group (SCST) 0.28 0.24 0.04 (0.359) 
Rural 0.44 0.60 -0.16*** (<0.001) 
Hindu religion 0.81 0.84 -0.02 (0.525) 
Household wealth (top tercile) 0.65 0.52 0.136** (0.007) 
Food shortage 0.05 0.03 0.02 (0.215) 
Education expenditure (monthly) 449.3 456.7 -7.39 (0.479) 

Health preferences and behaviors   
Exclusive breastfeeding 0.81 0.77 0.04 (0.392) 
Antenatal care 0.78 0.77 0.01 (0.904) 
Skilled birth attendant 0.92 0.86 0.06 (0.101) 
Took two or more tetanus shot 
during pregnancy 

0.85 0.86 -0.005 (0.90) 

Took iron tablet during ANC 
visit 

0.83 0.84 -0.01 (0.80) 

Took folic syrup in the last 3 
months 

0.75 0.79 -0.04 (0.418) 

Source: The Young Lives Study. All variables are from 2002 except educational expenditure (2009). 
Means and proportions are reported. 
*p< 0.10, **p<0.05, ***p<0.01 
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 Table A3: Test for overidentifying restrictions 

 Dependent variable: Estimated 
residuals from the second-stage 

equation 
 Coefficient Robust standard 

error 
 (1) (2) 
Preterm birth 0.007 0.069 
0RWKHU¶V�KHLJKW 0.001 0.003 
Age 0.000 0.001 
Female 0.000 0.045 
Birth order -0.000 0.025 
Maternal education -0.0005 0.057 
)DWKHU¶V�HGXFDWLRQ -0.002 0.054 
Rural 0.001 0.105 
Scheduled caste and tribe 0.002 0.059 
Hindu religion 0.001 0.087 
Household wealth (Rich) -0.000 0.061 
Community fixed effects Yes  
Inverse mills ratio Yes  
R-squared 0.0001  
Observations 1521  
Notes: OLS coefficients and the robust standard errors, clustered at the child level, are 
reported in columns 1 and 2, respectively.  
*p< 0.10, **p<0.05, ***p<0.01 
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Table A4: Balance between sample with and without BW information 
 BW 

available 
(N=868) 

Missing 
BW 

(N=1143) 

Difference (p-value) 

 (1) (2) (1)-(2) 
Child characteristics    

Female child 0.46 0.46 0.00 (p = 0.827) 
Birth order 1.81 2.16 -0.36*** (p < 0.001) 
Child was wanted 0.93 0.88 0.05*** (p < 0.001) 
Home birth 0.22 0.71 -0.49*** (p < 0.001) 
Birth document 0.54 0.02 0.52*** (p < 0.001) 

3DUHQW¶V�FKDUDFWHULVWLFV    
Maternal age (years) 22.01 22.34 -0.252 (p = 0.195) 
Maternal education (more than 
primary school) 

0.59 0.25 0.34*** (p < 0.001) 

Maternal height 151.47 151.40 0.065 (p = 0.826) 
Father education (more than primary 
school) 

0.67 0.40 0.27*** (p < 0.001) 

Household¶V�FKDUDFWHULVWLFV    
Household size 5.15 5.62 -0.47*** (p < 0.001) 
Household social group (SCST) 0.249 0.391 -0.14*** (p < 0.001) 
Rural    
Hindu religion 0.58 0.88 -0.30*** (p < 0.001) 
Household wealth (top tercile) 0.53 0.18 0.35*** (p < 0.001) 
Food shortage 0.03 0.07 -0.04*** (p < 0.001) 
Education expenditure (monthly) 455.8 477.2 -21.4*** (p < 0.001) 

Health preferences and behaviors   
Exclusive breastfeeding 0.775 0.746 0.03 (p = 0.131) 
Antenatal care    
Skilled birth attendant 0.87 0.49 0.38*** (p < 0.001) 
Took two or more tetanus shot 
during pregnancy 

0.6 0.84 0.02 (p = 0.337) 

Took iron tablet during antenatal 
visit 

0.83 0.81 0.02 (p = 0.254) 

Took folic syrup in last 3 months 0.78 0.75 0.03* ((p = 0.06) 
Source: The Young Lives Study. All variables are from 2002 except educational expenditure (2009). Means 
and proportions are reported. 
*p< 0.10, **p<0.05, ***p<0.01 
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Table A5: 2SLS effect, by grades 
 PPVT z-

score 
PPVT z-

score 
PPVT z-

score 
PPVT z-score 

 Grade 0 Grade 1 Grade 2 Grade 3 
 (1) (2) (3) (4) 

Birth weight (log) -0.072 1.88 2.27** 0.422 
 (1.23) (1.28) (0.974) (1.11) 

