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of a size of the police force and an average length of sentences. We propose an original 

micro-founded police production function linking the level of police expenditures to the 

probability of apprehension. The structural model, estimated using 2000s US data and 

causal parameters from the empirical literature, allows us to evaluate the global optimality 

of policies in a way that would not be possible with reduced form estimates or traditional 
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1 Introduction
What are the socially optimal crime rate and associated public security policy? Is the

US really overspending on police forces and over punishing minor crimes? Questions such as
these, recurrent in the contemporary public security debate (PEW 2016, Hayes 2020), were
the original motivations for the classic contributions to the economics of crime (Beccaria
1764, Bentham 1781, Becker 1968, Stigler 1970, Ehrlich 1981). Nevertheless, economics still
has little to say about the optimality of public security policies. Until today, the discipline
does not share an accepted theoretical framework to quantitatively assess interactions across
policy instruments, equilibrium responses, and their implications for the social optimality of
policies.

This paper revisits the theoretical discussion on the global optimality of public security
policies to start filling the wide gap that currently exists between the empirical and theo-
retical literature in economics of crime. This is particularly relevant in light of the large
costs that crime imposes on society and of the amount of evidence currently available on the
effectiveness of specific interventions. In the US, for example, expenditures on the criminal
justice system added up to $210 billion in 2012, with estimates suggesting that the aggregate
welfare loss experienced by victims is at least as large.1 At the same time, a vast array of ev-
idence indicates that crime is very responsive to policy, be it related to police, incarceration,
schooling, or social protection.2 In fact, among the different dimensions of public policy,
public security is somewhat exceptional in the extent to which it has historically relied on
empirical evidence (see, for example, Sherman et al. 1998, Cordner 2020). Virtually all of
this evidence, though, comes from randomized controlled trials and reduced-form estimates,
with few, if any, equilibrium or dynamic considerations.

Crime depends heavily on equilibrium responses, so different policies are likely to interact
in non-trivial ways. Interventions may also have dynamic implications that are themselves
relevant in determining the optimality of policies. Longer sentences, for example, reduce the
number of potential criminals on the streets in the short run, increasing the effectiveness
of a given police force, which in turn affects the optimal size and allocation of police. But
longer sentences also reduce the future employability of inmates, increasing their likelihood
of recidivism. Are these trade-offs relevant from a policy perspective? If so, which force
dominates in the long run? Cost-benefit analyses based on reduced-form estimates cannot
hope to answer questions such as these. The potential gain from incorporating evidence
from different interventions into a unified framework is therefore very large. Some of these
trade-offs have surely been conceptually identified, in one way or another, dating back to
the early contributions to the economics of crime. But, since then, theoretical work on the
topic has remained highly stylized, providing little guidance on how to consolidate different

1Our calculations based on data from the FBI and NCVS, combined with estimates of the costs of crime
from Cohen (2000). We estimate an yearly cost of victimization of the order of $240 billion.

2For example: on police, see Levitt (1997), Di Tella and Schargrodsky (2004), and Draca et al. (2008);
on incarceration, see Levitt (1996), Owens (2009), and Buonanno and Raphael (2013); and on schooling and
welfare transfers, see Hannon and DeFranzo (1998), Lochner (2004), Foley (2011), and Jacob and Ludwig
(2010).
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pieces of evidence in a consistent way.
We contribute to the literature by proposing a structural equilibrium model to study the

optimality of public security policies. Our theory incorporates interactions across policies
and equilibrium responses in a tractable way, allowing the model to be estimated and used
for counterfactual policy simulations. Public security policies in our context are understood
as pairs describing a size of the police force and an average length of sentences. We con-
sider a dynamic equilibrium life-cycle model with heterogeneous agents and human capital
accumulation, where agents decide at each point in time whether to commit crimes. This
decision is based on the comparison between the potential gain from crime and the expected
loss due to a positive probability of being caught and the associated punishment (duration
of incarceration). A crime is modelled as an encounter between two agents implying: (i) a
transfer of resources from victims to criminals (the good stolen); (ii) a non-monetary utility
loss to victims (the psychological and physical costs of being victimized); and (iii) a net
loss of resources (the potential destruction or use of resources during the perpetration of a
crime). We assume that individuals are heterogeneous in their subjective (psychological or
moral) costs to commit crimes, such that there is a mass of individuals who contemplate
committing crimes and a mass of individuals who, irrespective of the circumstances, never
commit crimes.

The potential criminals’ problem has a simple and intuitive solution: at each point in
time, conditional on a given public security policy and on the decisions of other agents,
there is a cut-off level of labor earnings below which potential criminals engage in crime.
This cut-off evolves over time as individuals grow older and their earnings, costs to commit
crimes, and horizons change. We prove the existence of a rational expectations equilibrium
in this economy and characterize it.

A key challenge in writing down this problem, and maybe one of the reasons why quan-
titative theoretical work in economics of crime has lagged behind, is how to model the police
production function available to policy makers. In other words, how do expenditures on
police translate into a probability of apprehending criminals?3 Our first contribution to the
theoretical literature is to propose a simple micro-founded police production function. This
function is the equilibrium outcome of a game played between police officers and criminals,
in which criminals choose the location of crimes to avoid detection and policymakers choose
where to deploy police forces in order to maximize the number of apprehensions. In our
setting, this game can be interpreted as the within-period game played between criminals
and police, conditional on criminal participation decisions and on the size of the police force.
Assuming that each apprehension consumes police resources, and relying on a Poisson point
process modelling strategy, we show that the probability of apprehension of any individual
criminal can be characterized as a two-parameter closed-form function depending on the size
of the police (positively) and on the crime rate (negatively). This function displays all the
properties that would seem intuitively desirable. In addition, its parameters can be identi-
fied directly from the estimates of the elasticity of crime with respect to prison population

3According to the Bureau of Justice Statistics, approximately 45% of expenditures on the justice system in
the US are allocated to police forces. Therefore the relevance of what we call the police production function.
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and police expenditures available from the empirical literature (such as, for example, Levitt
1996, 2002).4

This police production function also has the appealing feature of naturally bringing into
the picture social interactions and the possibility of multiple equilibria in crime rates. Since
the probability of apprehension of any given criminal is a direct function of the number
of active criminals, the possibility of social interactions arises endogenously. The potential
relevance of social interactions in determining equilibrium crime rates has been highlighted
before both theoretically and empirically (see, for example, Gleaser et al. 1996, Burdett et al.
2003, and Gaviria 2000, each one with a different rationalization for the presence of social
interactions).

The incorporation of a life-cycle component is another key feature of our model. A real-
istic life-cycle earnings curve is essential, for example, for the model to be able to reproduce
the widely documented age profile of participation into crime (e.g., see the discussion in
Beirne 1993, Lochner 2004, and Munyo 2015). It is also indispensable to capture the impli-
cations of potential reductions in future legal earnings due to incarceration. Grogger (1995)
suggests that one year of incarceration reduces wages by as much as 30% in the long run.
This labor market channel amplifies the deterrence effect of incarceration in non-trivial ways
and makes it highly age dependent. We summarize life-cycle productivity changes with a
learning-by-doing human capital accumulation technology, somewhat similar to Flinn (1986).
We assume that individuals accumulate skills as a by-product of work and whenever they are
incarcerated their productivity depreciates. The interaction of public security policies and
age leads to implications in terms of criminal behavior analogous to those from the standard
Becker-Ben Porath model of investments in human capital.

The combination of the ingredients highlighted above introduces equilibrium interactions
that would otherwise have been impossible to consider. For example, in principle, it is
possible that increasing the length of sentences leads to an increase in the steady-state crime
rate, due to the positive effect of incarceration on recidivism through reduced future earnings.
Whether this mechanism is relevant depends on the equilibrium under consideration and on
interactions across various margins, which cannot be assessed without an explicit life-cycle
equilibrium model.

We estimate the model using US property crime data in 2004. Our estimation uses
a minimum distance procedure with moments taken from the National Crime Victimiza-
tion Survey, the National Corrections Reporting Program, the Current Population Survey,
the National Longitudinal Survey of Youth, the Sourcebook of Criminal Justice Statistics,
Abrams and Rohlfs (2007), and Levitt (1996, 2002). Some of these moments, as well as some

4Ehrlich (1973) was the first to make the apprehension probability an explicit function of public security
expenditures. He proposed an arbitrary public security production function in which the probability of
punishment is a function of police expenditures and the crime rate. The functional form is appealing at
the local level, but can lead to probabilities that exceed 1 for large deviations. İmrohoroğlu et al. (2000)
adopt a similar functional form that, instead, can lead to negative probabilities (they deal with this problem
by truncating the apprehension probability whenever it is negative). To our knowledge, these are the only
papers that explicitly model a public security production function. The limitations of their approaches lie
on the arbitrariness of both the functional form and the assignment of numerical values to the parameters.
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of the parameters that we borrow directly from previous work, rely on quasi-experimental
evidence from the applied micro literature, tying our estimation and quantitative exercises
closely together with causal evidence from the natural experiments literature. Since we con-
sider rational criminals motivated by the economic return to crime, we focus on property
crimes. We choose 2004 because it lies in the middle of a period ranging from 2000 to 2010
when crime trends remained relatively stable, coming closer to the stationarity hypothesis
needed to numerically solve the model.

For a wide range of policy alternatives and starting points, our estimation leads to a single
point in the parameter space and the equilibrium seems to be unique. The estimated model
reproduces various targeted and untargeted moments related to crime level and frequency,
inflow of prisoners by age, prison population, welfare loss from incarceration, and responses
of crime to different dimensions of policy.

Our main quantitative exercise considers the implications of the model regarding the
interaction between the two most widely studied dimensions of public security policy: police
and sentencing. The estimated model indicates that the 2004 public security policy came
very close to minimizing the crime rate subject to the expenditures actually observed in
2004. This suggests some rationality on the side of public security policy makers, access to
information, and an exclusive focus on crime reduction.

But the goal of public security policy is not to minimize crime at all costs, but rather to
minimize the total welfare loss from crime. We show that, under an additive welfare function,
the optimal 2004 public security policy characterized by the model implies a higher crime
rate, a smaller police force, and longer average sentences than those actually observed in
2004. Under this policy, public security expenditures would be lower by 11% and crime rates
higher by 11.9%, corresponding to yearly welfare gains of the order of $1 billion (or 1.6% of
the initial welfare cost of crime). The reduction in police expenditures by itself is enough
to generate a much cheaper public security system, which translates into a non-trivial gain
for taxpayers and more than compensates the increase in property crime. The increase in
average sentence lengths, in turn, comes directly as a way to minimize the increase in crime
from the reduction in police expenditures. The small increase in crime in the social optimum,
though maybe counterintuitive at first sight, should not be seen as particularly surprising
for an audience of economists (crime rates in the US were close to their historical minimum
during the period analyzed).

We conduct other quantitative exercises acknowledging that policy makers sometimes face
political constraints not incorporated in our theory, and these may limit the set of feasible
instruments or objectives at their disposal. Our structural model allows us to consider any
such policy and to determine the optimal policy under any welfare metric. So, for example,
we also discuss optimal policies that do not increase the initial crime rate or that exclude
part of criminals’ welfare from the social welfare function. Reassuringly, for all exercises
considered, we find that the optimal policy would weakly reduce expenditures on police and
increase average sentences. This broad qualitative characterization of the inefficiency of the
2004 public security policy seems therefore to be quite general.

Our final set of quantitative exercises consider the complementarities between public
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security and educational policies. By affecting life-cycle productivity and increasing the
opportunity cost of incarceration, education strengthens the deterrence effect and can lead to
substantial reductions in criminal participation. We analyze the additional welfare gains that
could be obtained by reallocating part of the expenditures in public security to educational
policies. We conduct this analysis considering internal rates of return from investments in
education of 0%—analogous to a cash transfer welfare program—and 15% (Heckman et al.
2008), and also varying the ability of the government to target the policy on certain income
groups. We show that even with a 0% rate of return and no targeting (equal transfer to
all individuals), shifting resources from public security to education increases the potential
gains in welfare, though by a small magnitude. As the internal rate of return increases
and targeting improves, these potential gains become very large, reaching $5.6 billion per
year—or 8.8% of the initial welfare cost of crime—for the scenario that maximizes targeting.
Under these scenarios with improved education, public security policies would move in the
direction of further reducing the size of the police and increasing average sentence lengths.
The number of potential criminals, at the margin, is reduced, so the benefits from a large
police force also fall. But the remaining criminals, after the policy change, are very inelastic
to punishment and have low opportunity cost, so, for these, incarceration becomes a more
cost-effective way to reduce crime. The model suggests that educational policies are indeed
a potentially important instrument to reduce the costs of crime while at the same time
minimizing the need for punishment. Incorporating potential long-term effects of education
on aggregate productivity and growth would only reinforce this qualitative result.

Our quantitative model also sheds new light on the traditional decomposition of the effects
of public security policies. First, we define theoretically the incapacitation, deterrence, and
recidivism effects and their respective roles, something that, to our understanding, was never
done before. And second, we show that, when considering equilibrium responses, there is
always an additional effect that has not yet been considered in the literature: we call it
the load effect. The load effect refers to the lower effectiveness of a given police force under
higher crime rates, due to the dilution of human and physical resources when trying to catch
a larger number of criminals. The load effect is, by nature, an equilibrium effect, therefore
requiring an equilibrium framework to be conceptually defined. Our theoretical discussion
also makes it clear that, in equilibrium, none of the four effects ever exists in isolation, each
one being always intrinsically connected to the others.

The conceptual question of optimal law enforcement is by no means new, dating back at
least to Hobbes in 1651, followed by Beccaria (1764) and Bentham (1781), and then by the
more recent treatments from the economics of crime, including Becker (1968) and Ehrlich
(1981). Despite the unquestionable value of these seminal contributions and the philosophical
and theoretical insights they continue to provide, their use for actual policy analysis is
limited. From this perspective, the papers closest to our work are Engelhardt et al. (2008),
Fella and Gallipoli (2014), and Fu and Wolpin (2017). These papers develop equilibrium
models of crime, simulate policies, and conduct normative analyses. Engelhardt et al. (2008)
focus on the interaction between the labor market and criminal behavior. Fella and Gallipoli
(2014) analyze the relationship between crime and education. Fu and Wolpin (2017), in turn,
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are mainly concerned about the optimality of police expenditures. Our contributions to this
theoretical literature include a micro-founded public security technology, multiple dimensions
of policy, the explicit incorporation of the life cycle of wages and productivity losses from
incarceration, and a theoretically consistent—and intuitively appealing—definition of the
welfare loss from crime. From an empirical perspective, we are the first ones to estimate
the model, to link parameters directly to evidence from causal estimates, and to conduct
counterfactual exercises exploring the interactions across different policies, namely, the size
of the police force, average sentence lengths, and educational policies.

Needless to say, our model has many limitations. From the perspective of victims, we
do not consider risk aversion nor the possibility of changes in behavior to avoid victimiza-
tion. From the perspective of criminals, we do not consider non-economic crimes (such as
emotionally motivated interpersonal violence), do not incorporate the possibility of accumu-
lation of criminal capital, and do not explore the implications of behavioral biases, such as
hyperbolic discounting. Finally, we are completely silent about the inner workings of the
justice system, simply assuming a direct link between the apprehension of a criminal and the
expected punishment. Our model has no police error nor bias and no wrongful convictions.
These represent injustices derived from public security policy that can, by themselves, lead
to major welfare losses, adding up to those discussed in the paper. The incorporation of most
of these dimensions in our theoretical framework would be relatively straightforward (see,
for example, Mocan et al. 2005 and Munyo 2015 for models with criminal human capital
and Ferraz 2017 for a model with multiple types of crimes). The main challenge, though,
would reside in the estimation. Data limitations already make it difficult for us to estimate
the model as it is. We see our contribution therefore as a methodological first step towards
building a manageable model of crime that can bring together different pieces of evidence—
and equilibrium considerations—when evaluating the trade-offs across alternative policies.
The points raised in this paragraph would be natural extensions in the future development
of this research agenda.

The remainder of the paper is organized as follows. Section 2 presents the theory. Section
3 describes the estimation of the model. Section 4 develops the main quantitative exercises
and discusses the optimal public security policy in the context of the model. Section 5
concludes the paper.

2 The Model
We consider a discrete-time dynamic equilibrium model with heterogeneous agents. Crime

is the only source of inefficiency. We describe our theoretical framework in detail below.

2.1 Preferences

The economy is populated by a continuum of risk-neutral individuals who are ex ante
heterogeneous with respect to productivity and the propensity to commit crimes. At each
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period t, an individual maximizes the expected discounted lifetime utility

E
h TX

⌧=t

�
⌧�t

c⌧ + �
T+1�t

↵cT+1

i
,

where � denotes the intertemporal discount factor and c⌧ the consumption at age ⌧ . Indi-
viduals can commit crimes only up to age T , after when they become too old to engage in
criminal activities. The term ↵cT+1 captures the utility continuation value at age T + 1.

We assume that some individuals, who we call honest agents, do not consider committing
a crime under any circumstance. These can be interpreted as individuals who face a pro-
hibitively high cost of committing crimes, possibly due to cultural, psychological or ethical
reasons. Dishonest agents are defined as those who contemplate the possibility of commit-
ting crimes. At each period, a constant number of newborn individuals (age 0) of each type
enter the economy. The number of dishonest individuals entering the economy is M0. The
productivity of each agent at age 0 is drawn from a distribution given by g0 and, with abuse
of notation, we set dG0(w) = g0(w)dw for each w in the support of g0.

Honest agents are entirely passive. They are targets of criminal actions and are important
for social welfare considerations, but make no active choices. In addition, since agents are
risk neutral, the (utilitarian) social loss that crime imposes directly on victims depends only
on the aggregate crime rate.

2.2 Legal Sector and Crime

Dishonest agents younger than T + 1 can be in one of three states: free and engaged in
crime (state E), free and not engaged in crime (state Ẽ), and incarcerated (state P ). After
age T +1, all agents are necessarily in state Ẽ. At the beginning of a period, each dishonest
agent who is not incarcerated chooses whether or not to engage in crime.

There is only one type of crime in the economy. A crime is an interaction between a
dishonest agent (criminal) and an honest agent (victim), resulting in three outcomes: a
financial transfer of value z from the victim to the criminal, representing the market value
of the property stolen; a cost d

V inflicted on the victim due to physical or psychological
damages; and an age-dependent cost d

C
t paid by the criminal. The term d

C
t captures the

psychological and physical cost (or excitement) from committing a crime, as well as the
material investment in and opportunity cost of the criminal enterprise.

