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We measure unfair health inequality in the UK using a novel data-driven empirical 

approach. We explain health variability as the result of circumstances beyond individual 

control and health-related behaviours. We do this using model-based recursive partitioning, 
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across groups. The empirical application is conducted using the UK Household Longitudinal 

Study. We show that unfair inequality is a substantial fraction of the total explained health 

variability. This finding holds no matter which exact definition of fairness is adopted: using 
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1 Introduction

According to Fleurbaey and Schokkaert (2009), di! erences in health status can
originate from either fair or unfair sources. They argue that unfair health in-
equalities are di! erences in health status determined by circumstances beyond
individual control such as sex, ethnicity or socioeconomic background in child-
hood. Under this distinction a society that wishes to eliminate unfair health
inequality should compensate individuals su! ering a poorer health status due
to unfavourable biological, social and economic circumstances in childhood. On
the contrary, a society may not want to compensate individuals for di! erences in
their health that arise from choices and behaviours they can control and are held
responsible for. This conception is not new in egalitarian theory. The idea that
fairness can be achieved by removing inequality due to circumstances while let-
ting individuals facing the rewards and costs of their responsible choice is rooted
in the moral philosophical literature and in the economic social justice theory:
see among others Cohen (1989); Dworkin (1981); Fleurbaey (1995, 2008); Rawls
(1958, 1971); Roemer (1998); Sen (1980). The distinction between legitimate
and illegitimate sources of inequality is well established in the health economics
literature, in particular through the distinction between need-related and non-
need-related variation in deÞning equity in the use of health care (Wagsta! and
Van Doorslaer, 2000).

Merging the goals of equality and individual responsibility, Fleurbaey and
Schokkaert (2009) drew on two distributive principles to be met in order to
realize a fair distribution of health: reward and compensation. When both
principles are satisÞed, on the one hand, individuals characterized by identi-
cal circumstances face the beneÞts and the costs of their choices, on the other,
individuals behaving in the same way all achieve the same health status inde-
pendently from their circumstances.1 In this perspective these two principles
deÞne a fair distribution of health, measuring unfair inequality in health means
to measure violations of both principles: an ideal measure of unfair inequality
should be sensitive to inequality within individuals who make the same choices
(compensation) and should also be insensitive to any inequality observed be-
tween individuals characterized by the same circumstances who make di! erent
choices (reward). The Þrst property captures horizontal equity, with respect to
e! ort, and the second reßects judgements about vertical equity in the reward
for e! ort.

A possible empirical approach to measuring unfair inequality consists of de-
riving a counterfactual distribution that fully reßects only these unfair inequali-
ties and then applying a suitable inequality index to that distribution. However,
Fleurbaey (2008) has discussed the impossibility of constructing a distribution
which is consistent with both principles, unless the e! ects of choices and circum-
stances are independent from each other; that is, the process generating health is
additively separable in circumstances and choices. In the general case, to solve

1In what follows we consider the terms Õunfair health inequalityÕ and Õinequality of oppor-
tunity in healthÕ as if they were interchangeable. Roemer and Trannoy (2015) discuss the near
perfect overlap of the two deÞnitions.
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this incompatibility problem, Fleurbaey and Schokkaert (2009) proposed two
families of measures of health equity. Each of these is fully consistent with only
one principle, reward or compensation, and partially satisÞes the other princi-
ple at some reference value. The two measures are thedirect unfairness, fully
consistent with the reward principle and only partly consistent with the com-
pensation principle, and the fairness gapwhich fully satisÞes the compensation
principle but is partly inconsistent with the reward principle. In practice, these
measures parallel the concepts of direct and indirect standardisation used in the
measurement of equity in the use of health care (Wagsta! and Van Doorslaer,
2000).2

In this paper we implement the Fleurbaey and Schokkaert (2009) measure-
ment approach using an innovative statistical tool, Model-based recursive par-
titioning (MOB). MOB is a tree-based supervised learning algorithm developed
by Zeileis et al. (2010) and its use to measure unfair inequalities contributes to
the growing methodological literature that uses data-driven techniques in the
study of inequality of opportunity (Brunori et al., 2019; Carrieri et al., 2020;
Li Donni et al., 2015). These data-driven techniques o! er a compromise be-
tween the data-hungry nonparametric approach, which partitions the sample
into all unique combinations of circumstances and, hence, often su! ers from a
curse of dimensionality, and the parametric approach which assumes that the
relationship between observed circumstances and the outcome can be captured
by a linear regression model. Tree-based approaches allow the selection of rel-
evant circumstances, and the way that they interact with each other, to be
data-driven.