F-stat 1.49 2.70 21.63 1.56 

Community fixed effects Yes Yes Yes Yes 
Inverse mills ratio Yes Yes Yes Yes 
R-squared 0.45 0.40 0.49 0.47 
Observations 123 177 343 117 
Notes: Robust standard errors, clustered at the community level, are in parentheses.  
Controls: Gender, birth order, and age of the child, household caste�� IDWKHU� DQG� PRWKHU¶V� HGXFDWion, 
religion, household wealth, and rural location. 
 *p< 0.10, **p<0.05, ***p<0.01 
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Table A6: 2SLS effects of birth weight on CDA-Q and Math score 
 CDA-Q 

(log) 
CDA-Q 

(log) 
Math score 

(log) 
Math score 

(log) 

 Age 5 Age 5 Age 8 Age 8 
 (1) (2) (3) (4) 

Panel A     
Birth weight (log) 0.701**  -0.328  
 (0.337)  (0.462)  

Low birth weight (dummy)  -0.532*  0.345 
  (0.298)  (0.416) 
Community fixed effects Yes Yes Yes Yes 
Inverse mills ratio Yes Yes Yes Yes 
Observations 776 776 774 774 
Notes: Robust standard errors, clustered at the community level, are in parentheses.  
Controls: Gender, birth order, and age of the child, household caste�� IDWKHU� DQG� PRWKHU¶V� HGXFDWion, 
religion, household wealth, and rural location. CDA-Q is available only at age 5, while math score is 
available only at age 8.  
 *p< 0.10, **p<0.05, ***p<0.01 
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Table A7: Instrumental variable quantile regression results  

 Quantiles  2SLS 

 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

PPVT score (log) 

Birth weight (log) 0.65 0.85*** 1.16*** 1.06*** 1.18*** 0.82** 0.62 0.67 0.63 0.57* 0.38 0.851** 
 (0.49) (0.25) (0.34) (0.30) (0.34) (0.37) (0.38) (0.47) (0.46) (0.33) (0.30) (0.404) 

Low birth weight  -0.54 -0.72*** -0.91*** -0.88*** -0.94*** -0.67** -0.51* -0.59 -0.53 -0.48* -0.38 -0.70* 
 (0.39) (0.22) (0.28) (0.25) (0.28) (0.30) (0.28) (0.38) (0.38) (0.28) (0.25) 0.41 
             
Standardized PPVT score 

Birth weight (log) 0.52*** 0.75*** 0.81*** 0.99*** 1.06*** 1.12*** 1.02** 1.27 0.94 1.39 0.80 1.09** 
 (0.17) (0.21) (0.21) (0.26) (0.28) (0.42) (0.46) (0.87) (1.08) (0.90) (0.88) (0.53) 
             
Low birth weight  -0.43*** -0.63*** -0.58*** -0.80*** -0.87*** -0.92*** -0.85** -1.08 -0.81 -1.24 -0.68 -0.896* 
 (0.16) (0.20) (0.19) (0.15) (0.23) (0.35) (0.40) (0.73) (0.90) (0.76) (0.80) (0.505) 
Notes: Robust standard errors are reported in parentheses.  
Controls: Gender, birth order, and age of the child, household caste��IDWKHU�DQG�PRWKHU¶V�HGXFDWion, religion, household wealth, rural location, community fixed effects. 
*p< 0.10, **p<0.05, ***p<0.01 
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Table A8: Robustness to missing information on birth weight: 2SLS effect of low birth 
weight (LBW) on PPVT z-score 
 Assuming missing sample 
 Baseline Non-LBW LBW 17% are LBW 
 (1) (2) (3) (4) 

Low birth weight (dummy) -0.896* -1.248** -2.622 -1.16** 
 (0.50) (0.605) (2.051) (0.524) 
Community fixed effects Yes Yes Yes Yes 
Inverse Mills ratio Yes Yes Yes Yes 
Observations 1521 3581 3581 3699 
Notes: Robust standard errors, clustered at the child level, are in parentheses.  
Controls: Gender, birth order, and age of the child, household caste��IDWKHU�DQG�PRWKHU¶V�HGXFDWion, religion, 
household wealth, and rural location. 
*p< 0.10, **p<0.05, ***p<0.01 
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Table A9: 2SLS effects by birth weight categories 
 PPVT score 

(log) 
PPVT z-
score 

F-stat N 

 (1) (2) (3) (4) 
Log (BW)     
   < 2500 grams -0.552 -1.007 1.90 259 
 (0.665) (0.957)   
   2500+ grams 2.344** 3.155* 4.91 1262 
 (1.174) (1.797)   
   2500 grams or less 1.086 1.801* 4.09 656 
 (0.764) (0.968)   
   > 2500 grams 1.116 0.825 2.51 865 
 (1.421) (2.133)   
   1000-3000 grams 0.783 1.289* 4.84 1213 
 (0.512) (0.716)   
Notes: Robust standard errors, clustered at the child level, are in parentheses.  
Controls: *HQGHU�� ELUWK� RUGHU�� DQG� DJH� RI� WKH� FKLOG�� KRXVHKROG� FDVWH�� IDWKHU� DQG�PRWKHU¶V� HGXFDWLRQ��
religion, household wealth, rural location, inverse mills ratio, and community fixed effects. 
*p< 0.10, **p<0.05, ***p<0.01 
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