If a dishonest individual i chooses to engage in crime at age t, this individual remains
engaged until the end of the period. In this case, the number of criminal opportunities
is determined by an intra-period continuous-time stochastic process. The agent receives
successive opportunities of crime, with the interval between two (within period) opportunities
defined as a random variable exponentially and independently distributed with parameter ⌫.
By assumption, an individual i who engages in crime in a certain period commits a criminal
act at every opportunity that is presented, until she/he is arrested or the period ends (in
other words, the criminal participation decision is taken at the period level).
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Each crime is detected with probability p. A criminal can be arrested for a given crime
only at the instant when the crime is committed.5 The exponentially distributed interval
between two criminal opportunities implies that, if agent i at age t is not arrested for any
crime, the number of crimes J

i
t within a period is a random variable distributed according

to a Poisson with parameter ⌫. Therefore, conditional on J
i
t , the probability that an active

criminal is arrested in a given period is 1� (1� p)J
i
t . This implies an expected probability

of being arrested in a period, from the perspective of a criminal, given by

E
h
1� (1� p)J

i
t

i
=

1X

j=0

✓
(1� (1� p)j)

⌫
j
e
�⌫

j!

◆
= 1� e

�⌫p
.

Criminals at age t consume an extra z� d
C
t for each non-detected crime. In case a crime

is detected, there is no financial transfer between victim and criminal, but the victim still
suffers the damage d

V and the criminal still pays the cost d
C
t . Under these assumptions,

the gain from committing crimes in a given period is a random variable, denoted by ⇧i
t,

depending on the age of the agent. For a given number of crimes J
i
t , if the criminal is

apprehended for the j-th crime (chronologically), 1  j  J
i
t , the realized within-period

criminal gain is (j � 1)z � jd
C
t . The probability of being apprehended for this j-th crime is

(1� p)j�1
p, so that

E
⇥
⇧i

t|J i
t

⇤
=

(z(1� p)� d
C
t )(1� (1� p)J

i
t )

p
·

Thus, the unconditional expected gain from crime in a given period is given by

⇧t := E[⇧i
t] =

(z(1� p)� d
C
t )(1� e

�⌫p)

p
·

When a criminal at age t < T is apprehended or when an agent starts a period in prison,
there is a probability 1 � µ that she/he will remain in prison in the next period, and a
probability µ that she/he will be released in the beginning of the next period. Note that this
implies that a criminal can be released immediately after being arrested, capturing the fact
that some criminals are incarcerated for very short periods of time. Agents at the terminal
age T that were apprehended or started the period in prison are all set free at age T + 1.
The average sentence length is given by � = 1

µ � 1.6 One of the roles of the government in
this economy is to choose the average sentence length �, which is equivalent to choosing the
probability µ.

Agents who are free earn a legal sector income equal to their productivity. For brevity,
we call their legal sector income simply income. We denote by w

i
t the productivity of an

5We write that crimes are “detected” whereas criminals are “arrested” or “apprehended.”
6Strictly, the average sentence length is lower than 1

µ � 1 due to the fact that incarcerated individuals
are set free at age T + 1. However, if the number of agents at age T who are engaged in crime or in prison
is small enough, the average sentence length becomes very close to 1

µ � 1. This is the case in our estimated
model and the purpose of defining the terminal age T .
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agent i at age t. Each individual pays a lump-sum tax f . So, the expected net total earnings
of an agent i at age t as a function of state s

i
t is given by

E
⇥
c
i
t|sit
⇤
=

8
>><

>>:

w
i
t � f if sit = Ẽ,

w
i
t � f + ⇧t if sit = E,

b� f if sit = P,

where b is the pre-tax consumption equivalent of being in prison. Under these assumptions,
and defining p := (1� µ)(1� e

�⌫p), we obtain the transition probabilities across states:

Ẽ

E

P

1� µ

µ

p

1

1� p

Pr(sit+1 2 {Ẽ, E}|sit = Ẽ) = 1

Pr(sit+1 2 {Ẽ, E}|sit = E) = 1� p

Pr(sit+1 = P |sit = E) = p

Pr(sit+1 2 {Ẽ, E}|sit = P ) = µ

Pr(sit+1 = P |sit = P ) = 1� µ

To capture life-cycle income profiles, we assume that the productivity of an individual at
age t increases by a factor �t. By contrast, due to stigma and human capital depreciation,
incarcerated individuals loose productivity by a factor ✓ per period spent in prison. We
assume that ✓ < �t for every t. The dynamics of life-cycle productivity in the model can
therefore be summarized as

w
i
t+1 =

(
�tw

i
t if sit 2 {Ẽ, E},

✓w
i
t if sit = P.

For individuals that were never incarcerated, we define the cumulative productivity gain at
age t as �t, where �0 = 1 and �t+1 = �t�t.

2.3 The Police Production Function

The technology available to detect and apprehend criminals is motivated as follows. Con-
sider a region R where, for simplicity, criminal opportunities are homogeneously distributed.
All crimes occur within R. Police units are deployed in this region. A police unit is able to
detect, with probability q, any crime committed within a circle of radius r

p centered at its
position. Figure 1 illustrates the spatial distribution of detection probabilities for a given
configuration of police units. Upon detecting a crime, the government incurs in a cost ⇣0 to
apprehend the criminal.

Let kpatrol be the total amount of police expenditures devoted to patrolling. The number
of police units is assumed to follow a Poisson distribution with parameter ⇠kpatrol, where ⇠ is
a technological constant. This distribution can be interpreted as capturing the bureaucratic,
legal, and logistical uncertainties intervening in the relationship between expenditures and
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Figure 1: Apprehension probability as a function of the position for a given
configuration of patrolling police units.

actual deployment of police forces. Conditional on the number of police units, each unit
is deployed independently with a distribution D over R. The police command can choose
the probability density D. While the police command chooses D in order to maximize
the detection of crimes for a given k

patrol, each criminal chooses where to commit crimes
in order to minimize the probability of being arrested.7 This game has a unique Nash
equilibrium where the police command sets the distribution D to be uniform—otherwise,
all criminals would choose to commit more crimes in the areas where the density of patrols
is the lowest—and criminals choose the location of crimes such that the density of crimes
over R is constant—otherwise, the police command would choose a higher D in regions with
higher incidence of crime. This equilibrium induces an apprehension probability given by
the following expression:

p(v, k) = 1� WL(⇣2ve�⇣1k+⇣2v)

⇣2v
, (1)

where WL is the Lambert-W function, v is the crime rate, k is the sum of patrolling and
apprehension costs, and ⇣1 and ⇣2 are positive constants that depend on q, ⇣0, ⇠, rp, and the
area of R.8 The technical details related to the game describe above and to the derivation of
this function and its properties are presented in Appendix A. Intuitively, we can interpret the
parameters ⇣1 and (⇣2)�1 as measures of the effectiveness of patrolling and of the procedures
involved in the arrest of criminals, respectively.

This function displays a set of appealing properties. First, p is continuous and differen-
tiable in the interior of its domain. This mirrors the intuition that small changes in police size
and crime rate should be translated into small changes in the probability of apprehension.
Second, for any v, p(v, ·) is strictly increasing, with p(v, 0) = 0 and p(v,1) = 1, which are
properties imposed as starting points in previous papers using ad hoc apprehension technol-
ogy functionals. Third, for any crime rate, the apprehension probability exhibits decreasing
marginal returns, as intuitively proposed by İmrohoroğlu et al. (2000). Fourth, p(·, k) is
decreasing for each k. Since a higher crime rate means more criminals to be caught and
also diverts resources from patrolling to other procedures, the probability of apprehension
of each individual crime is negatively related to the crime rate, as also suggested intuitively

7In equilibrium, the apprehension probability is the proportion of crimes that are detected.
8To ensure the continuity of p, we set p(0, ·) = limv!0 p(v, ·) = 1� e�⇣1(·).

10



by Ehrlich (1973) and Fu and Wolpin (2017).

2.4 Public Security Expenditures

We assume that the cost of incarceration per unit of time is linear on the number of
prisoners. Thus, it costs Np per period to keep a mass of Np agents incarcerated. This
implies that, if expenditures on police are given by k, total expenditures on the public
security system add up to k + N

p
 per period. Public security expenditures are financed

through the lump-sum tax f , raised over all agents in the economy.

2.5 The Criminal’s Problem and the Stationary Equilibrium

We consider a stationary rational expectations equilibrium. Before defining it formally,
though, we state the criminal’s recursive problem from age T + 1 to age 0 and describe the
intuition for its solution. By assumption, the value function of an agent past the terminal
age T + 1 with productivity w is given by ↵(w � f). The state of an agent at age t 
T is determined by her/his productivity and whether she/he is free or in prison. A free
agent chooses whether to engage in crime. Since agents at age T are always set free in
the following period, the value function at that age for an agent with productivity w is
V

F
T (w) := w�f+�↵(�Tw�f)+max{⇧T , 0} if she/he is free and V

P
T (w) := b�f+�↵(✓w�f)

if she/he is incarcerated.
Now consider t < T . We define V

F
t (w) as the value function of an agent at age t, with

productivity w, who starts the period free, and V
P
t (w) the analogous for an agent starting

the period in prison. The dynamic programming problem of agent with productivity w at
age t is, therefore

V
F
t (w) = w � f +max

�
�V

F
t+1(�tw),⇧t + �(1� p)V F

t+1(�tw) + �pV
P
t+1(�tw)

 
. (2)

Regardless of the decision to engage in crime, each free agent at age t earns income (from
legal activities), pays the lump-sum tax, and experiences an increase in productivity by a
factor �t. Agents who decide not to engage in crime will be certainly free at age t + 1.
Agents engaging in crime have, in addition, an expected criminal gain of ⇧t, may evade
apprehension and start next period free (with probability 1�p), or may be caught and start
the next period in prison (with probability p). Similarly, given b (the before-tax consumption
equivalent of spending one period in prison), the value function for an incarcerated agent is

V
P
t (w) = b� f + (1� µ)�V P

t+1(✓w) + µ�V
F
t+1(✓w). (3)

From this theoretical framework, one can fully characterize a dishonest agent’s behavior.
The solution for an agent at age T is trivial: engage in crime whenever ⇧T > 0. At age
t < T , from Equation (2), an individual with productivity w strictly prefers to engage in
crime if

⇧t > p(V F
t+1(�tw)� V

P
t+1(�tw)).
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The left-hand term expresses the expected utility gain from crime, which is independent of
income. Expected losses from conviction include the foregone income in the legal sector and
the permanent reduction in productivity. These losses are captured by V

F
t+1(�tw)�V

P
t+1(�tw),

so the right-hand term expresses the expected future utility losses from engagement in crime.
Notice that both dimensions of expected losses from engaging in crime are increasing in the
productivity level w. However, the net present value of marginal increases in productivity
is larger for free agents than for those in prison. That is, the derivative of V F

t+1 is greater
than the derivative of V P

t+1, implying that V F
t+1 � V

P
t+1 is increasing in w. Thus, at each age,

the agent’s solution depends only on whether productivity is above an age-dependent cut-off
level w?

t , determined implicitly from

⇧t = p(V F
t+1(�tw

?
t )� V

P
t+1(�tw

?
t )).

This implies that an agent at age t strictly prefers to engage in crime if, and only if, her/his
income is below w

?
t . Agents at age t with income above w

?
t do not engage in crime.

Let ms
t(w), for s 2 {Ẽ, E, P}, denote, respectively, the measures of dishonest agents free

and not engaged in crime, free and engaged in crime, and incarcerated, for each productivity
w and age t. In addition, recall that the average sentence length is given by � = 1/µ� 1.

Definition 2.1. A stationary equilibrium, for a given choice of public security policy (k,�),
is a collection of value functions V

P
t (w), V

F
t (w), individual policy rules of engagement in

crime by age and income, time-invariant measures of dishonest agents m
s
t(w) for each w,

t 2 {0, 1, . . . , T} and state s 2 {Ẽ, E, P}, an aggregate crime rate v
?, an apprehension

probability p
? := p(v?, k) (with p given by Equation 1), and a lump-sum tax f such that:

(i) Individual and aggregate behavior are consistent, i.e., the aggregate crime rate is given
by

TX

t=0

Z 1

0

m
E
t (w)(1� p

?)(1� e
�⌫p?)/p?dw.

(ii) Individual and aggregate state changes are consistent.

(iii) Given the public security policy (k,�), f and a belief in p, the individual policy rules of
engagement in crime solve the individuals’ dynamic program defined by equations (2)
and (3) (and the equivalent relations for age T ).

(iv) Expectations are rational, i.e., the common belief in the apprehension probability is p?.

(v) The government runs a balanced budget, so that revenues collected through the lump-sum
tax f are fully used to finance the public security expenditures k+

PT
t=0

R1
0 m

P
t (w)dw.

Appendix B presents the formal details of the discussion developed in this section. It
solves the criminal’s problem, proves that this economy has at least one rational expectations
equilibrium, and presents the idea behind the computation of the stationary equilibrium.
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2.6 Welfare

Crime is the only source of inefficiency in this economy. It imposes costs on victims and
criminals without creating value, so any first-best solution should imply zero crime and no
expenditure on public security. The government can reduce the incidence of crime through
the public security technology at its disposal. But public security expenditures also do not
create net value, and can in principle be used for other purposes, so in reality they are part
of the aggregate inefficiencies associated with the existence of crime. For this reason, the
goal of public security policy should not be to minimize crime, but rather to minimize the
aggregate welfare loss from crime.

Consider the stationary state and a social planner that puts equal weight on the consump-
tion of all agents in this economy. Aggregate consumption is given by

R
c
i(k,�)di, where

(k,�) is the policy set by the social planner and c
i(k,�) is the consumption of agent i under

this policy (remember that k represents expenditures on police and � the average sentence
length). Define fW as the first-best outcome: the counterfactual aggregate consumption in
a scenario where crime is not an option. The social planner’s problem is to minimize the
social welfare loss from crime, given by

L(k,�) = fW �
Z

All
agents

c
i(k,�)di.

Implicitly, this means that the social planner seeks to minimize the loss of welfare caused
by the criminal acts themselves, plus public security expenditures and punishment costs for
criminals.9 The loss directly caused by criminal acts is given by

L
crime(k,�) :=

TX

t=0

vt(k,�)(d
V + d

C
t ),

where vt(k,�) is the equilibrium number of crimes committed by agents at age t, under
policy (k,�).

Total public security expenditures add up to L
keep(k,�) := N

P (k,�), where N
P (k,�)

is the equilibrium number of incarcerated agents under (k,�). Given the balanced budget
assumption, public sector expenditures are entirely financed by reduced consumption through
the lump-sum tax.

In addition to increasing government expenditures, the punishment of criminals generates
two other types of social loss: freedom deprivation and human capital depreciation. The
former corresponds to the foregone consumption from being in prison. It is captured by
the difference between each criminal’s (legal sector) productivity and his consumption level
while incarcerate (b). Integrating across all individual, this gives

L
FD(k,�) :=

Z TX

t=0

(w � b)mP
t (w)dw =

TX

t=0

Z
wm

P
t (w)dw � bN

P
t (k,�),

9In Section 4, we consider alternative definitions of welfare.
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where N
P
t (k,�) is the equilibrium number of prisoners at age t under (k,�).

The human capital depreciation of an individual at age t, with productivity w, and who
had productivity w0 at age 0, is given by the difference between her/his maximum potential
productivity had she/he never been incarcerated (�tw0) and her/his actual productivity at
age t. Aggregating over all agents gives us

L
HK(k,�) :=

⇣ TX

t=1

�t + �T+1↵

⌘Z
wM0g0(w)dw �

Z T+1X

t=1

w(mẼ
t (w) +m

E
t (w) +m

P
t (w))dw.

Combining all of these terms, the social planner’s problem is to choose the policy

(k?,�?) = argmin
(k,�)

�
k + L

keep(k,�) + L
crime(k,�) + L

FD(k,�) + L
HK(k,�)

 
.

3 Estimation
In this section, we describe our estimation strategy. Further details on specific numerical

procedures are provided in Appendix D. Our theoretical model focuses on crimes with
pecuniary motivations, so we consider only property crimes (defined as robberies, burglaries,
motor vehicle thefts, and larcenies with value above 50 dollars).10 We exclude low-value
larcenies due to their low impact on social welfare—less then 0.1% of the social loss caused
by property crimes—and more questionable strictly economic motivation. We also exclude
fraud because white-collar crimes are very distinct from common street crimes, both in terms
of their nature and detection technology.

In Section 3.1, we present a set of parameters taken directly from the literature and
calculated from official datasets. We estimate the remaining parameters using a two stage
GMM procedure, explained in Section 3.2. Section 3.3 assesses the fit of the model in terms
of targeted and non-targeted moments.

We benchmark our model using 2004 as the reference year (or the year closest to 2004
for which specific variables are available). We choose this point in time because the number
of prisoners and the crime rate were relatively stable in the first decade of the 2000s, coming
closer to the stationarity hypothesis imposed in our numerical solution. Data from the
National Prisoners Survey and the National Criminal Victimization Survey, discussed in
Carson and Anderson (2016) and Truman and Langton (2014), for example, illustrate this
point. We choose 2004 specifically due to a higher availability of data in this particular year.

3.1 Parameters Taken from the Literature and Official Sources

The unit of time in our estimated model is set to one year and monetary units are set to
2004 US$. Since individuals aged below 18 are mostly subject to correctional youth facilities,

10This is a different definition from the one given by the Bureau of Justice Statistics (BJS) and the Federal
Bureau of Investigation (FBI). They consider robberies as a violent crimes and include all types of larceny
as property crimes.
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we assume that agents enter our economy at age 18 (corresponding to age 0 in the theoretical
model). Due to the very low criminal activity and incarceration rate of individuals aged 65
and above, we set the terminal age T from the theoretical model to 47 (= 65 � 18). Based
on the 2000 US Census, we set the number of individuals in each cohort between ages 18
and 65 to 3.6 million.

We set the same discount factor as Fella and Gallipoli (2014), 0.95, which falls in between
the discount factors in İmrohoroğlu et al. (2004) and Mastrobuoni and Rivers (2017).