The model we adopt allows the relationship between health outcomes and
health-related behaviours (e! ort) to be estimated, allowing it to vary according
to circumstances that are beyond individual control. The MOB algorithm Þrst
estimates a parametric link between health status and lifestyle on the entire
sample. Then recursively tests whether partitioning the population based on
circumstances and re-estimating the model on population sub-samples can reject
the null hypothesis of parametersÕ stability and obtain a better interpolation of
the data. The output of the MOB algorithm is a partition of the sample into
socioeconomic groups that are homogeneous in terms of their circumstances,
what Roemer (1998) calls ÓtypesÓ. Such groups are heterogeneous both in
terms of expected health and in terms of the relationship between health-related
behaviours and the health outcome. This machine learning approach to estimate
health inequalities represents an innovative contribution to the literature and,
provided that proxies for relevant responsibility variables are observed, could
be straightforwardly extended to other welfare domains such as education or
income.

We apply the MOB algorithm to estimate the level of unfair health inequality.
We base our estimate on the nationally representative UK Household Longitudi-

2This literature recognises the importance of reference values, embodied in the notion that
Óon average the system gets it rightÓ, and the implied tension between measuring horizon-
tal and vertical inequity with respect to need (Gravelle, 2003; Sutton, 2002; Wagsta ! and
Van Doorslaer, 2000).

3



nal Study (UKHLS) to present estimates of the two unfair inequality measures
introduced by Fleurbaey and Schokkaert (2009): direct unfairness and the fair-
ness gap. We show that unfair inequality is a substantial fraction of the total
explained health variability. This Þnding holds no matter which exact deÞni-
tion of fairness is adopted: using both the fairness gap and direct unfairness
measures. These are evaluated at di! erent reference values across the full dis-
tributions of types and of degrees of e! ort.

The paper is structured as follows, in Section 2 the metrics proposed by
Fleurbaey and Schokkaert (2009) are introduced. Section 3 explains how the
MOB algorithm can be used to estimate unfair inequalities. Section 4 presents
the data and the empirical results. Section 5 concludes.

2 Fleurbaey-Schokkaert model and measures

Consider a population of N individuals over which a distribution of the health
outcomeH is deÞned. We assume that individual health is determined by three
types of traits: a Þnite set of lifestyle related factors over which individuals have
control (E), which are called Òe! ortÓ variables, a set of social factors for which
individuals cannot be held responsible (C), which are called ÒcircumstancesÓ,
and age (A ). We use an age-adjusted measure of health so we can abstract from
A . The individual health outcome is generated by a function of circumstances
and e! ort variables:

H = g(C, E) (1)

All the possible combinations of circumstance values, taken one at a time
from C, deÞne a partition of the population into types. Individuals belonging
to the same type are characterized by identical circumstances. Similarly, all the
possible combinations of values taken one at time fromE deÞne a partition of
the population into tranches. Individuals belonging to the same tranche exert
exactly the same e! ort.

An important normative and empirical issue concerns the deÞnition of the
responsibility variables. While Fleurbaey and Schokkaert (2009) do not explain
how responsible choices can be measured, considering it a normative choice
that belongs to the political decision-maker, John Roemer goes a little further
suggesting that the degree of e! ort exerted must always be orthogonal to cir-
cumstances. In RoemerÕs view, if individuals belonging to di! erent types face
di! erent incentives and constraints in exerting e! ort, this is to be considered a
characteristic of the type and should be included among circumstances beyond
individual control.

For example, consider the frequency of eating fruit as a measure of e! ort. An
individual with more educated parents may Þnd it much easier to eat regularly
fruit, while an individual who grew up in a less favourable environment may Þnd
it harder to eat fruit and avoid junk food. Roemer believes that the distribution
of e! ort is, indeed, a characteristic of the type:
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ÒThus, in comparing e! orts of individuals in di ! erent types, we
should somehow adjust for the fact that those e! orts are drawn from
distributions which are di ! erent, a di! erence for which individuals
should not be held responsible.Ó

Roemer (2002) p. 458

Roemer therefore distinguishes between the Ôlevel of e! ortÕ and the Ôdegree
of e! ortÕ exerted by an individual. The latter is the morally relevant variable of
e! ort and is identiÞed with the quantile of the e! ort distribution for the type to
which the individual belongs. In the example of e! ort exerted by an individual,
the relevant measure is not the number of fruit portions eaten but rather the
quantile of the type-speciÞc distribution of fruit portions eaten.3 Other authors
have suggested that when measuring unfair health inequality individuals should
be held fully responsible for their choices (see Roemer and Trannoy (2015) for
a discussion). However, following the prevalent approach in this literature we
will deÞne the degree of e! ort exerted consistently with RoemerÕs proposal (the
empirical di! erence between the two approaches is discussed by Jusot et al.
(2013)).

In our model, health is determined solely by observable circumstances and
e! ort. We are therefore ignoring health variability within cells, groups of in-
dividuals sharing the same observed e! orts and circumstances. Empirically we
easily observe individuals sharing the same circumstances and exerting the same
e! ort, but obtaining a di ! erent health outcome. How then should we consider
such unexplained variation? Is it more likely that this inequality arises from
unobservable e! ort or unobservable circumstances? Is it simply the random-
ness inherent in many health outcomes? Or is it a reßection of measurement
error which is convenient to ignore, that is replacing all outcomes in the cell
with their mean? The answer depends on our beliefs about the observability of
circumstances and e! ort; Lefranc et al. (2009) consider within-cell inequality to
be due to randomness or ÓluckÓ, a source of unfair inequality. On the contrary,
the majority of the empirical studies of income inequality consider variation
within cell as due to e! ort. Checchi and Peragine (2010), for example, claim
that this inequality is due to limited observability of e ! ort and therefore should
be attributed to e! ort.

In what follows we explicitly recognize that, to a large extent, health vari-
ability cannot be predicted by observable variables. We focus solely on the part
of the limited health variability that can be predicted by observable circum-
stances and e! orts and are agnostic about the unexplained variation. We will
assign to each individual in type k exerting e! ort j the average outcome of cell
k, j . To evaluate whether within-cell inequality is or is not to be considered
unfair health inequality is beyond the scope of this approach.

3An alternative way of addressing this issue, purging the inßuence of circumstances on
e! ort, is to replace the observed level of e ! ort with the residuals from a regression of e ! ort
on circumstances (e.g., Carrieri et al. (2020); Jusot et al. (2013)).
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Using this framework Fleurbaey and Schokkaert (2009) have proposed two
types of measure to quantify Unfair Inequality (UI )4. To quantify UI the
authors suggest a two-step method: Þrst, starting from a distribution of health
outcome (H ), a counterfactual distribution ( ÷H ) is derived, which reproduces
only unfair inequality and does not reßect any inequality arising from choice
and e! ort of individuals; second, inequality is measured for this counterfactual
distribution.

In order to construct a measure of inequality in health that is sensitive
to the problem of responsibility, Fleurbaey and Schokkaert (2009) present two
conditions:

Condition 1 (Reward, no inßuence of legitimate di! erences).
A measure of unfair inequality should not reßect legitimate
variation in outcomes, i.e. inequalities which are caused by
di! erences in the responsibility variable.

Condition 2 (Compensation). If a measure of unfair inequality
is zero, there should be no illegitimate di! erences left, i.e. two
individuals with the same value for the responsibility variable
should have the same outcome.

Fleurbaey and Schokkaert (2009) p. 75.

Putting together both of these requirements, we can state that a counterfac-
tual distribution consistent with the compensation and the reward principles is
a distribution that:

1) fully reßects the inequality in outcomes between individuals with the same
e! ort (within-tranche inequality);

2) does not reßect any inequality in outcomes between individuals character-
ized by same circumstances (within-type inequality).