We recover the life-cycle productivity profile from a Mincer regression of log earnings
on age, age squared, years of schooling, race, and gender, estimated using the 2004 Current
Population Survey (CPS). The estimates for the coefficients of age and age squared are 0.0687
and �0.00121, respectively. Our estimate for the productivity b�t in the model is given by11

b�t = exp(�age + 2�age2t+ �age2).

We also use the CPS to calculate the productivity distribution of 18 year-old agents
(age 0 in the theoretical model). We consider individuals who reported positive earnings
and assume that income is distributed according to a lognormal with parameters µw (the
expected value of the log of income) and �w (the standard deviation of the log of income).
The maximum likelihood estimates for these parameters when yearly earnings are measured
in hundreds of dollars are bµw = 4.453 and b�w = 0.7169. These parameters imply that average
yearly earnings for 18 year-old individuals in 2004 were $12,290.

To estimate the multiplier ↵ defining the continuation value at age T +1, we use the US
2004 life tables from the National Vital Statistics System. We assume that income remains
constant after age T and that an agent with income w at age T + 1 has a continuation
value of ↵w. Then, using the age-specific mortality rates and the intertemporal discount
rate of 0.95, we calculate the present discounted value of receiving a flow of income w for a
65 year-old individual. This leads to b↵ = 11.38.

Turning our attention to crime and public security policy, we first need to determine the
total number of prisoners and their distribution according to type of crime. Prisoners in
the US can be in State prisons, Federal prisons, or jails. According to the bulletin “Prison
and Jail Inmates at Midyear 2005,” a convicted prisoner can be in any of these facilities, but
before adjudication individuals are mostly confined in jails. Using this bulletin and other BJS
reports, we estimate the total number of incarcerated individuals, convicted and awaiting
trial, for each type of property crime. Note that a fraction of inmates awaiting trial are
eventually sentenced, which we must take into account in our calculations. Following Dobbie
et al. (2018), we set this fraction to 0.578 and obtain the number of prisoners incarcerated
for property crime in 2004: bNP = 509, 700.

Next, we calculate the average cost of a property crime to victims. This includes the value
of the goods stolen plus other costs, such as those associated with injuries, productivity losses,

11Given our Mincer regression, [lnwt = constant + �aget+ �age2t
2. Therefore,

dln �t = \ln(wt+1

wt
) = �age(t+ 1) + �age2(t+ 1)2 � (�aget+ �age2t

2) = �age + 2�age2t+ �age2 .
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and psychological stress. Estimates of the total costs of crime to victims for different types
of property crime are provided by Cohen (2000). To calculate the relative frequency of each
type of property crime, we use data from the 2004 National Criminal Victimization Survey
(NCVS). Combining the costs of crime from Cohen (2000) with these relative frequencies,
we estimate the average property loss per property crime as $848 and the average total loss
as $1,445.

In relation to expenditures, the Criminal Justice Expenditure and Employment Extract
Program (CJEE) reports a total value of $88.9 billion spent on police forces in 2004, while the
value allocated to correctional facilities amounted to $62 billion. Using the BJS 2004 prisoner
count (2.385 million individuals), our estimate for  is $26, 000 (cost per prisoner/year). This
value is close to the $23, 000 used by Engelhardt et al. (2008).

Since we focus on property crimes, we need somehow to assign the fraction of total police
expenditures devoted to detecting property crimes in particular (we denote this fraction by
h). It is not clear that, in reality, police expenditures are separable into different types of
crime. Nevertheless, our model needs a number that would capture the share of overall police
resources allocated primarily to fight property crime. Since such a number is not available
from official statistics, we assume some proportionality with the flow and stock of prisoners.
BJS 2004 data on the universe of prisoners in more than 35 states indicates that 27.10%
of prisoners were sentenced for property crimes, while 26.47% of new admission into the
system are also related to property crimes (data from the National Corrections Reporting
Program, ICPSR 36285). Thus, we set bh = 0.27, which implies that expenditures on police
associated with property crimes add up to bk2004 = 0.27 ⇥ 88.9 = $24 billion. Given the
uncertainties regarding this specific parameter, in our robustness exercises we re-estimate
the model considering different values for h.

The same BJS dataset discussed in the previous paragraph allows us to estimate the
average sentence of individuals convicted for property crimes in State prisons. Since this
dataset does not include individuals who served time in jails, we make some additional
assumptions. Once a prisoner awaiting trial is convicted and incarcerated, we assume that:
(i) the probability of being sent to a prison equals the proportion of prisoners held in prisons
over the total number of convicted prisoners; (ii) if sent to jail, the individual serves at most
one year; (iii) if sent to a State prison, the time served is distributed as in the data for
State prisons; and (iv) for all prisoners, time served is exponentially distributed. With these
assumptions, we estimate an average sentence length b�2004 = 1.482 years (17.78 months),
corresponding to a yearly probability of being released from prison bµ2004 = 1/(1 + b�2004) =
0.403.

We take the human capital depreciation rate while incarcerated from Grogger (1995).
He estimates the legal sector income loss for individuals between ages 18 and 25 who served
time in prisons and jails (we weight these losses by the proportion of individuals in each
type of facility).12 Estimates suggest an average reduction in earnings of 21.6%. Since the
average time in prison is 1.48 years, this corresponds to a 15% yearly reduction in earnings.

12We consider a long-term effect, since Grogger (1995) finds that income losses remain stable for at least
seven years after release.

16



The average growth in earnings for free agents between ages 18 and 25 is approximately 6%,
meaning that the average loss due exclusively to incarceration—as opposed to the loss of one
year of learning by doing in the market— is 15%� 6% = 9%. Our estimate for ✓ is therefore
given by b✓ = 1� 0.09 = 0.91.

Finally, we estimate the mass of potential criminals using Sampson and Laub (2003).
They estimate the proportion of young individuals committing property crimes as a function
of age using self-reported, parental-reported, and teacher-reported data. We make three
assumptions to translate their numbers into a mass of individuals willing to commit crimes.
First, most young boys committing property crimes face very low costs associated with
punishment. Second, the direct cost of committing crimes is 0 at the age t at which the
proportion of youngsters committing crimes is maximum. Note that these two assumptions
imply that, at age t, all dishonest agents are engaged in crime. Third, the ratio between
the number of dishonest women and dishonest men is the same as the ratio between women
and men being admitted to prison due to property crimes. Under these assumptions, the
proportion of dishonest individuals is approximately 15%, which implies that cM0 = 0.15 ⇥
(population at 18 years old) = 540, 000.

3.2 Estimated Parameters

We assume that the age-dependent cost of committing crimes dCt is linear on t: dCt = b
C
t+

c
C . With this assumption, we have six parameters to estimate: bC and c

C , the consumption-
equivalent of one period in jail b, the average number of criminal opportunities per year ⌫,
and the police production function parameters ⇣1 and ⇣2.

While, in principle, all six parameters could be estimated simultaneously, due to compu-
tational limitations we break the estimation into two stages. In the first stage, we estimate
b
C , cC , b, ⌫, and the detection probability, which we call p. Therefore, rather than estimat-

ing ⇣1 and ⇣2 directly together with the other parameters in the first stage, we estimate the
value of p, which is a function of ⇣1 and ⇣2. Then, in the second stage, bp becomes one of the
moments used as targets to estimate b⇣1 and b⇣2. With this two stage estimation procedure,
we avoid working at the same time with a large space of parameters and a computationally
demanding score: either the space of parameters is large (first stage) or evaluating the score
is slow (second stage).

3.2.1 Moments and Estimation of the First-stage GMM

To estimate the first-stage parameters, we use as targets the following 19 moments: the
number of prisoners for property crimes, the total number of property crimes, the value of
90 days of freedom, the proportion of 18-19 year-old individuals committing crimes, and 15
moments from the age distribution of prison inflow (from the proportion of admissions in
prisons for each age group). For a more efficient estimation of the parameters, we also use
the (estimated) variances of the moments. Since we take the moments from various distinct
sources, we assume that the covariance matrix is diagonal.
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In Section 3.1, we estimate the number of prisoners as 509,700, using 57.8% (from Dobbie
et al. 2018) as the probability of a detained defendant being found guilty. We assume that
this probability is independent for each inmate awaiting trial, so the distribution of the
number of prisoners is binomial with a variance of 96, 500⇥ 0.578⇥ (1� 0.578) = 23, 538.

The total number and the variance of property crimes are taken from the NCVS 2004
Criminal Victimization report. The total number of property crimes is 15.032 million and,
adding the squares of the standard errors of the estimate for each property crime, we obtain
187,683.71 as its variance.

We use the estimated value of 90 days of freedom reported by Abrams and Rohlfs (2007).
They find a point estimate of $1,050, with standard error of $631. Therefore, the expected
value of not getting caught is 1.48 ⇥ 4 ⇥ $1, 050 = $6, 222, since the average sentence is
1.48 years (which implies a standard error of $3, 736). The equivalent of this moment in our
model is the average, among people engaged in crime (below the cut-off productivity), of the
difference between the value of being free and the value of being in prison:

PT
t=0

R w?
t

0 (V F
t (w)� V

P
t (w))mE

t (w)dwPT
t=0

R w?
t

0 m
E
t (w)dw

·

To estimate the proportion of 18-19 year-old individuals committing crimes, we use the
NLSY97. Individuals are asked whether they committed at least one crime in the last year.
If we assume that all missing values in the questionnaire refer to individuals who did not
commit crimes, we have a lower bound of 2.645% for the proportion of active criminals.
If we assume that missing values refer to individuals who committed crimes, we have an
upper bound of 3.353%. We assume that the number of active criminals follows a uniform
distribution in the interval [2.645%, 3.353%], so our estimate is the middle point in this
interval: 2.999% (the uniform distribution means that we assume that we have as little
information as possible for a random variable inside the interval). The variance of this
uniform distribution is 3.5358⇥ 10�5. The counterpart of this moment in the model is

1� e
�⌫p2004

p2004

R w?
0

0 m
E
0 (w)dw +

R w?
1

0 m
E
1 (w)dw

2⇥ population of a cohort
·

The first term is the probability of receiving a positive number of criminal opportunities in
a given year, while the second represents the proportion of individuals aged 18 and 19 who
are willing to engage in crime.

The remaining moments are the fractions of prison admissions for 15 age groups. The
Sourcebook of Criminal Justice Statistics provides number of arrests by type of crime and age
for 2004. This information is available for each cohort up to 24 years old and, after that, for
five-year age brackets (25-29, 30-34, etc.). We calculate the proportion of individuals arrested
by age group (over all arrests of individuals aged 18 to 65). In the model, the proportions
of arrests by age group correspond to the proportions of admissions into the system by
age group. Given that, in the model, detection probabilities and criminal opportunities are
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constant across ages, the theoretical counterpart for each age group in this case is given by
P

t2age group

R w?
0

0 m
E
0 (w)dw

PT
t=0

R w?
0

0 m
E
0 (w)dw

·

To estimate the variance of these fractions, we use the temporal variation between 2002 and
2011.

We assume that the covariance matrix ⌅1 is diagonal with the variances mentioned above.
We use the particle swarm numerical optimization to find the minimum score of the GMM
using as weighting matrix (⌅1)�1. To calculate the standard errors, we first compute the
Jacobian matrix bJ1 of the 19 moments with respect to the parameters, evaluated at the
estimated parameters. Then, the covariance matrix of the estimated parameters is calculated
as bV 1 = ( bJ 0

1(⌅1)�1 bJ1)�1.

3.2.2 Moments and Estimation of the Second-stage GMM

In the second stage of the GMM, we estimate the parameters of the police production
function: ⇣1 and ⇣2. The moments we use are the estimated detection probability bp (point
estimate of 2.30% and standard error of 0.06% from the first stage), the elasticity of property
crime with respect to police size from Levitt (2002) (point estimate of �0.501, standard error
of 0.235), and the elasticity of property crime with respect to prison population from Levitt
(1996) (point estimate �0.261, standard error of 0.117).

To evaluate the elasticity of crime with respect to police expenditures k for any given pair
(⇣1, ⇣2), we calculate the numerical derivative of the crime rate with respect to k at bk2004,
say b�1(⇣1, ⇣2). The elasticity of crime is given by b�1(⇣1, ⇣2)bk/bv, with bv being the number of
property crimes predicted by the model using the parameters estimated in the first-stage
GMM.

The elasticity of property crimes with respect to prison population is the moment that
remains to be evaluated in the model. We assume that if a few agents in prison were set
free, most of them would commit crimes. In this case, the sum of agents engaged in crime
and in prison is approximately constant, and the derivative of property crimes with respect
to prison population is the opposite of the derivative of property crimes with respect to the
number of agents engaged in crime. Suppose that the number of agents that could engage
in crime increased by a multiplicative factor of (1 + ✏). This would cause, as a first-order
change, an increase of the crime rate by an additive factor of ✏v. In addition, there would
be a second-order change due to a lower probability of detection caused by the load effect.
The total approximate effect is the sum of the first- and second-order effects (equilibrium
effects are negligible for small values of ✏). This allows us to calculate the derivative of the
crime rate on the number of criminals, which we define as b�2(⇣1, ⇣2). The elasticity we seek
is thus �b�2(⇣1, ⇣2) bNP

/bv, where bNP is our prediction for the number of prisoners in the first
stage of the GMM.

Let ⌅2 be the diagonal matrix with elements given by the variances of the second-stage
moments calculated in Section D.2.3. The weighting matrix of the second stage of the GMM
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is (⌅2)�1. We use the particle swarm optimization algorithm to find the minimum score of
the GMM. The covariance matrix bV 2 is obtained using the same procedure we used in the
first stage.

3.2.3 Estimation Results

Table 1 reports the parameter estimates for our first-stage GMM, with respective stan-
dard errors in parentheses. Within the theoretical structure of the model, the estimates in

Parameter Estimate Unit

bC 0.2031 hundreds of dollars/year

(0.0080)

cC 3.2669 hundreds of dollars

(0.3741)

⌫ 10.0797 opportunities per year

(0.6512)

b 82.9433 hundreds of dollars/year

(8.1641)

p 2.30 %

(0.06)

Table 1: Parameters obtained from the first stage of the
GMM. The standard error appears in parentheses below
the estimate.

the table are those that best rationalize the patterns observed in the data. These estimates
imply that the average subjective cost that 18 year-old individuals face to commit a crime
has a monetary equivalent of roughly $300. This cost increases by $20 per year during the
life-cycle. An individual engaged in crime receives, on average, 10 criminal opportunities
per year. Also, according to the estimated model, one month in prison is comparable, in
terms of welfare, to being free with monthly earnings of $600. Finally, the probability that
a property crime is detected is estimated to be 2.3%.

In the second stage, we estimate b⇣1 = 0.969 (with standard error 0.023) and b⇣2 = 0.918⇥
10�6 (with standard error 0.420⇥10�6). Though it is much more difficult to give an intuitively
appealing interpretation to the magnitude of these two parameters, they lead to a police
production function that, in equilibrium, reproduces the elasticities of crime estimated in
the empirical literature (see discussion in the next subsection).
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3.3 Model Fit

Table 2 presents the targeted moments with their model counterparts.13 For the sake of
conciseness, some of the moments related to the age-specific inflow of prisoners are aggregated
into broader age groups. The table shows that the estimated model comes quite close to
reproducing the targeted moments.

Moment Data Model Unit

Inflow in prison 18-24 39.5 36.0 %
(4.3)

Inflow in prison 25-34 26.4 32.3 %
(3.7)

Inflow in prison 35-44 22.0 23.0 %
(1.9)

Inflow in prison 45+ 12.1 8.7 %
(2.9)

Crime level 15032 15068 thousand crimes
(433)

Value of Freedom 62.2 63.2 hundred dollars
(37.4)

Proportion of criminals 18-19 3.00 3.16 %
(0.61)

Prisoners 509.7 505.9 thousand prisoners
(0.0235)

Elast. Police �0.50 �0.58 –
(0.24)

Elast. Prisoners �0.26 �0.28 –
(0.12)

Table 2: Comparison between targets and moments obtained from the
model. The standard errors of a target is in parentheses between the
target.

We also assess the performance of the model in terms of some untargeted moments. Using
the NLSY97, the average number of property crimes committed in a given year by individuals
that committed at least one crime is 7.3. The equivalent moment in our model is 9.0 crimes

13The moments generated by the model after the first and second stages are slightly different. This occurs
because the estimated probability of detection bp is used as a moment in the second stage, but we do not
force the model to set the bp implicit in the second-stage estimates to be identical to that estimated in the
first stage. In fact, while in the first stage bp = 2.30%, we obtain implicitly bp = 2.27% from the second-stage
estimates. The model moments in the table are those obtained after our second-stage estimation.
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per year.14 This 20% difference may come, among other reasons, from the under-reporting
of criminal activity by NLSY97 respondents.

In addition, we check how the model fits the distribution of prisoners across four age
groups: 18-14, 25-34, 35-44, and 45+. We can calculate these numbers directly from BJS
prisoners data. Table 3 presents the numbers generated by the model and the data. The
model reproduces the age-distribution of prisoners well. This may not seem particularly
surprising, since we use the age-specific inflows of prisoners as targeted moments. But it
actually shows that our assumptions of common probabilities of apprehension and average
length of sentences, independent of individual characteristics, do not impose significant lim-
itations. The model is flexible enough to reproduce a realistic age distribution of the stock
of prisoners, even when only the inflows of prisoners are used as targets.

Age group Data Model

18-24 22.2 25.6
25-34 33.6 35.5
35-44 27.2 25.2
> 45 17.0 13.7

Table 3: Share of prisoners for
property crimes by each age
group, data versus model.

Finally, we estimate the lifetime probability of going to prison (due to property crimes)
among all individuals in the economy. This probability can be estimated in our model as
follows. First, take a productivity w0 for an agent at age 0. Since we know the cutoff
productivity and potential productivity gain at each age, we can calculate the number of
years Yw0 =

PT
t=0 1{�tw0<w?

t } this agent engages in crime if never caught. Therefore, the
lifetime probability that this individual is caught at least once is 1� (1� p)Yw0 (where our
estimated p is 12.2%). As a consequence, the proportion of dishonest individuals who will
be incarcerated at least once is

R1
0 (1 � (1 � p)Yw)dG0(w), or 11.8%. This corresponds to

1.8% of the total population, including honest and dishonest agents.
According to BJS estimates (see Bonczar 2003), the implicit lifetime probability of going

to prison calculated from 2001 numbers was 6.6%. However, this estimate includes prisoners
for all types of crime and only Federal and State prisons (not jails). To obtain a number
that is more directly comparable to our model, we do some back-of-the-envelope calculations,
adjusting the BJS estimate by the fraction of prisoners incarcerated for property crimes
(27%) and including jail inmates (which increases the number of prisoners in State and
Federal prisons by 28%). If we assume that no convicted prisoner in jail ever ended up in

14From Section 2.2, our model predicts that the number of crimes committed by individuals engaged in
crime, conditional on having at least one criminal opportunity, is (1� e�⌫p)/p(1� e�⌫).
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prison, the adjusted number is then 6.6%⇥ 0.27⇥ 1.28 = 2.3%. If, by contrast, we assume
that most of the convicted individuals in jail were at some point incarcerated in State prisons,
this adjusted number becomes closer to 6.6%⇥ 0.27 = 1.8%. Both numbers are close to our
estimate, and the latter matches it within one decimal place.