Any inequality measure applied to such distribution would be a measure of
unfair inequality consistent with both the reward and the compensation princi-
ple. Fleurbaey and Schokkaert (2009) address the potential conßict between the
principles of compensation and reward. They propose twoUI measures, each
one fully consistent with one of the two principles and maintaining consistency
with the other at a reference degree of e! ort or a reference type, respectively:

Direct unfairness (UI DU ): choose a reference value for the the vector of
responsibility variables ÷E, with ÷hk,j

i = g(C, ÷E). In the counterfactual dis-
tribution the health of an individual i belonging to type k is the health

4Their proposal originates from a number of contributions on fair allocation and distributive
justice (Fleurbaey, 2008; Fleurbaey and Maniquet, 2012). In these contributions the authors
developed a theory of Òresponsibility-sensitive egalitarianismÓ whose ambition is to generalize
the egalitarian ideal allowing individuals to be held responsible, to some degree, for their
achievements.
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attained by an individual in type k that exerts the reference degree of
e! ort. Inequality in the counterfactual distribution, ÷HDU , is unfair in-
equality.

Fairness gap (UI F G ): choose a reference type÷C, with ÷hk,j
i = g( ÷C, E).

Then ÷HF G is obtained by taking the di! erence between the individualÕs
health in the initial distribution and the health of individuals who exert the
same e! ort but who have the reference circumstances. Unfair inequality
is inequality in ÷HF G .5

UI DU measures inequality in a counterfactual distribution obtained by re-
moving any inequality due to e! ort. All individuals belonging to the same type
have the same value in÷HDU . HenceUI DU is a measure of unfair inequality fully
consistent with the principle of reward (no inßuence of legitimate di! erences).
On the other hand, UI DU is consistent with the principle of compensation for
the reference degree of e! ort: if all individuals with the reference level of e! ort
obtain the same outcome inequality in ÷HDU is zero. However,UI DU fails to
satisfy the principle of compensation for all other e! ort tranches.

Symmetrically, UI F G measures inequality in a counterfactual distribution
obtained by isolating inequality within tranches. It is a measure fully consis-
tent with the principle of compensation: inequality in ÷HF G is zero only if all
individuals in the same tranche obtain the same outcome. Moreover,UI F G is
consistent with the principle of reward for the reference circumstance;UI F G

is insensitive to changes in inequality within individuals characterized by refer-
ence circumstances. However,UI F G fails to satisfy the principle of reward for
individuals not belonging to the reference type.6

Summing up, we can estimate two sets of measures: compensation consistent
measures (UI F G ), and reward consistent measures (UI DU ). These measures
depend on either a reference e! ort or a reference combination of circumstances
therefore we estimate a range of measures and we discuss their sensitivity to
di! erent reference values.

5This index is equivalent to the measure of horizontal equity, based on indirect standardis-
ation, that is typically used in the literature on equity in the delivery of health care (Wagsta !
and Van Doorslaer (2000))

6Note that these measures di ! er from the ex-ante and ex-post inequality of opportunity
measures inspired by Roemer (1998) and often adopted in empirical studies (Checchi and
Peragine, 2010; Roemer and Trannoy, 2015). Ex-ante UI is a reward-consistent measure of
UI obtained imposing: ÷hk,j

. = ! k = µk , where µk is the average outcome of individuals in
type k (see Property 1). Ex-post UI is a compensation-consistent measure of UI obtained
imposing: " j = µj , where µj is the average outcome of individuals in tranche j (see Property
2). Ex-ante and ex-post UI fail to satisfy both the principle of compensation and the principle
of reward respectively, unless g is additively separable in E and C. However, because they
are relatively easier to estimate and to decompose, they are very popular in the empirical
literature about inequality of opportunity in income and consumption as well as applications
to health inequality (Davillas and Jones, 2021; Jusot et al., 2013; Rosa Dias, 2009).
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3 Empirical deÞnition of UIDU and UIF G using
Model-based Recursive Partitioning

Estimation of UI DU and UI F G requires relevant circumstances beyond individ-
ual control to be observed and types to be deÞned. Ideally, a measure of unfair
inequality should consider all the potential sources outside individual control.
However, this would require considering a wide and complex set of circum-
stances, which brings with it the risk of noisy and upwardly biased estimates
(Brunori et al., 2019). Traditionally, in empirical studies on unfair inequalities
the relevant circumstances have been included in the model through normative
decisions. In the nonparametric approach the population is partitioned into a
parsimonious number of types and in the parametric approach the relationship
between circumstances and the outcomes have been implicitly modelled as ad-
ditive and Þxed using linear regression. For these reasons, coupled with the fact
that some circumstances may be unobserved, estimates have been interpreted
as a lower-bound estimate of the real level of unfair inequality (Carrieri and
Jones, 2018; Jusot et al., 2013; Li Donni et al., 2015; Rosa Dias, 2009).

A number of more recent empirical applications instead rely on data-driven
semiparametric techniques to explore the information on social groups which is
relevant to the formation of unfair inequalities. These are semiparametric in the
sense that relationship between health outcome and e! ort is assumed to take
a (linear) parametric form, while the deÞnition of types is nonparametric. On
one side, Þnite mixture models (FMM)7 have been adopted to study the latent
type membership of each individual given their observed circumstances (Brunori
et al., 2021; Carrieri et al., 2020; Li Donni et al., 2015). The FMM approach
relies on ana priori selection of the circumstance variables that inßuence the
probability of belonging to each type. On the other side, tree-based methods
have been adopted to perform a data-driven selection of the relevant circum-
stances and the interactions between them on the basis of model Þt (Brunori
and Neidh¬ofer, 2020; Brunori et al., 2018). The estimation approach proposed
in this paper, model-based recursive partitioning (MOB), is an extension of the
tree-based techniques applied with a speciÞcation of types that echoes the semi-
parametric mixture approach (Carrieri and Jones, 2018; Carrieri et al., 2020).

Consider again equation (1): individual health outcomes,hi , are attributed
to two sets of observable variables: a number of behaviours and a set of cir-
cumstances for which individuals are not held responsible, respectivelyE and
the C. The isolation of the unfair health inequality requires the estimation of
a model for health. For the sake of simplicity, and following Carrieri and Jones
(2018), assume that behaviours can be summarized by a scalar index of lifestyle
(e) and that its e! ect on health can be modelled using a linear regression:

hi = ! 0 + ! 1ei + "i (2)

We can assume that this simple relationship is not independent fromC.
7Mixture models in statistics are a broad family of probabilistic models for observing latent

subgroups in a population, including latent class analysis (LCA) as a speciÞc case.
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The relationship linking e! orts and health can be a! ected by the circumstances
though two channels: the intercept, ! 0, and the slope,! 1.8 A di ! erent intercept
can be interpreted as the direct contribution of circumstances to health: inde-
pendently from the choices made having favourable circumstances may improve
individualsÕ health. Heterogeneity in the slope instead means that the contri-
bution of lifestyle to health outcomes may be also a! ected by circumstances.

The Þnal model can be represented as a weighted sum of sample splits per-
formed to derive k = 1 , ..., K di! erent models associated with each subgroup
parameters ! (k ) :

g(hi |ci , ei , ! (1) , ..., ! ( K ) ) =
K!

k=1

#k (ci ) ág(hi |ei , ! ( k ) ) (3)

Note that this representation of the individual health model as a function of
e! orts and circumstances can be either associated with both the FMM and the
MOB approaches to estimation. Depending on which of the two methodologies
is chosen, the weight#k (ci ) and the K subgroups will be identiÞed with a
di! erent estimator.

We opt for the use of the MOB to estimate the indirect relation between
circumstances and behaviours, and to allow the health response to e! ort be
estimated varying across meaningful social groups. Tree-based techniques are
data-driven and rely on decision treeswhich, in statistics, can be used to visually
represent the ÒdecisionsÓ, or if-then rules, that are used to generate predictions
of a single outcome variable or a model. Moreover, tree-based methods tend
to be more parsimonious then FMM in terms of parameters resulting in less
conservative (more Þne grained) partitions in types. There are essentially two
key components to build a decision tree: thefeatures to split on the prediction
sample, and the rule to stop splitting the sample. The MOB is a particular
tree-based method which takes as input a set of partitioning variables and whose
splitting rule relies on the estimated parameters of a model.