4 Quantitative Exercises

4.1 Socially Optimal Public Security Policy

This section presents the results from our policy experiments. Once estimated, our
theoretical model can be used to evaluate any policy change, under whatever objective
function is deemed adequate. We start by focusing on the most general welfare metric:
aggregate surplus measured in consumption equivalent units, without distinction between
criminals and victims. Later, we consider alternative objective functions, treating criminals
differently from victims or positing crime minimization (subject to a public security budget)
as the social goal. The objective of this section, rather than to focus on specific welfare
metrics or to defend particular policies, is to illustrate the potential use of an equilibrium
model to analyze the optimality of public security policies under different scenarios. Given
the estimation strategy adopted, we conduct this analysis using parameters that are directly
informed by the causal evidence from the applied micro literature.

Table 4 summarizes the 2004 socially optimal public security policy according to the
estimated model. The rows list the key statistics, while the the first column presents the 2004
allocation, the second column presents the optimal policy according to the estimated model,
and the third column calculates the percentage change in each variable when comparing the
optimal policy to the 2004 allocation. For consistency, we use the 2004 values of the fitted
model in this comparison rather than the actual data.

2004 policy Optimum �%

Average time in prison 17.8 mth 22.3 mth 25.3

Expenditures on PSP 37.2 $bn 33.1 $bn �11.0

Expenditures on police 24.0 $bn 18.8 $bn �21.7

Expenditures on prison 13.2 $bn 14.4 $bn 9.1

Number of crimes 15.1 mi 16.9 mi 11.9

Total loss 63.9 $bn 62.9 $bn �1.6

Table 4: Variables of interest generated by our model under the benchmark
policy of 2004 (first column) and under the socially optimal policy (second
column). The third column displays the percentage change between second
and first column.
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The optimal policy predicted by the model corresponds to a reduction of 11.0% in public
security expenditures when compare do the 2004 baseline. This overall reduction masks
movements in opposite directions along the two dimensions of policy. Police expenditures
are reduced by 21.7%, while prison expenditures increase by 9.1% (due to an increase in
average sentence lengths of 25.3%).15 The optimal policy leads, maybe counterintuitively, to
an increase of 11.9% in the property crime rate. In net welfare terms, the change in policy
reduces the aggregate welfare loss from crime by 1.6%, or $1 billion.

The socially optimal policy predicted by the model illustrates the non-trivial interaction
between the different dimensions of policy. Though the crime rate increases slightly in the
optimum, this happens through a combination of apparently contradictory movements in
police and sentencing. This comes from the fact that, at the margin, police expenditures
in 2004 were inefficiently high, opening the possibility of significant savings that, in terms
of aggregate welfare, more than compensate for the small increase in crime. At the same
time, since the probability of catching a criminal is reduced, it becomes optimal to hold
criminals in prison for longer when they are caught. The optimal policy also implies an
increase in the 2004 prison population (for property crimes) of approximately 50,000 extra
inmates (9.1%) and a roughly constant share of individuals being incarcerated at some point
over their lifetimes (1.9% of each cohort against 1.8% under the 2004 policy).

Though our results related to sentencing and prison population may seem surprising in
light of the high incarceration rate in the US, remember that we focus on property crimes,
which accounted for only 20% of the total inmate population in the early 2000s. The strong
reduction in police expenditures is an important driver of the increase in prison population
under the optimal policy, since it incentivizes many more individuals to commit crimes.
In fact, globally, the optimal safety policy is milder than that observed in 2004, which is
attested by the fact that the equilibrium level of crime increases. In other words, among
active criminals, fewer go through prison under the optimal policy, but there are more active
criminals in the economy, so the overall number of individuals going through prison stays
roughly constant and the prison population increases slightly.

Figure 2 illustrates the solution to the optimal public security policy in the (k,�) plane.
Each point on this plane represents a public security policy. The black lines represent social
indifference curves according to our welfare function (the kinks in the indifference curves are
due to the numerical approximations used to construct them). Notice that these indifference
curves are closed, indicating that for each average sentence length there are two values of
police expenditures resulting in the same welfare loss from crime (and vice-versa): one where
expenditures on public security are low and the direct cost of crime is high, and another

15Notice that the reduction in police expenditures contrasts with the policy recommendation of hiring
more police officers in Levitt (1997). Levitt uses his estimation of the elasticity of total crime on the number
of police officers to conclude that the yearly welfare gain (due to fewer crimes) in dollars caused by hiring
one police officer is greater than the yearly wage of an officer. It is clear that Levitt’s methodology differs
from ours in several aspects, but a sharp distinction is the fact that he considers all types of crimes, not
only property crimes. Indeed, Levitt’s estimates also lead to a negative net benefit of hiring an extra officer
to fight property crimes (assuming an officer spends 27% of the total working time dealing with property
crimes), as in our model.
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Figure 2: Contour lines and the political constraints of tax collection and crime level. The red
region represents the set of policies leading to a crime reduction. The blue region is the set of
policies leading to a tax-burden reduction.

where the reverse is true. As a result, there is a global optimum, denoted by (k?,�?). In the
figure, the blue region indicates the set of policy pairs that are attainable under expenditure
levels weakly smaller than that observed in 2004, while the pink region indicates policy pairs
leading to crime rates weakly smaller than that observed in 2004 (the frontiers of these two
sets, drawn in stronger colors, correspond to the respective equalities).

The figure indicates that, as discussed before, the socially optimal policy would lead to
lower expenditures on police, longer average sentence, and higher crime rates than those
observed in 2004. Interestingly, the figure also shows that, despite not maximizing social
welfare, the 2004 allocation came close to solving another problem: minimizing the crime rate
subject to the 2004 level of public security expenditures. The solution to this problem would
be characterized by the tangency between the two sets. Later in this section, we characterize
this point precisely. For now, it is enough to highlight that, despite not corresponding exactly
to the solution to this problem, the 2004 allocation comes very close to it. This is remarkable
since there is nothing in the structure of the model or in the estimation procedure that
would mechanically push the quantitative implications in this direction. This result suggests
that, despite not necessarily focusing on global welfare, the 2004 policy was based on some
understanding of the determinants of crime and on some consideration of efficiency at the
margin.

We also calculate confidence intervals for the optimal public security policy. To do that,
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we first use the Delta method to write down the covariance matrix of the optimal policy
as a function of the covariance matrix of the parameters and the Jacobian of the optimal
policy with respect to the parameters. Then, we apply the Implicit Function Theorem
to evaluate this Jacobian using the fact that the optimal policy is a solution to the first-
order conditions. Once we have the covariance matrix for the optimal policy, finding the
error ellipse is straightforward. Appendix Figure A1 shows the optimal policy and the 2004
allocation in the (k,�) plane, together with the estimated confidence interval. It shows that
the estimated optimal policy is indeed significantly different from the 2004 allocation.

4.1.1 Decomposing the Changes in Welfare

In order to shed light on the sources of the gain in welfare as we move from the 2004
allocation to the social optimum, Table 5 presents a quantitative breakdown of the gains
in welfare attributable to the different components of the social cost of crime. We classify
the different sources of welfare costs into those associated with expenditures on the public
security system, with the criminal event itself, and with the cost of punishing to criminals.
There are a few points worth highlighting in this table. First, the key driver of the change
in allocation is the high inefficiency of the size of the police force observed in 2004. The
reduction in police expenditures is the main source of the welfare gains, being partly offset
by losses along other dimensions. Second, the increased cost of maintaining the prison system
with a larger population is modest in comparison to the revenues saved by the reduction in
police expenditures. And third, criminals lose in the new equilibrium because of the increased
human capital depreciation induced by the optimal policy. The considerably lower police
size pushes agents with higher productivity to commit crimes. Thus, under the new optimal
policy, prisoners with higher productivity would be subject to longer sentence lengths. In the
end, the increased welfare cost directly associated with the criminal event itself is the main
balancing force pinning down the social optimum. The model confirms the idea, popular
with part of the political spectrum, that expenditures on police in the US are indeed above
the optimal point, while suggesting that, in relation to property crime, average sentences are
probably slightly shorter than they should be. A small increase in crime, accompanied by
simultaneous adjustments along these two margins could, in principle, generate welfare gains
by allowing for non-trivial reductions in overall expenditures in the public security system.
In Subsection 4.1.3, we consider different welfare metrics and constraints on policy makers.

4.1.2 Comparative Statics on Police Expenditures and Average Sentence Length

In this subsection, we consider comparative static exercises where each dimension of
policy is changed one at a time, while leaving the other dimension constant at its 2004 level.
The goal of these exercises is to shed light on the mechanisms through which public security
policies affect this economy and on the interaction across policies.

Figure 3 (a) shows how each component of the social cost of crime varies when we change
police expenditures (k), holding the average sentence length constant at its 2004 value. As
expected, the direct cost of criminal events is decreasing in k, while expenditures on the
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All sources 1.0

Public Safety 4.0

Police 5.2

Prison �1.2

Criminal events �2.1

Punishment to criminals �0.9

Freedom deprivation 0.2

HK depreciation �1.1

Table 5: Welfare gain breakdown, in billion
dollars.

public security system are increasing.16 Notice as well that the criminals’ welfare loss from
punishment is non monotonic. Recall that the criminals’ loss comes from human capital
depreciation and freedom deprivation and is increasing in productivity. When k is low,
the apprehension probability is also low, so criminals are better off because they are almost
never incarcerated. In an intermediate region of k, there is still a moderately large number of
agents with relatively high productivity committing crimes and being incarcerated, implying
a high welfare loss. As k increases beyond this intermediate range, though, there are fewer
agents committing crimes, and those who are committing crimes have very low productivity,
so the loss becomes smaller.

In Figure 4, we conduct an analogous exercise looking at changes in average sentence
length (�), holding police expenditures constant at their 2004 level. The patterns and
interpretation are similar to those in Figure 3 (a). Regardless of the strategy adopted
to strengthen law enforcement—either through increases in the severity or certainty of
punishment—, the components of the welfare loss from crime follow qualitatively similar
patterns.

Figures 3 (b) and 4 (b) show the responses of the equilibrium crime rate to changes
in policing and sentencing, respectively. The estimated model predicts that, at the mar-
gin, crime in 2004 was more responsive to changes in the probability than in the severity
of punishment. This is captured in the figures by the much flatter curve around the 2004
allocation in the case of sentencing. This prediction agrees with a widely held belief in the
economics of crime literature (see, for example, Grogger 1991, Polinsky and Shavell 2000).
In the model, considering the 2004 allocation, this happens because the marginal effect of
increases in sentence length on criminals’ expected loss is relatively small in comparison to
the effect of increases in the probability of punishment. Property crime rates are already
substantially low and incarcerated individuals already have very low productivities, so in-

16Changes in police expenditures affect the number of criminals apprehended. So, for a constant average
length of sentences, changes in police expenditures generally bring together changes in prison expenditures.
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Figure 3: The behavior of some variables as k varies keeping the average sentence length at the
value of 2004. (a) Components of the social loss and the total social loss. (b) Crime rate.

creases in sentence length do not alter the decision to participate in crime in a substantial
way.
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Figure 4: The behavior of some variables as µ varies keeping the average sentence length at the
optimal level. (a) Components of the social loss and the total social loss. (b) Crime rate.

The main insight provided by these comparative static exercises, nevertheless, is related
to the relevance of equilibrium considerations and the interaction across policies. Despite
the fact that marginal increases in the probability and severity of punishment lead to re-
ductions in crime (Figures 3 (b) and 4 (b)), once all relevant social costs are considered,
the comparative static exercises recommend reductions along both dimensions (Figures 3 (a)
and 4 (a)). This is clearly the case for police expenditures, but is also true for the average
sentence length, though its 2004 level is much closer to the partial optimum. Looking at
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each dimension of policy separately, it would be optimal to slightly reduce the size of the
police force and the length of sentences, and let crime increase a bit.

Now consider the globally optimal policy, as discussed in the previous subsection. Once
the interaction across policies and equilibrium responses are taken into account, the optimum
suggests reducing police expenditures but increasing the average sentence length. The best
way to save on public security expenditures without letting the crime rate increase too much
is through reduced police expenditures, partly compensated by increased sentences. The re-
duced probability of punishment increases the effectiveness of sentencing since it changes the
pool of potentially active criminals (individuals at the margin of choosing crime). Therefore,
the optimal combined response leads to an increase in the severity of punishment, contrary
to the comparative statics exercise. This type of discussion requires an equilibrium model
and could not possibly be conducted based exclusively on the marginal estimates available
from the reduced-form empirical literature.

4.1.3 Robustness: Alternative Objective Functions and Police Expenditures

In this subsection, we assess how our quantitative and qualitative results change when
we vary the social objective function and the imputation of the share of police resources
allocated to fighting property crime.

Regarding the latter, in our benchmark estimation we set the share of police resources
allocated to property crime proportionally to the share of inmates incarcerated for this type
of crime. This proportionality is unlikely to hold precisely, so we consider variations of h
around our benchmark value of 27%: from 21% to 33%, in 3 p.p. intervals.

The results from these exercises are presented in Table 6. When considering alternative
values of h, we also re-estimate the 2004 model, given that expenditures on police in the
benchmark economy are different. The key implication of variations in h refers to the implicit
effectiveness of the police. Lower values of h mean that the police was more effective and
cheaper in the benchmark economy, and therefore that the optimal policy would be closer
to the 2004 allocation along the police expenditure dimension. The reverse is true for higher
values of h. Nevertheless, the qualitative prescription that the socially optimal policy should
slightly reduced police expenditures and increase sentence length remain true for all values
of h in the table. The magnitude of these changes, though, is strongly increasing in h. With
h = 0.21, for example, the 2004 allocation is much closer to the social optimum.

On the social objective function, our benchmark exercise considered a welfare metric that
added up the monetary value of all the social costs of crime. This approach does not consider
the good stolen as a net social loss, since it represents a transfer of resources from victims
to criminals. It also incorporates direct utility losses to criminals associated with punish-
ment as part of the social welfare function. In addition, it ignores any potential political
constraint faced by policy makers. For example, policymakers may face political backlash
from organized and politically powerful groups if they propose a policy that increases the
equilibrium crime rate. If constraints such as this play a decisive role in the implementation
of policies, and are taken as a fact of political life, we might want to analyze the second best
solution that minimizes social losses while satisfying the political constraints.
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h 2004 policy Optimal policy

Police expenditures ($bn) 18.7 17.8

0.21 Sentence length (mth) 17.8 18.1

Number of crimes (mi) 15.1 13.6

Police expenditures ($bn) 21.3 18.9

0.24 Sentence length (mth) 17.8 19.6

Number of crimes (mi) 15.1 14.3

Police expenditures ($bn) 24.0 18.8

0.27 Sentence length (mth) 17.8 22.3

Number of crimes (mi) 15.1 16.9

Police expenditures ($bn) 26.7 21.0

0.30 Sentence length (mth) 17.8 22.1

Number of crimes (mi) 15.1 16.7

Police expenditures ($bn) 29.3 20.6

0.33 Sentence length (mth) 17.8 25.2

Number of crimes (mi) 15.1 16.7

Table 6: Estimates for optimal policies for several values of h.
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To illustrate how different social welfare metrics can be easily incorporated into the model,
we look at two alternative cases. First, we consider a social welfare function that does not
include most components of criminals’ welfare. This metric ignores the value of goods stolen
to criminals, the cost of committing crimes, and the direct utility cost from punishment, and
includes only the criminals’ lost legal labor market productivity due to incarceration. More
specifically, for a policy (k,�), define L

prop(k,�) as the loss due to the property stolen and
L

work(k,�) as the loss due to a lower productivity of agents that are not incarcerated (see
Appendix C for details of the derivation of Lwork). Using the notation from Subsection 2.6,
the welfare loss under this metric is given by k + L

keep(k,�) + L
crime(k,�) + L

prop(k,�) +
L

work(k,�).
Second, we consider an alternative social goal, defined by the minimization of crime

subject to the 2004 public security budget.

2004 policy Social optimum Social optimum Minimum

(benchmark) (no criminals’ welfare) crime

Police expenditures ($bn) 24.0 18.8 21.2 23.4

Sentence length (mth) 17.8 22.3 19.5 19.2

Number of crimes (mi) 15.1 16.9 16.0 15.0

Table 7: Estimates for optimal safety policies (police expenditures in billion dollars and average sentence
length in months) and the level of crime (in millions) for the three metrics we consider.

The results are presented in Table 7. First, as was already clear from Figure 2, the policy
that minimizes crime subject to the 2004 public security budget is in fact quite close to the
2004 allocation. The two points are not identical, though, and the crime minimizing policy
displays only slightly lower police expenditures and slightly longer sentences. The optimal
policy according to the welfare function that ignores most dimensions of criminals’ welfare
is also closer to these two. This should not be surprising, since this metric ends up placing
more weight on reductions in crime, since it increases the direct costs of criminal events
and ignores part of the costs of punishment. Interestingly, the different welfare functions
lead to the same qualitative recommendation of reducing police expenditures and increasing
average sentence length, though the extent of these changes varies according to the optimality
criterion used.

Notice that there is nothing built into the model forcing the optimal policy, in general,
towards lower police expenditures and longer average sentences. Sufficiently low values of
h, for example, generate optimal policies leading to increases in police expenditures and
reductions in the average length of sentences, for any of the three objective functions con-
sidered before (results not shown in the table, but available from the authors upon request).
Not surprisingly, the effectiveness of expenditures on police is key to determine the trade-off
along these two dimensions of policy. Still, the qualitative result from our benchmark spec-
ification holds true within a large neighborhood of h = 0.27 and for different definitions of
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optimality. This indicates that, from the perspective of property crimes, the 2004 allocation
seems indeed to reflect some degree of inefficiency from over-investment in police.