This model is initially estimated on the entire sample, afterwards, a statis-
tical test is performed to verify whether there are any possible sample splits on
the partitioning variables which achieve a better Þt of the model. The outcome
of this process is a set of models estimated onK sub-samples of the original
population (terminal nodes).

We brießy summarize here how a MOB is obtained from data (see Zeileis
and Hornik (2007); Zeileis et al. (2008) and Zeileis et al. (2010) for details).
The MOB uses the vectorC to search for ways of splitting the sample into non-
overlapping subgroups. If estimating the response of health to lifestyle into two
sub-samples yields statistically di! erent parameters and improve out-of-sample

8In the empirical application we consider higher order polynomials for e ! ort, with the
chosen speciÞcation selected by cross validation. So, although this is the parametric part of the
speciÞcation, the estimation does allow for a considerable degree of ßexibility. Note also that
the MOB speciÞcation allows for interactions with circumstances through the heterogeneity
of parameters across types.
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prediction, then the split is performed. The procedure is then repeated in the
resulting sub-samples.

The parameter instability is detected by means of Generalised M-ßuctuation
tests. The test is based on a partial sum process of the estimation scores which
captures instabilities (Hothorn and Zeileis, 2015; Zeileis and Hornik, 2007). It
can be understood as a generalization of the type of test used to detect struc-
tural breaks in time series analysis. In the case of the MOB algorithm, the
test is performed on the partial sum of residuals across the space deÞned by
partitioning variables. The ßuctuation test statistic is distributed as a $2 and
we can compute the Bonferroni-adjusted p-value for testing its signiÞcance. If
the ßuctuation test statistic is higher than a certain threshold, the hypothesis
of stability of the model parameters is rejected and algorithm splits the sample
and re-estimates the model on the distinct subgroups.

Schematically, Zeileis et al. (2010) illustrate the steps of the MOB algorithm
as follows:

1. Set a conÞdence level (1! %) to be used as tuning parameter;

2. Fit the model - for example: hi = ! 0 + ! 1ei - on the entire sample;

3. Test whether there is any partitioning variable causing parameter esti-
mates for the model to be unstable;

4. If the nulla hypothesis of parameters stability across possible sub-sample
cannot be rejected stop;

5. If the p ! value of the ßuctuation test statistics is instead lower than the
critical Bonferroni-adjusted %, select the variable associated with the most
statistically signiÞcant source of instability, otherwise stop;

6. Compute the exact splitting point which optimises the objective function
of the estimation according to the selected partitioning variable;

7. Split the node into child nodes and restart the procedure from (2) on the
two subsamples.

The depth of the estimated tree depends on the tuning parameter%which
determines the p ! value threshold for rejecting the null hypothesis in the in-
stability test. The value of %can be set to a speciÞc value or can be selected
by a machine-learning technique ensuring that MOB stops splitting the sample
when no further split would result in a better out-of-sample Þt of the data.

The outcome of the algorithm is a partition of the population into types
according to the composition of the terminal nodes. Individuals belonging to
each type share the same circumstances and the same parameters for equation
(2). The partition into types and the associated set of parameters allows the
counterfactual distributions ÷HDU and ÷HF G to be computed. The counterfactual
distribution ÷HDU is obtained by choosing a reference degree of e! ort ÷e and then
predicting ÷hk,j

i = ö! k
0 + ! k

1 ÷e. The counterfactual distribution ÷HF G is obtained by
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choosing a reference type (R) and then predicting ÷hk,j
i = ( ö! k

0 + ! k
1 ej ) ! ( ö! R

0 +
! R

1 ej ). UI DU and UI F G are then obtained by computing a suitable inequality
measure of the counterfactual distributions.

4 Data and estimates

The data comes from three waves of the UK Household Longitudinal Study
(UKHLS). UKHLS contains information about demographic characteristics, a
rich set of information about individuals socioeconomic background in child-
hood, ethnicity, and place of birth among other things. These provide our mea-
sures of circumstances that are used to construct types by the MOB algorithm.
Moreover, the survey contains questions about health-related behaviours, that
are used to construct the scalar index of lifestyle, and a number of measures
of health outcomes. Figure 1 shows the study design and indicates at what
moments in time and to which waves the observations of the di! erent variables
used in the analysis correspond. Circumstances relate to Þxed individual char-
acteristics and to measures of parental background, health-related behaviours
are measured at Waves 2 and 5, and the health outcomes are measured in the
subsequent follow-up at Wave 6.

Figure 1: Timeline for the study design

Note: Circumstances may be observed in multiple waves.

Our chosen health outcome (H) is measured at UKHLS Wave 6 (2014-2015).
We use the Short Form 12 (SF-12), a well validated, self-administered health
measure based on a set of 12 questions on respondentÕs health (Ware et al,
1995). For this study, we use the Physical Component Score (PCS-12), to cap-
ture respondentsÕ physical health. The PCS-12 score has values between 0 and
100, and it has been standardized in order to have a mean of 50 and a standard
deviation of 10; higher values indicate better physical health functioning. The
PCS-12 is a reliable instrument developed to measure physical health in large
surveys with higher values of sensitivity and speciÞcity compared to other brief
health scales (Ware et al., 2001; Ziebarth, 2010). It has been used in the liter-
ature as a robust self-reported measure of physical health (e.g., Eibich (2015);
Guber (2019); Schmitz (2011); Ziebarth (2010)). The health measure has been
adjusted for individual age (at the time of the interview) in order to control
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for the age-speciÞc variability in health. The age-adjustment is performed by
regressing individual health status on 5-year age classes between 14 and 100.
To remove all the age-class Þxed e! ects from total health variability we use the
residuals as our measure of health status.

The full set of observed circumstances (C) beyond individual control that are
considered as candidate variables in the MOB algorithm are: ethnic groups (the
relevant categories have been summarised into the following levels: UK white;
Irish white; other white; mixed: white with Asian/African/Arab; Asian: East
and Middle East; Black: African, Caribbean, other; other ethnic groups), place
of birth (a dichotomous variable indicating whether born in the UK or not),
father and motherÕs skill levels in the main occupation (unemployed or four
skill levels in occupation), mother and fatherÕs education (did not go to school,
left school without qualiÞcations, some qualiÞcation, post-school qualiÞcations,
university degree or higher), mother and fatherÕs activity status (working, un-
employed, deceased, not living in the household). Note that all information
about parents relate to when the respondent was 14 years old. We include sex
as an additional source of unfair health inequality. The tree structure implicit
in the MOB algorithm allows for a full set of interactions between the categories
of these circumstance variables. However, as it is a data-driven technique, it
guards against the curse of dimensionality and the risk of over-Þtting that would
be likely with a fully saturated nonparametric speciÞcation.

Table 1 shows the frequencies of each circumstance category in the sample.
Figure A.2 in the Appendix shows the most frequent patterns of missing values
for circumstances and the health outcome. The most frequent missing informa-
tion is parental education but note that for 4,567 observations of the potential
maximum sample to be used in our analysis, the only missing information is the
SF-12 Physical Component Score.
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Table 1: Descriptive statistics: circumstances

Circumstance Category Frequency (%)
Ethnic group

UK white 82.06
Irish white 2.11
other white 2.52
Mixed (white with Asian/African/Arab) 1.87
Asian (East and Middle East) 7.05
Black (African, Caribbean, other) 3.04
other ethnic group 0.26
missing 1.10

Female
yes 55.95
no 44.04
missing 0.01

Born in the UK
yes 86.27
no 11.32
missing 2.42

Mother education
did not go to school 1.15
left school without qualiÞcations 25.73
some qualiÞcation 13.59
post-school qualiÞcation 15.79
university degree or higher 6.86
unknown 3.94
missing 32.95

Father education
did not go to school 1.88
left school without qualiÞcations 29.29
some qualiÞcation 19.16
post-school qualiÞcation 10.94
university degree or higher 4.54
unknown 0.95
missing 33.24

MotherÕs occupational skill level
unemployed 38.24
high skill 6.65
up-mid skill 5.84
mid skill 17.97
low skill 9.35
unknown 2.00
missing 19.94

FatherÕs occupational skill level
unemployed 5.24
high skill 10.94
up-mid skill 26.56
mid skill 15.70
low skill 5.93
unknown 6.93
missing 28.70

Mother activity status
working 53.36
unemployed 38.24
deceased 1.33
not living in hh 0.67
missing 6.40