4.2 Incapacitation, Deterrence, Recidivism, and Load Effects

The empirical literature in economics of crime is often interested in the decomposition
of the effects of public security policies into the specific channels affecting crime rates. Tra-
ditionally, this discussion has focused on the direct effect of incarceration on the physical
capacity of individuals to commit crimes—the incapacitation effect—, on the effect of poli-
cies on the incentives of free individuals to commit crimes—the deterrence effect—, and on
the effect of punishment on the likelihood that individuals commit additional crimes in the
future—the recidivism effect.17 In this subsection, we define each of these effects theoret-
ically and illustrate their roles at different margins of public security policy. In addition,
we argue that none of these effects can explain variations in crime due to the dilution of
police resources when there is a larger number of active criminals. We define this new effect
theoretically and call it the load effect.

Appendix E presents the theoretical definition of each of the four effects listed in the
previous paragraph. Two points on these definitions deserve attention. First, to calculate
the variation in crime, we look at the stationary states before and after a given policy change.
Second, when comparing two different sets of policies, we calculate the role of a given effect
by integrating the marginal changes through a path linking the initial policy to the new
policy. This procedure is adequate if each policy leads to exactly one stationary equilibrium.

We illustrate the idea behind the definitions of the four effects using changes in police
expenditures k (analogous arguments hold for small changes in sentence length). Following
a small increase in k, the crime rate under the new equilibrium is a result of the combination
of: (i) new beliefs of potential criminals about the number of police officers, holding con-
stant their previous effectiveness (the deterrence effect); (ii) a different number of potential
criminals incarcerated (the incapacitation effect); (iii) a new profile of productivity in the
legal labor market among potential criminals due to the changed incarceration rate (the re-
cidivism effect); and (iv) a different effectiveness of each police officer in catching criminals,
given the equilibrium change in the number of active criminals (the load effect).

We explain intuitively how the model can be used to identify these four effects. For further
details and a more precise discussion, refer to Appendix E. For the sake of exposition, assume
for a moment that there is no load effect.18 Consider a small change in policy from k to
k + ✏, when ✏ is small and, to simplify, positive. This change induces small variations in the
cutoff productivities, the mechanics of apprehension, and the productivity profile.

The deterrence effect refers to how criminals’ beliefs about the policy affect participation
decisions, which are captured in the model by the cutoff productivities. Hence, to measure

17We call it recidivism because incarceration depreciates productivity, increasing the likelihood of future
criminal participation. In a context where incarceration increased human capital, it could be called rehabil-
itation effect.

18This implies that the probability of detecting a crime is 1� ⇣̃e�⇣1k for some constant ⇣̃ and any level of
police expenditures k.
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deterrence in the model, we calculate the mass of free agents between the new and the old
cutoff productivities under the old productivity profile. To find the corresponding variation
in crime, we multiply this mass by the expected number of crimes each agent commits.
Notice that we consider the old productivity profile to evaluate deterrence, even though the
productivity distribution changes under the new policy. But since ✏ is small, the (small)
change in productivity in the (small) group of individuals between the new and old cutoff
productivities is a second-order change and has a negligible impact when evaluating the
deterrence effect. A similar consideration can be made regarding the variation in the mass of
free agents among this group of individuals. To evaluate the recidivism effect, we calculate
the difference in the mass of individuals below the productivity cutoffs and multiply it by
the expected number of crimes agents commit in a period (recall that the productivity
distribution changes under the new policy).

To calculate the incapacitation effect, note first that increasing the police size affects
incapacitation both intratemporally and intertemporally: it reduces the number of crimes a
criminal commits before being caught; and it stops incarcerated individuals with low pro-
ductivity from committing further crimes in future periods. Keeping fixed the productivity
distribution and cutoff productivities (which capture the deterrence and recidivism effects),
it is straightforward to calculate these two terms.

Following, we discuss the new load effect. This effect arises from the fact that an increase
in crime rates reduces police effectiveness, which in turn affects crime. To calculate this
effect, we first obtain the crime level under the new policy. The new crime rate increases
the probability of detection to, say, pload. Then, looking at the old economy and ignoring
equilibrium effects (since they are of second order and we are considering small variations in
k), we calculate the crime rate that a detection probability p

load would generate.
We decompose numerically the effect of changes in k into its four underlying components

according to the logic outlined above. Figure 5 presents the results. The figure shows the
marginal deterrence, incapacitation, recidivism, and load effects on crime rates. Negative
values indicate marginal reductions in crime.

The signs of most marginal effects are as expected, indicating reductions in crime coming
from the four different channels. For lower values of k, though, the marginal recidivism effect
is positive. On the one hand, increasing k results in more arrested criminals among those not
deterred by the higher k, which translates into lower future earnings for this group, pushing
more agents under the productivity cut off. On the other hand, agents who were deterred
do not suffer anymore the productivity losses from incarceration, which pushes more agents
above the productivity cut off. The first effect dominates for lower value of k, since the
probability of apprehension is extremely low, leading to a negative recidivism effect.

Overall, the marginal effects become smaller in magnitude as k increases and the marginal
efficacy of police expenditures is reduced. The deterrence and load marginal effects, in
particular, tend to be the strongest when starting from very low apprehension probabilities
(low value of k), but become virtually null for a high enough k. When the size of the
police force is sufficiently large, and the associated crime rate low, there is little impact on
police effectiveness from changes in crime. Combined with the distribution of productivity
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in society, this can also eventually lead to a margin over which potential criminals do not
respond much to small changes in the probability of apprehension. Or, in other words, from
this point on there are few marginal criminals, so deterrence is low and all that remains is
the incapacitation effect.
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Figure 5: Marginal effect decomposition of the crime rate in k.

The previous discussion also highlights a point that is somewhat obvious theoretically,
but that is worth mentioning explicitly. In reality, when considering specific policy changes,
none of the classic effects ever exists in isolation. In equilibrium, any policy change that
affects crime rates inevitably carries all the different components at the same time, though
with different weights depending on the policy margin in question.

4.3 Schooling as an Instrument for Crime Control

A large academic literature in economics points to the role of education and social poli-
cies as protective factors against criminal involvement (e.g., see Lochner 2004, 2007, Foley
2011). Similarly, in the public debate, it is often argued that reallocating part of the public
security budged to schooling and social protection would be a more effective and humane
way to control crime. Nevertheless, once again, without an equilibrium framework capa-
ble of bringing together these different dimensions, it is impossible to analyze the potential
trade-offs present in alternative policy choices.

In this subsection, we analyze the potential welfare gains from incorporating schooling
as an additional dimension of policy and allowing part of the original 2004 public security
budget to be reallocated to it. For simplicity, we assume that the direct effects of additional
investments in education can be fully characterized by two sufficient statistics: the average
internal rate of return and the degree of focalization. These two parameters determine the
net increase in aggregate income from investments in schooling and the degree to which
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this increase is concentrated on the bottom of the productivity distribution (or spread more
evenly across productivity levels).

We assume that educational policies generate parallel shifts in the lifecycle earnings profile
in all ages. Consider an individual with productivity w at age 0 (i.e., 18 years old in the
data). We assume that additional investments in education increase productivity at age 0
to w(1 + ⌘e

� w), where  > 0 is a free parameter and ⌘ > 0 is a constant to be obtained
from the data (as a function of  and the internal rate of return). This functional form has
the convenient feature of making the relative productivity gain of less productive individuals
always weakly larger than that of more productive individuals. In particular, the relative
productivity gain for the least productive individuals is approximately ⌘. The parameter  
captures the degree of focalization: how concentrated on the less productive individuals the
benefits of the policy are (possibly due either to political or technological reasons). We call
 the focalization of the educational policy. When focalization is high, individuals at the
bottom of the distribution of productivity benefit more from investment in education. In the
extreme case of  = 0, the relative productivity gain of all agents is the same, while when  
tends to infinity gains become increasingly concentrated on the least productive individual.

Regarding the average internal rate of return (IRR), we consider two alternative scenarios.
The first one assumes an internal rate of return equal to zero, meaning that education works
simply as a cash transfer to individuals, mimicking a social protection program. The second
one assumes an internal rate of return of 15%, roughly the midpoint among the estimates
presented in Heckman et al. (2008). We calibrate the parameter ⌘ in the function above to
match these two internal rates of return.

More specifically, let e be the additional investment in education at each period and r

the internal rate of return. In other words, in the stationary state, investing e in education
increases aggregate productivity by (1 + r)e. Given a focalization  , the parameter ⌘ is
pinned down by this aggregate productivity gain (1+ r)e. Appendix F explains in detail the
calculations and specific assumptions needed for us to numerically arrive at this number.

With  , r, and the ⌘ determined implicitly from them in hand, we can simulate the
aggregate effect of any increase in educational expenditures e. Our quantitative exercises in
this section consider the triplet (k,�, e), with a non-negative e, as the policy space, rather
than simply the pair (k,�). In Subsection 4.1, we calculated the welfare gain from moving
the 2004 policy from (k2004,�2004, 0) to the social optimum (k?,�?, 0). We now ask, for
given  and r, what the additional welfare gain would be from moving from (k2004,�2004, 0)
to (k??,�??, e??), a new social optimum that allows for additional educational expenditures
e
??. This new policy (k??,�??, e??) is subject to the constraints that (k??,�??) must cost less

than (k2004,�2004) and that e
?? must be financed entirely by the difference between these

public security costs. When considering a positive internal rate of return from investments
in education, we compute the additional welfare gain ignoring the direct effect of increased
productivity on welfare through increased consumption (we consider only its indirect effect
on the welfare cost of crime).

Additional investments in education can reduce crime directly by improving the earning
profiles of individuals and therefore increasing the opportunity cost of crime. The extent to
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which this mechanism is strong enough to significantly reduce crime depends on whether the
benefits are concentrated on marginal agents, those who are close to indifference regarding
criminal involvement. Further welfare gains from investments in education can, in principle,
be also obtained from adjustments in the public security policy (k,�), given the reduction in
the criminogenic potential of the population. Notice that, in this setting, it might be possible
to generate welfare gains from investments in education e, while at the same time reducing
public security expenditures in (k,�), without actually changing the public security policy
pair (k,�). This could happen because the additional investment in education can reduce
crime, therefore potentially reducing the number of prisoners and the budget allocated to
prisons even with a constant �.

Relative welfare gain

Focalization of the educational policy ( )

0.0 0.2 0.4 0.6 0.8 1.0

500%

400%

300%

200%

100%

15%-return

0%-return

Figure 6: Relative welfare gain when we compare optimal policies with
possibility of PSP defunding (to fund education) and without this possi-
bility, as in Section 4.1. The dashed curve represents an IRR in education
of 0%, while the solid curve represents an IRR of 15%. We exclude the
direct gains from returns with education.

Figure 6 presents the main results from our exercises for various focalizations levels and
for the two internal rates of return. The figure shows that, even when schooling works
simply as a cash transfer program (IRR = 0) and under very poor focalization, reallocating
some expenditures from public security to schooling can be welfare enhancing. But these
gains are limited, of the order of 23% in terms of the welfare gains from Subsection 4.1
($1.2 billion gain, or 1.92% reduction in the welfare cost of crime, in comparison to the
2004 allocation). With poor focalization, gains are limited even under a 15% internal rate
of return, reaching 35% more than the values calculated before ($1.35 billion gain, or 2.12%
reduction in the welfare cost of crime, in comparison to the 2004 allocation). This is the
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case because educational investments are somewhat ineffective as a crime reducing tool in
this scenario, since expenditures have to be spread over the entire population in order to
generate relatively small increases in the opportunity cost of crime for marginal individuals.
Still, it remains true that some improvement upon the previous optimum is possible.

The main power of education, though, comes from the possibility of focalization. As
educational investments become more concentrated on marginal individuals at the lower
bottom of the productivity distribution, potential welfare gains increase strongly, reaching
close to 300% for the case with IRR = 0% and 460% for IRR = 15%. In comparison to
the 2004 allocation, these correspond to welfare gains of the order of $4 billion and $5.6
billion, respectively, and to reductions in the welfare loss from crime of 6.3% and 8.8%.
These large increases in welfare gains come entirely from improved effectiveness under better
focalization. In this situation, it becomes much cheaper to increase the opportunity cost
of crime for the marginal individuals, therefore maximizing the crime reducing impact of a
given increase in educational expenditures. The last part of the curves in Figure 6 are non-
monotonic because, from some point on, the educational policy becomes too concentrated on
infra-marginal individuals at very bottom of the productivity distribution (who participate
in crime anyway), therefore reducing a bit its effectiveness.

To illustrate what is happening to the optimal policy at different levels of focalization
and internal rates of return, Figure 7 plots the change in some key variables at the optimal
policy (compared to the optimal policy from Subsection 4.1). First, in order to fully char-
acterize the educational policy, Panel (a) plots the relative productivity gain of the least
productive individual under the different scenarios. Panel (b) shows that more focalized
educational policies are associated with substantial reductions in the optimal crime rate.
These reductions tend to be also higher, for most part, under higher internal rates of return.
Panel (c), in turn, documents that reductions in public security expenditures under the new
optimum are, not surprisingly, increasing in focalization and in the internal rate of return.
Panel (d) shows that these changes are associated with major reductions in the probability
that individuals go through the penal system at some point in their lives, particularly so for
the case with IRR = 15%, reaching above 20% for the highest levels of focalization.

Increased educational investments in this economy, when combined with adequate focal-
ization, greatly increase the opportunity cost of marginal individuals. This reduces the pool
of both active and potential criminals (around the relevant cut-offs), reducing crime rates.
Panel (e) in Figure 7 shows that this leads to major reductions in the optimal expenditures
in police, an important source of the additional welfare gain obtained in this setting. Never-
theless, as  and r increase, only very inelastic (infra-marginal) individuals remain engaged
in crime—dishonest agents with very low productivity—, so the new optimum predicts a
non-trivial increase in average sentence lengths (Panel (f)). This is the case because these
individuals are likely to continue committing crimes in the near future and, at the same
time, have low social cost of punishment (given their low productivity levels).

In short, this section lends support to the view that, by combining public security and
educational policies in a smart way, it may be possible to reduce crime rates and the welfare
costs of crime while at the same time reducing the size of police forces and punishing a smaller
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Figure 7: Relative changes in selected variables when we compare optimal policies with possibility of PSP
defunding (to fund education) and without this possibility, as in Section 4.1. The dashed curves represent
an IRR in education of 0%, while the solid curve represents an IRR of 15%. We exclude the direct gains
from returns with education.
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number of individuals. The potential benefits from such combination of policies depend to
a great extent on the rate of return to investments in education and on the focalization of
the educational policy. If educational investments have large returns and can be focalized
on marginal individuals, potential welfare gains are large. Still, even under the best-case
scenario, the new optimum displays longer average sentences, given that individuals who
remain active criminals are very inelastic and have low productivities.

5 Conclusion
This paper proposes a framework that can be used to perform a comprehensive analysis

of the welfare impact of public security policies. We rely on a life-cycle equilibrium model
to capture the various non-trivial responses and dynamic implications of crime policies. We
estimate the model using 2004 US data and solve numerically for the socially optimal policy,
considering different welfare metrics and political constraints.

A key novelty of our model is the way we deal with the police production function.
Whereas previous papers in the literature have used ad hoc functional forms, we give micro-
foundations to a functional representation of the apprehension probability. The resulting
function possesses all the properties deemed important by the crime literature.

In addition, our estimation strategy establishes a close link between the theory and the
empirical evidence from natural experiments. The parameters in our apprehension tech-
nology are directly identified from the causal estimates of the effect of police and prison
population on crime available from this literature.

Though our main focus is methodological, our quantitative results also provide some in-
sight. They suggest that the 2004 expenditures on police in the US were too high and crime
rates were too low. Saving on police expenditures, even with some increase in crime, could
therefore lead to increases in social welfare. However, the estimated model suggests that
the 2004 allocation came close to attaining another objective: minimizing the crime rate
subject to the 2004 public security budget. These different results signal to the inescapable
importance of a normative discussion on the social objective of criminal justice systems.
Our model is flexible enough to incorporate any welfare dimension considered relevant in
the evaluation of public security policies. We therefore see our quantitative exercises more
as illustrations of the possible uses of our framework, rather than as definitive policy recom-
mendations. Subjective considerations of fairness, for example, do not appear in any of the
exercises developed in the paper, but still may be relevant in designing an optimal public
security system.

The estimated model is also used to shed light on the potential role of schooling as
a crime reducing policy. We show that, when educational investments have high returns
and can be targeted to individuals at the margin of engaging in crime, welfare gains can
be substantial. In these situations, shifting resources from public security to educational
investments can lead to reductions in crime together with reductions in police expenditures
and in the probability of lifetime incarceration.

Some limitations of our analysis suggest potential avenues for further research. First,
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due to data challenges, we restrict our estimation to property crimes. Including other types
of crime could capture substitution effect across alternative crimes. Second, individual-
level georeferenced data could be used to push forward the understanding of the micro-
founded police production function proposed here. Third, other components of human capital
could be incorporated in the model, such as productivity gains in the criminal sector and
the possibility of public expenditures targeted at reducing recidivism. Finally, it would be
interesting to incorporate an explicit model of the functioning of the justice system and
the sentencing process, particularly regarding the possibility of wrongful convictions and
the effect of the celerity of punishment. These are important topics that we hope will be
addressed in future contributions to the literature.
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Appendix

A Apprehension Probability
In this Appendix, we discuss in detail the derivation of Equation (1), which represents

our police production function. In order to simplify the calculations, we set the region R to
be rectangular, with area S(R), and ignore border effects.19

Criminals can commit crimes at each point in R and they seek to minimize the probability
of apprehension. By assumption, the number of patrolling units is distributed as a Poisson
with parameter ⌦ = ⇠k

patrol and, conditional on the number of patrolling units, each unit is
independently and identically distributed with a continuous distribution D over R, where D

is chosen by the police command in order to maximize the number of apprehensions. The
game is played simultaneously. According to Stoyan et al. (1987), the stochastic process
of deployment of points is a Poisson point process with intensity function ! : R ! R+,
x 7! D(x)⌦. We call this process �D.

If a crime is committed at an arbitrary position x 2 R, the probability ⇡(x;D) of detecting
this crime is equal to the probability of having at least one police unit in the set B(x) =
{y 2 R2 s.t. kx� yk  r

p}. Thus we have that

⇡(x;D) = 1� E
⇣ Y

y2�D

(1� q)1y2B(x)

⌘
,

and using the generatrix functional property of �D we obtain20

⇡(x;D) = 1� e
�

R
B(x) q!(y)dy.

Since each criminal wants to minimize the probability of being caught, all crimes are com-
mitted in the set argminx2R{⇡(x;D)}.

The police command’s problem is then to choose D such that

argmax
D2C0

�
min
x2R

{⇡(x;D)}|
R
R D(y)dy = 1

 
,

19There are several ways to eliminate border effects. We choose to identify the four corners of R to the
same point. This means that the city is a flat torus. Roughly, an agent in the easternmost border of the
city is close to the westernmost border. This might cause a distortion since part of the patrolling region of a
patrol in the east of the city might fall on the west. This distortion is negligible as long as the relationship
between the patrolling radius rp and the smallest dimension of R is small.

20The generatrix functional property of a Poisson point process states that, for a measurable function
u : R ! R, E

⇣Q
y2�D

u(x)
⌘
= e�

R
(1�u(x))!(dy).

44



which is equivalent to21

argmax
D2C0

�
min
x2R

{
R

B(x) D(y)dy}
 

s.t.
R
R D(y)dy = 1.

Because D is continuous and
R
R D(y)dy = 1, any point x 2 R with

R
B(x) D(y)dy > 1/S(R)

implies the existence of a point x
0 2 R such that

R
B(x0) D(y)dy > 1/S(R). Thus, the unique

solution to this problem is D
? = 1/S(R) and we can write the apprehension probability as

1� e
�⇠kpatrol R

B(x)
1

S(R)dy = 1� e
�⇣1kpatrol

,

where ⇣1 = q⇠
⇡rp2

S(R) · Given the distribution D
?, criminals are indifferent regarding where to

commit crimes. Thus, the only Nash equilibrium occurs when crime is uniformly distributed
over R and the social planner chooses the distribution D

?. Any other strategy profile is ruled
out as a Nash equilibrium by contradiction.

So far, we have expressed the apprehension probability as a function of kpatrol. We rewrite
this relationship to express it as a function of the crime rate v and total police expenditures
k. By assumption, the cost of each apprehension is ⇣0 and the total number of apprehensions
given v and k is vp(v, k), so total police expenditures are given by k = k

patrol + ⇣0vp(v, k).
This means that we can write the apprehension probability implicitly as a function of k and
v as

p(v, k) = 1� e
�⇣1(k�⇣0vp(v,k)) = 1� e

�⇣1k+⇣2vp(v,k),

where ⇣2 = ⇣0⇣1. Solving this functional equation, we obtain for all v, k � 0

p(v, k) =

(
1� WL(⇣2ve�⇣1k+⇣2v)

⇣2v
if v > 0

1� e
�⇣1k if v = 0.

We show that p respects several interesting properties that we expect from an appre-
hension probability function. Since WL is continuous and differentiable, p is continuous for
k � 0 and v > 0 and differentiable in k, v > 0. The implicit function of p guarantees the
continuity also at v = 0. Differentiating implicitly p(v, k) = 1�e

�⇣1k+⇣2vp(v,k) with respect to
k and v shows that p is strictly increasing in k, strictly concave in k and strictly decreasing
in v. Differentiating implicitly the number of apprehensions a(v, k) = v�ve

�⇣1k+⇣2a(v,k) with
respect to k and v shows that a is strictly increasing in k and v. Using the implicit function
of p, we can show that: (i) p(v, k) ! 1 when k ! 1; (ii) p(v, k) ! 0 when k ! 0; and (iii)
p(v, k) ! 0 when v ! 1.

21To see why, notice that

max
D2C0

�
min
x2R

{1� e�⌦
R

B(x) D(y)dy}|
R
R D(y)dy = 1

 
= max

D2C0

�
1� e

�⌦min
x2R

{
R

B(x) D(y)dy}
|
R
R D(y)dy = 1

 

= 1� e
�⌦ max

D2C0
{min
x2R

{
R

B(x) D(y)dy}|
R
R D(y)dy=1}

.

45



B Equilibrium Existence and Computation
We show that our economy yields an equilibrium and outline the procedure used to

compute it. Corollary B.1 refers to condition (iii) of the equilibrium definition presented
in the text. Corollary B.2 incorporates conditions (i) and (ii). Conditions (i), (ii), and
(iii) together allow us to calculate all stationary state variables of this economy for any
given belief regarding the crime rate v. The restriction imposed by condition (iv) pins
down the equilibrium crime rate v

?. The existence of this equilibrium crime rate is shown
in Proposition B.3. In the particular case of linear utilities and non-distortionary taxation,
condition (v) does not have any impact on the individual or aggregate behavior and is simply
an accounting identity, respected by setting f accordingly—condition (v) only matters to
compute the welfare loss.

For a given belief v, we define

⇧t(v) :=
(z(1� p(v, k))� d

C
t )(1� e

�p(v,k)⌫)

p(v, k)

and p(v) := (1 � e
�p(v,k)⌫)(1 � µ). We also denote V

F
t (w; v) and V

P
t (w; v) as the value

functions of, respectively, free and incarcerated individuals with productivity w, at age t, as
a function of v.

Corollary B.1. There exists a sequence of cut-off productivities w
?
t (v) satisfying condition

(iv) of the equilibrium, such that an agent at age t engages in criminal activities if, and only
if, his productivity is below w

?
t (v). Moreover, there are recursive expressions for V

F
t (w; v),

V
P
t (w; v) and w

?
t (v).

Proof. First, we note that V
F
t (·; v) and V

P
t (·; v) are strictly increasing. We find each w

?
t (v)

by backward induction. At age T we have

V
F
T (w; v) = w � f + �↵(�Tw � f) + max{⇧T (v), 0}.

Therefore, w?
T (v) = �1 if ⇧T (v) > 0 and w

?
T (v) = +1 otherwise. In addition, V P

T (w; v) =
b � f + �↵(✓w � f). As a second step, we use the (backward) induction principle to prove
that V

F
t (·; v) and V

P
t (·; v) respect the following set PV of properties: they are continuous,

convex, non-differentiable at a finite number of points, and linear by parts. In addition, we
show they respect the property PD that V

F
t (·; v)� V

P
t (·; v) is strictly increasing.

Since V F
T (·; v) and V

P
T (·; v) are linear with V

F
T

0
(·; v) = 1+�↵�T and V

P
T

0
(·; v) = �↵✓, they

respect PV and PD. Suppose V
F
t+1(·; v) and V

P
t+1(·; v) also respect PV and PD for t  T � 1.

It is trivial to see that PV also holds for V P
t (·; v). To show the same for V F

t (·; v), it suffices to
observe that if H respects PV while being increasing and non-differentiable at NND points,
then max{0, H(·)} also respects PV , is non-differentiable at, at most, NND + 1 points, and
is linear by parts.

It remains to prove that PD holds. Let V
F
t

0
(·; v) and V

P
t

0
(·; v) be the derivatives of,

respectively, V
F
t (·; v) and V

P
t (·; v) at all differentiable points. The convexity of V

P
t (·; v)
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implies that dV P
t (w; v)/dw  dV P

t (�tw/✓; v)/dw for each w (recall that �t/✓ > 1), so

d(V F
t (w; v)� V

P
t (w; v))

dw
� d(V F

t (w; v)� V
P
t (�tw/✓; v))

dw
·

If we prove that the right-hand side term is positive, we prove PD at age t. Using equations 2
and 3, and since d(V F

t+1(�tw; v)� V
P
t+1(�tw; v))/dw > 0 (due to PD at age t+ 1), we obtain

d(V F
t (w; v)� V

P
t (�tw/✓; v))

dw
� 1 + �(1� p(v)� µ)

d(V F
t+1(�tw; v)� V

P
t+1(�tw; v))

dw
·

Recalling that p(v) = (1� µ)(1� e
�⌫p(v,k)), we have

1� p(v)� µ = (1� µ)e�⌫p(v,k) > 0,

which proves that V F
t (·; v)�V

P
t (·; v) is strictly increasing wherever it is differentiable. Since

V
F
t (·; v) and V

P
t (·; v) are continuous and non-differentiable only at a finite number of points,

it follows straightforward that PD holds at age t, concluding the induction.
We just proved that V F

t (·; v)� V
P
t (·; v) is continuous, strictly decreasing and (since it is

linear by parts) ranges from �1 to +1. From Equation 2, since ⇧t(v) is constant, there
exists w

?
t (v) such that V F

t+1(w
?
t (v); v)� V

P
t+1(w

?
t (v); v) = ⇧t(v).

Once we have w
?
t (v), the expressions for V

P
t (w; v) and V

F
t (w; v) for each w are

V
F
t (w; v) =

(
w � f + �V

F
t+1(�tw; v), if w � w

?
t (v),

w � f + ⇧t + (1� p(v))�V F
t+1(�tw; v) + p(v)V P

t+1(�tw; v), if w < w
?
t (v),

and
V

P
t (w; v) = b� f + (1� µ)�V P

t+1(✓w; v) + µ�V
F
t+1(✓w; v).

This completes the proof.

Since we know the behavior of the agents as a function of v, how productivity evolve as a
function of their state, and the initial distribution of productivity, we can find the measure
of productivity at all ages. Suppose that we know the measure of agents that are free and
the measure of agents that are incarcerated at age t� 1. The general principle to obtain the
measure of agents with productivity w in cohort t is to find the measure of agents at age
t� 1 that ends up with productivity w at age t and add these measures (adjusting properly
the measures by the Jacobian of the productivity changes). Since we have the measure of
productivity for cohort 0, we can use induction to find the measure of productivity for each
cohort.

To formalize this idea, we introduce the following variables and functions. For a given
crime rate and for each s 2 {Ẽ, E, P}, let m

s
t(w; v) be the measure of agents at age t with

productivity w in state s.22 Then, denote M
s
t (w; v) :=

R w

0 m
s
t(w

0; v)dw0, where M
s
t (1; v) :=

N
s
t (v) (so N

E
t (v) is the mass of agents at age t engaging in criminal activities and N

P
t (v) is

22Notice that, if an equilibrium exists with crime rate v?, ms
t (w; v

?) = ms
t (w).
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the mass of prisoners at age t). Let also vt(v) be the number of crimes committed by agents
at age t. Recall that agents at age 0 are free, so M

Ẽ
0 (·; v) +M

E
0 (·; v) = M0G0, MP

0 (·; v) = 0,
and we can obtain w

?
0(v) by Corollary B.1.

Corollary B.2. For a given crime rate belief v and 2 < t < T + 1, we can obtain recur-
sive expressions for m

F
t (·; v), m

P
t (·; v) and vt(v) as functions of m

F
t�1(·; v) and m

P
t�1(·; v),

satisfying conditions (i) and (iii) of the equilibrium.

Proof. We use induction. For age 0, recall that agents are free when they enter the economy,
so N

P
0 (v) = 0, NE

0 (v) = M0G0(w?
0(v)) and

v0(v) =
(1� e

�⌫p(v,k))

p(v, k)
N

E
0 (v) =

p(v)

(1� µ)p(v, k)
N

E
0 (v).

Besides, we have, for all w, mP
0 (w; v) = 0, mE

0 (w; v) = M0g0(w)1[ww?
0(v)]

, and m
Ẽ
0 (w; v) =

M0g0(w)1[w>w?
0(v)]

, and the mass of new incarcerated agents at age 1 is (1 � e
�⌫p(v,k))(1 �

µ)NE
0 (v).
Consider now the measures for age t and assume we know them for t � 1. There are

two possibilities allowing an individual to be in prison at age t with productivity w. The
first one is that, at age t � 1, he/she was free with productivity w/�t�1, engaged in crime,
and was then apprehended and incarcerated. The second one is that, at age t � 1, he/she
was in prison with productivity w/✓ and was not released between ages t� 1 and t. Since a
proportion (1 � µ) of agents at age t � 1 remains in prison at age t, and a proportion p(v)
of agents engaged in crime at age t� 1 become prisoners at age t, we have that

m
P
t (w; v) =

✓
p(v)

m
E
t�1(w/�t�1; v)

�t�1
+ (1� µ)

m
P
t�1(w/✓; v)

✓

◆
·

We calculate mE
t (w; v)+m

Ẽ
t (w; v) in a similar way. The following groups of agents at age

t� 1 start period t with productivity w: all agents not engaged in crime with productivity
w/�t�1; a proportion (1� p(v)) of agents engaged in crime with productivity w/�t�1; and a
proportion µ of agents in prison with productivity w/✓. So

m
E
t (w; v)+m

Ẽ
t (w; v) =

⇣(1� p(v))mE
t�1(w/�t�1; v) +m

Ẽ
t�1(w/�t�1; v)

�t�1
+µ

m
P
t�1(w/✓; v)

✓

⌘
.

Then, according to Corollary B.1,

m
E
t (w; v) = (mE

t (w; v)+m
Ẽ
t (w; v))1[w<w?

t (v)] and m
Ẽ
t (w; v) = (mE

t (w; v)+m
Ẽ
t (w; v))1[w�w?

t (v)].

In addition, notice that, by assumption, mE
T+1(w; v) = m

P
T+1(w; v) = 0, and

m
Ẽ
T+1(w; v) = ↵

 
m

E
T (w/�T ; v) +m

Ẽ
T (w/�T ; v)

�T
+

m
P
T (w/✓; v)

✓

!
.
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From these differential relations, we obtain the integral ones. The total number of pris-
oners at age t is N

P
t (v) =

R1
0 m

P
t (w; v)dw and the total number of agents engaged in crime

at this age is N
E
t (v) =

R1
0 m

E
t (w; v)dw. The total number of crimes committed by agents

at age t is then given by

vt(v) =
p(v)

(1� µ)p(v, k)
N

E
t (v)

and the total number of apprehensions is p(v)NE
t (v). The total number of crimes is

PT
t=0 vt(v).

Using the previous results, regularity conditions and the Intermediate Value Theorem, we
can show the existence of a stationary equilibrium. We highlight this result in the following
theorem.

Proposition B.3. There exists a rational expectations stationary equilibrium in the econ-
omy.

Proof. We have 0 
PT

t=0 vt(v)  M , where M is the crime rate when the apprehension
probability is 0, i.e., all dishonest agents engage in crime. If each vt is continuous, thenPT

t=0 vt(·) is continuous and, thus, has a compact image (in [0,M ]), so we can use the
Intermediate Value Theorem to show that there is at least one fixed point.

It remains to show that vt(·) is continuous for each t. First, by the Implicit Function
Theorem, the function w

?
t (·) is continuous and differentiable. Using induction on the recur-

sive relation of ms
t(w; v), we can see that ms

t(w; ·) is differentiable for each s and t. This, in
turn, implies that N

s
t (·) is continuous for each s and t. The continuity of NE

t (·), p(·) and
p(·, k) leads to a continuous vt(·) for each t.
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C Expression for L
work

This Appendix explains how we arrive at the expression for Lwork. This loss is defined as
the difference between a counterfactual aggregate productivity of free dishonest agents and
their actual aggregate productivity. Agents in the counterfactual scenario use the decision
rule of agents in the actual equilibrium, but do not suffer productivity depreciation due
to incarceration. We can calculate the counterfactual distributions until age T , defined as
ṁ

P
t (w), ṁE

t (w), and ṁ
Ẽ
t (w), in the same way we have obtained m

P
t (w), mE

t (w), and m
Ẽ
t (w)

in Appendix B. So, for all w � 0, ṁP
0 (w) = 0, ṁE

0 (w) = M0g01[w<w⇤
0 ]
, ṁẼ

0 (w) = M0g01[w�w⇤
0 ]
,

ṁ
P
t (w) =

1

�t�1

�
pṁ

E
t�1(w/�t�1) + (1� µ)ṁP

t�1(w/�t�1)
�
,

and

ṁ
E
t (w) + ṁ

Ẽ
t (w) =

1

�t�1

⇣
(1� p)ṁE

t�1(w/�t�1) + ṁ
Ẽ
t�1(w/�t�1) + µṁ

P
t�1(w/�t�1)

⌘
.

Besides, ṁ
E
t (w) = (ṁE

t (w) + ṁ
Ẽ
t (w))1[ww⇤

t ] and ṁ
Ẽ
t (w) = (ṁE

t (w) + ṁ
Ẽ
t (w))1[w>w⇤

t ] for
t  T . We also have ṁ

E
T+1(w; v) = ṁ

P
T+1(w; v) = 0, and

ṁ
Ẽ
T+1(w) =

↵

�T

⇣
ṁ

E
T (w/�T ) + ṁ

Ẽ
T (w/�T ) + µṁ

P
T (w/�T )

⌘
.

Thus

L
work =

T+1X

t=0

 Z 1

0

w(ṁẼ
t (w) + ṁ

E
t (w)� (mẼ

t (w) +m
E
t (w)))dw

!
.
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D Estimation
This Appendix explains the technical details related to various estimation procedures

mentioned in the main text.

D.1 Pre-GMM Stage

The pre-GMM stage maps each parameter with a statistics from a dataset or some
estimate obtained from the literature.

Population of each cohort

We use the 2000 US Census, the decennial census that is closest to 2004. According to
this census, the 2000 US population between ages 18 and 65 corresponded to 176.1 million
people. Since we assume a constant cohort size, the population in each cohort is 3.67 million
people.

Productivity gain

The CPS sample used to estimate the age-specific productivity gain for each year in
freedom is taken from the 2004 CPS March Supplement. We run a regression of the logarithm
of the reported weekly income on years of education, age minus 18, the square of age minus
18, race, and gender. We exclude individuals with missing information on any of these
four characteristics, individuals under 18 years-old and over 65 years-old. We assume that
prison population is small compared to the total population, so that the depreciation for
having served prison does not significantly impact the aggregate estimates obtained from
this regression. In addition, we assume that the productivity gain of dishonest agents when
they spend one year in freedom is, on average, the same as the one of an honest agent at the
same age.

We find a coefficient for age minus 18 �age := 0.0687 and a coefficient for squared age
minus 18 �age2 := �0.00121. The average productivity gain �t is such that

dln �t = \ln(wt+1

wt
) = �age(t+ 1) + �age2(t+ 1)2 � (�aget+ �age2t

2) = �age + 2�age2t+ �age2 ,

Therefore
b�t = exp(�age + 2�age2t+ �age2).

The initial productivity distribution

To calculate the distribution of productivity of 18 year-old agents, we use the monthly
CPS from January 2003 to December 2005. We pool the datasets using the combination
of individual-time as the unit of observation, in order to increase sample size. Then, we
consider the log of yearly income in hundreds of dollars (52/100 times the reported weekly
earnings), restricting the sample to agents aged 18 that report positive weekly earnings. We
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assume that the productivity distribution is log-normal with parameters µw (the expected
value of the log of income) and �w (the standard deviation of the log of income). Then, we
estimate the two log-normal parameters by maximum likelihood, considering the weight of
each observation. We find bµw = 4.453 and b�w = 0.7169.

Multiplier ↵ defining the continuation value at age T + 1

We assume that the income of each agent remains constant after age T and that an agent
with income w at age T + 1 has a continuation value of ↵w. To estimate the multiplier ↵,
we use the US 2004 life tables from the National Vital Statistics System. Note that

↵ =
1X

t=0

�
t Pr(dying age > t+ T + 1|alive at T + 1).

The life tables give us P
`
x := Pr(dying at age x + 1|alive at age x). After a straightforward

calculation, it follows that

Pr(dying age > t+ T + 1|alive at T + 1) =
T+tY

⌧=T+1

(1� P
`
⌧ ).

Using this probability and the discount factor, we obtain our estimate for the multiplier
b↵ = 11.38.

Total number and distribution of prisoners by type of crime

Prisoners in the US can be in State prisons, Federal prisons, or jails. In particular,
prisoners in jails may be waiting for trial or already convicted (in this case, usually serving
a short sentence). We start with the count of prisoners in jails in 2004. The BJS reports, in
“Prison and Jail inmates at Midyear 2005,” that there were 713,900 prisoners in jails in 2004,
from which 39.7% (283,418) were convicted whereas the remainder (430,481) were awaiting
trial.

We complement this information with the BJS Special Report “Profile of Jail inmates,
2002.” This report presents the proportion of prisoners in jails by type of offense (conditional
on the status of being convicted or not convicted). We assume that these proportions,
presented in Table A1, were the same in 2004.

Using the number of convicted and non-convicted prisoners in jails in 2004 and the
proportions from Table A1, we obtain the number of prisoners in jails in 2004 by type of
offense and conviction status. The number of prisoners in State and Federal prisons is taken
from the BJS Bulletin “Prisoners in 2006.” Table A2 presents these numbers.

Assuming that the number of prisoners for larcenies of values lower than 50 dollars is
negligible and that pconv is the proportion of non-convicted prisoners that ended up convicted,
the estimated number of convicted prisoners in 2004 is 453900 + 96500pconv. According
to Dobbie et al. (2018), 57.8% of detained defendants are found guilty, so we use this value
as our estimate for pconv. This implies that our estimated number of prisoners that were or
would eventually be convicted in 2004 is 509, 700.
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Convicted (%) Unconvicted (%)

Burglary 6.4 6.8
Larceny 7.6 5.3
Motor Theft 2.0 1.6
Robbery 3.9 8.7

Table A1: The first column shows the proportion of prisoners in
jail convicted, by type of crime, with respect to the total number
of convicted prisoners in jails. The second column is the analo-
gous for prisoners awaiting trial in jails.

Most serious offense Type of incarceration

Jail convicted Jail unconvicted State prison Federal prison

Burglary 18100 29300 135700 500
Larceny 21500 22800 50400 0
Motor Theft 5700 6900 22300 0
Robbery 11100 37500 178900 9700

All 56400 96500 387300 10200

Table A2: Estimated number of prisoners by type of incarceration and most serious offense.
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Average losses from property crimes

First, we calculate the relative frequency of each type of crime in 2004. To do so, we
use the BJS report “Criminal Victimization, 2004.” This report presents the number of
victimizations by type of crime. Adding up the victimizations in our definition of property
crimes (15.032 million property crimes), we obtain the first column of Table A3.

Then, from Cohen (2000), we take the estimated losses from property crimes in 1993
dollars. Column 2 of Table A3 shows the average property loss as a function of the type of
property crime, while column 3 lists the value of other losses associated with victimization
(including medical care, quality of life, productivity, police/fire services, and social services).
All values in the table are converted into 2004 dollars. The average loss for a property crime
is the sum of the losses for each type of offense weighted by the frequency of the offense.

Type of crime Frequency Losses

(%) Property Other Total

Robbery 3.6 975 9425 10400
Burglary 22.7 1261 559 1820
Motor Theft 6.8 4290 650 4940
Theft 66.9 351 130 481
Average 848 597 1445

Table A3: The first column presents the estimated proportion of each prop-
erty crime with respect to the total estimated number of property crimes.
The second column shows the average property loss as a function of the
type of crime. The third column depicts the average losses not related to
the property. We average the losses, weighting by the frequency of the of-
fense.

Expenditures with public safety

The 2004 Criminal Justice Expenditure and Employment Extract Program (CJEE) pro-
vides data on expenditures with police protection, $88.9 billion, and correction, $62.0 billion.
Since, according to the BJS, the total number of prisoners in this same year was 2,385 million,
our estimate for  is 26, 000 dollars per prisoner.

We also estimate the fraction of the expenditures on police protection devoted to property
crimes, which we call h. To do that, we use data from the Bureau of Justice Statistics (2016)
containing information at the prisoner level for many states. We estimate, from 2004 to
2008, that: (i) the proportion of prisoners sentenced for property crimes was 27.10%; and
(ii) the proportion of admissions of individuals sentenced for property crimes was 26.47%.
For this reason, we set ĥ = 0.27.
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Distribution of sentences

We start with State prisons and then incorporate jail inmates. We do not have data on
release from Federal prisons, but it does not have a significant impact on our estimate since
there are few inmates incarcerated in Federal prisons for property crimes (see Table A2).
We use data from the Bureau of Justice Statistics (2016) that reports the time each prisoner
served upon his release from State prisons (we only have the time interval in which the
sentence was served). We restrict our sample to released prisoners that have some type of
property crime as the most serious offense. In addition, we pool all prisoners from 2004 to
2008. Although the study does not include all State prisons, we assume that the variation
in time served presented in this study, including 35+ States, can be extrapolated to all State
and Federal prisons. The distribution we estimate for prisoners in State and Federal prisons
is shown in Table A4.

Time served Proportion (%)

< 1 year 56.24
1 - 1.9 years 18.77
2 - 4.9 years 16.55
5 - 9.9 years 5.77
� 10 years 2.67

Table A4: Estimated distribution
of the time served by inmates in
State or Federal prisons.

To estimate the distribution of time served for all inmates, we make five assumptions.
First, that time served is exponentially distributed. Second, that prisoners that are convicted
and incarcerated in jails serve at most one year.23 Third, we maintain the assumption that
58.7% of prisoners awaiting trial were eventually convicted. Forth, once prisoner awaiting
trial are convicted, the probability of being sent to a prison equals the proportion of prisoners
held in prisons over the total number of inmates (in State and Federal prisons or in jails).
The fifth assumption is that, once a convicted prisoner is transferred from a jail to a State
or Federal prison, the served time is distributed as in Table A4. Under these assumptions,
we arrive Table A5.

Given that we parameterized the distribution of time served as an exponential and that
we have the distribution for the five time served brackets, we estimate the parameter of the
exponential through a standard maximum likelihood procedure. We find an estimate for
the mean time served b�2004 = 1.482 years (17.78 months), corresponding to a probability of
being released from prison at each year of bµ2004 = 1/(1 + b�2004) = 0.403.

23See the box named “Jail populations” on page 7 of the bulletin “Prison and Jail Inmates at Midyear
2005." According to it, “Inmates sentenced to jail usually have a sentence of 1 year or less.”
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Time served Proportion (%)

< 1 year 63.60
1 - 1.9 years 15.61
2 - 4.9 years 13.76
5 - 9.9 years 4.80
� 10 years 2.22

Table A5: Estimated distribution
of the time served by all inmates.

Productivity depreciation due to incarceration

We take our estimate of the productivity depreciation due to incarceration from Grogger
(1995). The average quarterly income in his sample is given by $1,182 (in 1980s dollars) for
individuals aged between 18 and 25. Grogger’s paper describes the effect of incarceration in
jails and in prisons on the legal incomes with 7 time lags (in the year of the release, one year
after the release, and so on, until six years after the release). The simple average (across
all years after the release) of the loss of legal income for having been in jail is $161. The
equivalent number for prison is $303. The ratio of incarcerated individuals in prisons (State
or Federal) and in jails is 1.973. Thus, the average productivity depreciation is $255, or
21.6% of the sample mean. Since the average time in prison is 1.48 years, this corresponds
to a yearly depreciation rate of 15%. The average gain for free agents between ages 18 and 25
is 6% (this is an approximation, we averaged �̂0, �̂1, up to �̂7), so the average loss exclusively
due to incarceration is 9%, which implies that our estimate for ✓ is b✓ = 0.91.

Proportion of dishonest individuals

We estimate the proportion of dishonest individuals from Sampson and Laub (2003).
They estimate the proportion of individuals committing property crimes as a function of
age. They use self-reported, parental-reported, and teacher-reported data on whether boys
committed crimes (as described in Laub and Sampson 2003). First, we make two assump-
tions: (i) boys committing property crimes face very low costs associated with punishment;
and (ii) the age at which the proportion of boys committing crimes is the largest is an age
at which the subjective cost of committing crimes is 0. These assumptions imply that, at
the peak (in age) of the proportion of individuals committing crimes, all dishonest agents
are engaged in crime. Sampson and Laub (2003) show two peaks, corresponding to 0.31 and
0.21, one for each level of childhood risk. We take the average in the population of boys as
the simple average, 0.26, to obtain the proportion of dishonest males. Our last assumption
is that the ratio between the proportion of dishonest women and men is the same as the
ratio between women and men admitted into prison due to property crimes. This ratio is
given by 0.1254. Therefore, the proportion of dishonest women is 0.0326 and the proportion
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of dishonest individuals in general is approximately (0.26 + 0.0326)/2 ⇡ 15%.

D.2 GMM

For computational reasons, we perform our GMM estimation in two stages. We start by
describing the derivative procedures used in the code.

D.2.1 Derivatives

In our code, we calculate elasticities and derivatives. Since the discretization generates
functions of variables and parameters that are sometimes noisy, we perform linear regressions
to obtain the derivatives. So, when we evaluate the derivative of Z with respect to X, we
estimate via OLS the coefficient �1 of the equation Z = �0 + �1X + error and the derivative
is given by the estimate b�1 of �1. To evaluate a Hessian, the procedure is similar. If Z

is a function of X (the first argument) and Y , we estimate by OLS the coefficients of the
equation Z = �0 + �1X + �2Y + �3X

2 + �4Y
2 + �5XY + error. The Hessian is given by� b�3 b�5

b�5 b�4

�
.

D.2.2 First Stage

In the first stage, we estimate the parameters defining the cost of committing crimes b
C

and c
C , the average number of crime opportunities per year ⌫, the wage-equivalent utility of

incarcerated individuals b, and the probability of being caught after committing a crime p.
To estimate these parameters, we use 19 moments: 15 moments from the age distribution
of prison inflows (proportion of admissions by age group), the total number of crimes, the
value of 90 days of freedom, the proportion of 18-19 year-old individuals committing crimes,
and the number of prisoners. The procedures used to estimate the mean and the variance of
these moments is described as follows.

Number of property crimes

Mean The crime rate is taken from the 2004 NCVS. We consider all property crimes
excluding thefts of less than $50 (14.488 million crimes), plus robberies (0.548 million crimes),
totaling 15.032 million property crimes.

Variance The standard errors of our estimate of the number of crimes come from the
sampling errors discussed in the 2004 NCVS report. The standard deviations are 71,649 for
robbery, 162,722 for burglary, 75,127 for auto-theft and 387,850 for theft. We assume they
are independent, so the variance is given by the sum of the squares of the standard errors,
which corresponds to 187683.71 (thousands of crimes)2.
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Distribution of admissions by age group

Mean We obtain, from the Sourcebook of Criminal Justice Statistics, the number of arrests
as a function of the type of crime and age of the offenders, from 2002 to 2011. For any
specific year, we have information for each age from 18 up to 24 and, after this age, we have
information for five-year brackets (25-29, 30-34, etc.). So, we define age groups corresponding
to one-year intervals until 24 and five-year intervals after 24. For each year from 2002 to 2011,
we calculate the total number of arrests for property crimes (robbery, larceny, burglary, and
auto theft) of individuals at each age group. Next, we calculate the proportion of individuals
that were arrested at each age with respect to all arrests for property crimes for individuals
aged between 18 and 65. We assume that the proportion of arrests by age group corresponds
to the proportion of admissions in prisons/jails by age group.

The moment we use in our GMM to match the proportion of admissions of individuals
by age group is the corresponding arrest shares by age group in 2004.

Variance We assume that the time fluctuations of this proportion capture most of the
variation in this variable, so we calculate the variance of the time series from 2002 to 2011.

Value of freedom

Mean We take our estimate for the value of being free from Abrams and Rohlfs (2007).
They estimate the value of 90 days of freedom in their sample as $1,050 (in 2003 dollars).
Since we estimate that a convicted criminal spends 1.48 years incarcerated, we approximate
the value of not being in prison once as 1.48⇥ 4⇥ $1, 050 = $6, 222.

Variance The variance of this moment also comes from Abrams and Rohlfs (2007). As
with the mean, we multiply the standard error 6.31 hundred dollars by 4⇥ 1.48 to estimate
the standard error of the willingness to pay to avoid being incarcerated. The variance is
therefore given by 1395.4 (hundred dollars)2.

Proportion of 18-19 year-old individuals committing crimes

Mean We use the NLSY97 to estimate the proportion of 18-19 year-old individuals com-
miting crimes. Individuals in this sample are interviewed yearly. In this survey, individuals
self-report whether they committed at least one crime in the interview year.

We exclude instances of individual-year that were missing. Among interviewed individ-
uals, there are also missing values on questions related to whether they committed crimes.
We input 0 (resp. 1) for each missing answer to obtain a lower (resp. upper) bound for the
number of crimes committed. We consider only individuals aged 18 or 19 at the time of the
interview. The weighted averages of the lower and upper bound probabilities of engaging in
crime are 2.645% and 3.353%, respectively. Our estimate for the proportion of individuals
committing crimes is the middle point of the interval [2.645, 3.353], 2.999%.
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Variance We assume this proportion is uniformly distributed between the lower and upper
bounds described above. Therefore, the variance is given by (0.033527072�0.026453212)/12 =
3.5358⇥ 10�5.24

Number of prisoners

Mean We calculate the number of prisoners for property crimes in Section D.1 to be
509,700.

Variance In Section D.1, we estimate that the probability that a detained defendant that
has not been convicted is found guilty is 57.8%. We assume that this probability is indepen-
dent for each inmate awaiting trial, so the distribution of the number of prisoners is binomial
with a variance of 96, 500⇥ 0.578⇥ (1� 0.578) = 23538 prisoners.

Results of the first stage of the GMM

The weight matrix of the GMM is defined as (⌅1)�1, where ⌅1 is the diagonal matrix
with the variances calculated in Section D.2.2, which we assume to be the actual covariance
matrix of the moments (since we do not have data to calculate the covariance between our
moments, we assume they are null). We use the particle swarm optimization with 10,000
points in the space [�1,�0.01]⇥ [0, 10]⇥ [0.01, 0.30]⇥ [5, 20]⇥ [20, 120] (in order, bC , cC , p,
⌫, b) to find the minimum score of the GMM.

To calculate the standard errors of the parameters, we use the covariance matrix. Let b' be
the vector of estimated parameters (bbC ,bcC , bp, b⌫,bb) and mi(b') the prediction of our model for
the i-th moment. To estimate the covariance matrix of the parameters estimated in the first
stage, we have to calculate the Jacobian of m = (m1,m2, . . . ,m19) evaluated at b', defined as
J'(m(b')). To evaluate @jmi(b'), we use the procedure explained in Section D.2.1. For each
parameter 'j, we set X = (0.98b'j, 0.9801b'j, 0.9801b'j, . . . , 1.02b'j) and Y = mi(X). The esti-
mated covariance matrix of our parameters is given by bV 1 = (J'(m(b'))0(⌅1)�1

J'(m(b')))�1.

D.2.3 Second Stage of the GMM

In the second stage of the GMM, we estimate the parameters of the detection technology:
⇣1 and ⇣2. The moments of our GMM are the estimated detection probability bp (point
estimate of 2.30% and standard error of 0.06%). We take the elasticity of property crime
in relation to police size from Levitt (2002) (point estimate of -0.501 and standard error of
0.235). The elasticity of property crime in relation to prison population is taken from Levitt
(1996) (point estimate -0.261, standard error of 0.117).

24The uniform distribution assumption is conservative since it is the distribution with the greatest entropy
when the support of a continuous random variable is a bounded interval.
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Evaluation of the elasticity of property crimes in relation to police size

We estimate the expenditures on police for property crimes as bk = 0.27 ⇥ 88.9$bn =
24$bn. Let X := (.99bk, .991bk, . . . , 1.01bk). For a component of X, say Xi, the model can
evaluate the crime rate, crime(Xi, ⇣1, ⇣2). Given the vector crime(X, ⇣1, ⇣2), we calculate the
OLS estimate for �1(⇣1, ⇣2) in the regression

crime(X, ⇣1, ⇣2) = �0(⇣1, ⇣2) + �1(⇣1, ⇣2)X + error

and associate �1(⇣1, ⇣2) to the derivative of the crime rate on police size. The elasticity is
simply b�1(⇣1, ⇣2)bk/bv, with bv being the number of property crimes predicted by the model
using the parameters estimated in the first stage of the GMM.

Estimation of the elasticity of property crimes in relation to prison population

We calculate an approximation for the variation of the number of crimes after a variation
in the number of prisoners. First, we assume that, if some agents in prison were set free,
most of them would commit crimes. Therefore, the sum of agents engaged in crime and
incarcerated is, at the margin, approximately constant. This means that the derivative of
property crimes on prison population is (approximately) the opposite of the derivative of
property crimes in relation to the number of agents engaged in crime. Second, recall that
our model predicts a crime rate v equal to

v =
(1� e

�⌫p(k,v;⇣1,⇣2))

p(k, v; ⇣1, ⇣2)

X

t=0

N
E
t ,

where p(k, v; ⇣1, ⇣2) is the probability that our model estimates under crime rate v, expen-
ditures in police k, and police parameters (⇣1, ⇣2). Assume that the number of agents that
engage in crime increases by a multiplicative factor (1 + ✏). This increases the crime rate
through two channels. The first-order change is the mechanical increase of the crime rate by
an additive factor of ✏v. The second-order change is the reduction in police effectiveness via
the load effect. The new detection probability p̃(✏) would be

p̃(✏) = p(k, (1 + ✏)v; ⇣1, ⇣2) =
(1�WL(⇣2(1 + ✏)v) exp(�⇣1k + ⇣2(1 + ✏)v))

⇣2(1 + ✏)v
·

Therefore, adding these two factors (effects of equilibrium are negligible for small values of ✏
and, in addition, ⇣2, the main driver for these effects, is small), the crime rate would increase
by approximately

✏v +
X

t=0

N
E
t

(1� e
�⌫p̃(✏))

p̃(✏)
� v.

Then, we make ✏ range from �0.01 to 0.01 with increments of 0.001 and for each ✏ we calculate
the new crime rate. We regress the vector of number of new criminals on the vector of crime
rates and the coefficient of this regression (say b�1(⇣1, ⇣2)) is minus the derivative of crime in
relation to the prison population. The elasticity of the crime rate on prison population is
thus �b�1(⇣1, ⇣2) bNP

/bv.
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Results of the second stage of the GMM

Let ⌅2 be the diagonal matrix with diagonal elements given by the variances calculated
in Section D.2.3. The weight matrix of the second stage of the GMM is (⌅2)�1. We use
the particle swarm optimization with 100 points in the space [�8,�6]⇥ [�16,�11] (for ln ⇣1
and ln ⇣2, respectively) to find the minimum score of the GMM. The covariance matrix V 2

is obtained using the same procedure we used in the first stage.

D.3 Welfare Maximization

D.3.1 Optimal Policy

For each definition of welfare, we find the optimal police size and sentence length that
maximize the welfare using the particle swarm optimization with 100 points in the space
[10, 40] ⇥ [0.2, 0.8] (for police size k and probability of leaving jail µ, respectively). Recall
that sentence length is given by � = 1/µ� 1.

D.3.2 Ellipse of Error

We detail how we obtained the covariance matrix for the vector of the estimated param-
eters b' in Section D.2.2. We apply the same methodology to obtain the covariance matrix
V 2 of (b⇣1, b⇣2). We perform the calculations using the optimal probability of being released
from jail µ? instead of the optimal sentence length �?. Then, in the end, we apply the delta
method to calculate the covariance matrix of (k?,�?).

Let V 1 be the covariance matrix of b' excluding the line and the column corresponding
to the estimate of bp (i.e., V 1 is bV 1 after excluding the third line and third column of
bV 1). We define � = (bC , cC , ⌫, b, ⇣1, ⇣2) and set the covariance matrix of the estimates
b� = (bbC ,bcC , b⌫,bb, b⇣1, b⇣2) as V =

�
V 1 0
0 V 2

�
. Then, applying the Delta method, we have that

the (assymptotic) variance of the optimal policy is given by

V µ =

"
r�k

?(b�)
r�µ

?(b�)

#
V

"
r�k

?(b�)
r�µ

?(b�)

#0
.

Let the welfare loss be defined as L(k, µ;�), Lk be the first-order derivative of the social loss
with respect to its first argument, and define Lµ, Lkµ, Lµk, Lkk, and Lµµ analogously. Thus,
from the first-order conditions, we obtain

Lk(k
?(b�), µ?(b�); b�) = Lµ(k

?(b�), µ?(b�); b�) = 0.

Applying the implicit function theorem (and assuming that Clairaut’s theorem applies), we
have
"

r�k
?(b�)

r�µ
?(b�)

#
=

"
Lkk(k?(b�), µ?(b�); b�) Lkµ(k?(b�), µ?(b�); b�)
Lkµ(k?(b�), µ?(b�); b�) Lµµ(k?(b�), µ?(b�); b�)

#�1 "
r�Lk(k?(b�), µ?(b�); b�)
r�Lµ(k?(b�), µ?(b�); b�)

#
,
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where r�L is the gradient with respect to the parameters (from the third to the eighth
components of L).

To calculate the second-order derivatives of the first matrix in the right-hand side, we cre-
ate the vectors X := (0.895k?, 0.902k?, . . . , 1.105k?) and Y := (0.895µ?, 0.902µ?, . . . , 1.105µ?).
For each component of X and Y , say Xi and Yj, we calculate the welfare loss L(Xi, Yj; b�).
Then, we obtain the OLS estimation of the �’s below

L(Xi, Yj) = �0 + �1Xi + �2Yj + �3X
2
i + �4Y

2
j + �5XiYj + errorij.

for all pairs (i, j) 2 {1, . . . , 15}2 (15 is the size of the vectors X and Y ). We estimate the
second-derivative of L with respect to its first argument as b�3, the second-derivative of L
with respect to its second argument as b�4, and the cross derivative as b�5. That is, the first
matrix is given by

� b�3 b�5
b�5 b�4

�
.

The procedure to calculate the components of the second matrix in the right-side hand is
similar. Each component of r�Lk is a cross derivative. For the first component, we define the
X := (0.895k?, 0.902k?, . . . , 1.105k?) and Y := (0.895bC , 0.902bC , . . . , 1.105bC). Let Xi be the
i-th component of X and Yj be the j-th component of Y . Defining �j := (Yj,bcC , b⌫, b, b⇣1, b⇣2),
we set the first component of r�Lk(k?(b�), µ?(b�); b�) as the OLS estimate of �5 from the model
described below

L(Xi, µ
?;�j) = �0 + �1Xi + �2Yj + �3X

2
i + �4Y

2
j + �5XiYj + errorij

for all pairs (i, j) 2 {1, . . . , 15}2. We repeat this same procedure for all components of the
vectors r�Lk(k?(b�), µ?(b�); b�) and r�Lµ(k?(b�), µ?(b�); b�).

At this point, we have the covariance matrix V µ of optimal police expenditures, but
sentence length is expressed by the hazard rate for leaving jail. We apply the Delta method
once again to obtain the covariance matrix V � as a function of sentence length:

V � =

"
1 0

0 � 1
µ?

#0
V µ

"
1 0

0 � 1
µ?

#
.

Our estimation for V � is the following:

V � =

"
0.2781 �0.0016

�0.0016 0.0046

#
.

This implies that the standard error of our estimate for optimal police expenditures is $1.33
billion. In the same way, the standard error of our estimate for the optimal average sentence
length is 0.97 months. The error ellipses representing 99%, 95%, and 90% confidence sets
are depicted in Figure A1.
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Figure A1: The error ellipses for our estimate of optimal policy. The yellow ellipse represents the
boundary of the 90% confidence region, the red one 95%, and the blue one 99%. The optimal
policy and the 2004 police are also indicated.

E Effects Decomposition
Four main channels can be used to decompose the equilibrium response of a given change

in public security policy. First, the beliefs of dishonest agents regarding the policy, that
is, deterrence. Second, the rate at which criminals are arrested and the time they are
kept incarcerated, that is, incapacitation. Third, the effectiveness of the police at detecting
crimes, that is, the load effect (in our model of detection, the higher is the crime rate, the
less effective is the police). Finally, incarceration changes the productivity of individuals,
which changes their future opportunity cost of committing crimes, that is, the recidivism
effect.

These mechanisms interact mutually, but only first-order effects are relevant under small
enough changes in public security policy. In particular, considering only changes in k (we
can apply the same idea for generic changes in (k,�)), the change in the crime rate v can
be expressed by four components: (i) the belief regarding expenditures on police k

b (b
for “belief”), determining the cut-off productivity for each age; (ii) actual expenditures on
police k

m (m for “mechanical”), determining the rate of arrest and the hazard rate of leaving
prison; (iii) the crime rate itself v, affecting the police effectiveness;25 and (iv) the total mass
of individuals M below the cut-off productivity for a given distribution of productivity.

In this theoretical construction, we consider that one channel can vary keeping the other
channels fixed. For example, a change in k

b alters only the cut-off productivity at each
age, but it does not change, for example, the productivity profile. Therefore, the mass
of individuals committing crimes changes due to the change in the cut-off. By contrast,
changing M means that the cut-offs are kept fixed, while the productivity varies—which
also changes the mass of agents below the cut-off. Notice that if incarceration had no impact
on productivity, then a change in k would not cause any change via recidivism. In the same
way, a change in policy that maintained fixed the cut-off productivities would imply a null
deterrence effect.

25It may seem odd to state that v is a function of v, but recall that v in equilibrium is a fixed point.
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The total derivative of v with respect k can be written as:

d
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m
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If, instead of derivatives, we consider small differences, we have that changing k to k +�k

causes variations �k
b, �k

m, �v, and �M . Define
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Each of the terms in the previous expression is a numerical derivative. To estimate them,
we use the same procedure we applied when estimating other derivatives in the paper (see
Section D.2.1).

For a given k, we create a vector X := (�0.020k,�0.018k,�0.016k, . . . , 0.020k). Then,
we have a vector for several variations of k. For each variation of k, we find �1v(kb

, k
m
, v,M),

so we have a vector Y . Then, we find the OLS estimate for the coefficient �1 of the regression
Y = �0 + �1X + error and we repeat this procedure for the other three terms (�2, �3, and
�4).

We present now the details on how to calculate �jv(kb
, k

m
, v,M) for each j = 1, 2, 3, 4.

We assume that, in the equilibrium under policy (k,�), the crime rate is v, the cut-off
productivity at age t is w

?
t , the detection probability is p, the mass of individuals at state

s and age t with productivity lower than w is M
s
t (w), and the total number of prisoners is

N
P .
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Deterrence

We have �k
b = �k. In this case, the belief regarding the detection probability is given

by

p
b := 1� WL(b⇣2ve�

b⇣1(k+�k)+b⇣2v)
b⇣2v

·

Note that v is kept constant. This probability induces a belief of expected gains with crime
for each age (say, ⇧b

t ) and a probability of incarceration (say p̄
b). Then, we calculate by

backward induction the cut-off productivity for each age w
?b
t . Our �1 is given by

�1v(k
b
, k

m
, v,M) =

1� e
�b⌫p

p

TX

t=0

(ME
t (w

?b
t )�M

E
t (w

?
t )).

Incapacitation

We have �k
m = �k. To simplify the explanation, we assume that �k > 0 (the idea for

�k < 0 is analogous). This defines a detection probability

p
m := 1� WL(b⇣2ve�

b⇣1(k+�k)+b⇣2v)
b⇣2v

and induces a probability of incarceration p̄
m. This alters the crime rate due to both in-

tratemporal and intertemporal reasons. First, it decreases the expected number of crimes
each individual engaged in crime commits. This happens because criminals would be de-
tected earlier in the period or, alternatively, criminals that are not detected under a detection
probability p would be under p

m. Second, since more individuals would be arrested, more
individuals with low productivity would be incarcerated in future periods. This means that
�2v(kb

, k
m
, v,M) is given by

�2v(k
b
, k

m
, v,M) =

TX

⌧=0

M
E
⌧ (w

?
⌧ )


1� e

�b⌫pm

pm
� 1� e

�b⌫p

p

�

� (p̄m � p̄)
1� e

�b⌫p

p

TX

⌧=0

TX

t=⌧+1

M⌧ (w
?
t /�(⌧, t))

�
(1� µ)t�⌧�1

�
.

The first (resp. second) term on the left-hand side represents the intratemporal (resp. in-
tertemporal) crime change via incapacitation. To better understand the second term, con-
sider an individual at age 0 (so ⌧ = 0) engaged in crime. His/her probability of being in
prison at age 1 would increase by (p̄m � p̄). If he/she is caught, he/she will be in prison at
age 1 (since t = 1, t � ⌧ � 1 = 0, and (1 � µ)t�⌧�1 = 1) and, if his/her productivity at age
1 would be below w

?
1, he/she would not commit crimes at age 1 (which would amount to

1�e�b⌫p

p fewer crimes).
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Load

We calculate the variation of v in the standard model when we vary k. This gives us our
�v. Then, we calculate the following detection probability

p
load := 1� WL(b⇣2(v +�v)e�

b⇣1k+b⇣2(v+�v))
b⇣2(v +�v)

·

Ignoring equilibrium effects for small variations in k, as usual, we calculate the crime rate
that a detection probability p

load would generate. Subtracting this crime rate from the
equilibrium one gives us �3v(kb

, k
m
, v,M).

Recidivism

First, we can calculate the measure of individuals with productivity w, for each w > 0,
given by m

E(w) +m
Ẽ(w) +m

P (w) under the policy (k+�k,�). Then, given this measure,
we calculate the mass of criminals below the productivity cutoffs generated by the policy
(k,�) (recall that only deterrence changes these cutoffs). This is given by

A :=
TX

t=0

Z w?
t

0

(mE(w) +m
Ẽ(w) +m

P (w))dw.

So A is the mass of individuals that would commit crimes if they were free. However, we
know that N

P of them are in prison (under the policy (k,�)), which means that

�4v(k
b
, k

m
, v,M) := (A�N

P )
1� e

�b⌫p

p
� v.

Computing the effects

We obtain the four effects for each value of k ranging from $5 billion to $40 billion with
increments of $1 billion. The plot of the marginal incapacitation effect as a function of k in
Figure 5 shows precisely the numerical values we obtain from this procedure. For the three
remaining effects, we plot smooth curves that fit the values obtained from our numerical
procedure (minimizing the squared error; the values from our procedure are noisy for some
of the calculations because of numerical approximations). The actual values and the fitted
curves are shown in Figure A2. The function we use to fit the marginal deterrence effect has
the form a

det + b
det exp(cdet

k), and we find a
det = 153, bdet = �9863, and c

det = �0.115. We
use the same functional form to represent the marginal load effect, and we find a

load = 7.768,
b
load = �831.2, and c

load = �0.168. The functional form we use to represent the recidivism
effect is k(arec + kb

rec + k
2
c
rec) exp(kdrec), and we find a

rec = 140.5, brec = �17.84, crec =
0.08246, and d

rec = �0.1539. Since the fitted curves are simply descriptive tools, in order
to choose these functional forms we experimented with some alternatives and chose the best
fits by visual inspection.
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Figure A2: Each panel depicts two versions of a marginal effect as a function of k. The solid
curves are the actual values we obtain in the simulations; the dashed ones are the fitted curves
for specific functional forms.
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F Education Exercises

F.1 Finding the New Distribution of Productivity at Age 0

Assume that additional investments in education are given by e at each period and
that the internal rate of return (IRR) for educational investments is r. That is, in the
stationary state, investing e in education increases the total mass of productivity by (1+r)e.
To calculate ⌘, we ignore the impact of incarceration on aggregate productivity. This is
a harmless approximation for two reasons. First, under the 2004 policy, we estimate that
around 1.8% of the total population were or would be convicted and incarcerated. Second, the
productivity of prisoners is already quite low, so as they lose a fraction of their productivities,
the relative loss (compared to the total mass of productivity) is negligible.

Now, we pin down ⌘. Let wt be the productivity of a random agent at age t (using the
assumption discussed in the previous paragraph). The mass of productivity at age t is given
by

M0

Z
�twdG0(w) = M0E [wt] = M0�tE [w0] .

Let w̃t be the productivity of a random individual at age t under the new educational policy.
Then, we have

e(1 + r) = M0

TX

t=0

�
t(E [w̃t]� E [wt]) + ↵M0�

T+1(E [w̃T+1]� E [wT+1])

= M0

TX

t=0

�
t�t(E [w̃0]� E [w0]) + ↵M0�

T+1�T+1(E [w̃0]� E [w0])

= M0(E
⇥
w0 + ⌘w0e

� w0
⇤
� E [w0])

⇣
↵�

T+1�T+1 +
TX

t=0

�
t�t

⌘

= M0⌘E
⇥
w0e

� w0
⇤ ⇣
↵�

T+1�T+1 +
TX

t=0

�
t�t

⌘
,

and
⌘ =

e(1 + r)

M0E [w0e
� w0 ]

⇣
↵�T+1�T+1 +

PT
t=0 �

t�t

⌘ ·

We take the IRR from Heckman et al. (2008). They estimate an IRR of 14% for white
men and 18% for black men. We use br = 0.15 but also perform the same exercise assuming
an internal rate of return equal to 0%.

With the values of ⌘ and r pinned down, we calculate the new productivity distribution
at age 0 as a function of e, defined as g

e. We also define its cumulative distribution as G
e.

Since the map f
e : w 7! w(1 + ⌘e

� w) has a well-defined inverse, we have

G
e(w) = G(f e�1(w)).
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We calculate g
e(w) numerically by using

g
e(w) =

G(f e�1(w))�G(f e�1(w ��w))

�w
·

F.2 Defunding the Public Security Policy

Fix a focalization  . Consider a policy now as a triplet, with the two first components
being the public security policy (PSP) and the third one being a non-negative amount of
additional investments in education. This triplet determines an equilibrium. Now, suppose
we move from the policy (k,�, 0) to (k0

,�
0
, e). Define the equilibrium financial cost of the

PSP as CPSP for the first policy and C
0
PSP

for the second one. We say that the second policy
results from a PSP defunding if e � 0 and e = CPSP � C

0
PSP

, and we set e as the defund
value.

The value of the defund is a fixed point, and we calculate it iteratively. Suppose we change
the PSP from (k,�) to (k0

,�
0). Our first guess for the (extra) investment in education is

e0 := k � k
0. The policy (k0

,�
0
, e0) implies a financial cost with PSP given by C

0
PSP

. Then,
we set e1 := CPSP�C

0
PSP

, and, more generally, en := CPSP�C
n�1
PSP

. We stop when |en� en�1|
is smaller than some threshold.

F.3 Optimal Policy under PSP Defunding

Fix the values of  and r, and let the initial policy be (k,�, 0). Let E be the set of PSPs
resulting from a PSP defunding of (k,�). For any arbitrary PSP (k0

,�
0), we can calculate

the defund value e(k0
,�

0) and the welfare loss of the policy (k0
,�

0
, e(k0

,�
0)), redefined with

three arguments: L(k0
,�

0
, e(k0

,�
0)). In particular, we can calculate the optimal policy when

it is possible to shift PSP resources towards education:

(ked
,�

ed) = argmax
(k0,�0)2E

{L(k0
,�

0
, e(k0

,�
0))}.

We perform this exercise to find new optimal policies for values of focalization in the set
{0.00, 0.02, 0.04, 0.06, 0.08, 0.10} and IRR of 15% and 0%.
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