Father activity status
working 80.47
unemployed 5.24
deceased 3.75
not living in hh 3.18
missing 7.37
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To implement the speciÞcation in equation (2), a composite scalar index
of lifestyle is created. SpeciÞcally, all our lifestyle indicators are summarised
by a scalar index obtained by principal component analysis (PCA). For those
lifestyle indicators that respondents are observed in both Waves 2 and 5 (and
di! erent responses are obtained) the more risky level of health behaviour is
used in the PCA. The choice of using a summary measure of lifestyle is based
on two main considerations. The Þrst is to keep the MOB as parsimonious
as possible and to avoid over-Þtting the data. Second, we consider lifestyle as
an intrinsically unobservable latent pattern of behaviour. On the one hand,
each speciÞc behaviour we observe is correlated with this lifestyle, on the other,
speciÞc behaviours may be a rather imperfect measures of the overall pattern.

The following indicators of health-related behaviours are included in our
analysis to proxy e! orts: current smoking status (non-smoker, up to 10 cigarettes
per day, 10-19 cigarettes per day, 20+ cigarettes per day), a dummy variable
for ex-smoker, number of days each week eating fruits (never, 1 - 3 days, 4 -
6 days, every day), number of days each week eating vegetables (never, 1 - 3
days, 4 - 6 days, every day), days per month walked at least 10 minutes (28 cat-
egories based on the frequency of walking habits during the days of a month),
a dichotomous variable for drinking alcohol Þve or more days per week. We
also account for a self-assessed measure of sports activity, which is an eleven
categories scale from 0 to 10, with 0 being Ódoing no sport at allÓÕ to 10 being
Óvery active through sportÓ.

As shown in Table 2, a non-negligible share of missing information concerns
alcohol intake (about 23% in Wave 2, and 17% in Wave 5). Figure A.1 in the Ap-
pendix shows the most frequent combinations of missing data for e! ort variables.
Interestingly about half of the missing information concerns only that aspect of
lifestyle. Therefore, for respondents reporting complete information about all
other e! ort dimensions we impute drinking behaviour by multiple imputation
using observed behaviours as imputers (Van Buuren and Groothuis-Oudshoorn,
2011). The Þnal sample includes all respondents with complete information, ob-
tained by merging the three UKHLS waves and, after imputation, this is made
up of 18,016 adults. Although the Þnal sample size is large relatively to similar
empirical analysis, the item non response represents an issue and caution should
be exercised in generalising the results to the entire UK population.

Figure 2 summarizes the results of the PCA. The Þrst and second component
are shown in the horizontal and vertical axis respectively. Because all measures
of behaviours are categorical the PCA has been conducted after computing the
polychoric transformation of the mixed data to obtain a meaningful covariance
matrix (see Drasgow (1986) for detail and Fox (2019) for the implementation
in R). The resulting Þrst component of the PCA (Figure 2) accounts for almost
44% of the total variability of all e ! ort dimensions. Moreover, the sign of the
correlation of behaviours with the Þrst component appears to be coherent.9

9Given the positive correlation of the Þrst PCA component with the risky behaviours, the
lifestyle variable has been multiplied by (-1) in order to obtain a measure associated with
having a healthier lifestyle.
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Table 2: Descriptive statistics: life-style behaviours

Life-style categories Freq (%)
Sport activity

No sport at all 30.76
1 8.25
2 8.98
3 8.85
4 7.27
5 9.74
6 5.54
7 5.68
8 3.79
9 1.50
Very active through sport 2.04
missing 7.58

Current smoking status
Not smoking 79.21
Up to 10 cigarettes per day 6.56
Up to 20 cigarettes per day 8.61
More than 20 cigarettes per day 5.62
missing 7.55

Ex-smoker
No 62.02
yes 30.44
missing 7.55

Fruit per week
Never 8.61
1-3 days per week 31.83
4-6 days per week 17.69
everyday 34.36
missing 7.51

Vegetables per week
never 2.59
1-3 days per week 24.23
4-6 days per week 27.22
everyday 38.47
missing 7.51

Days per month walked at least 10 minutes
0 19.57
[1-10) 26.14
[10-20) 12.94
[20-30) 33.81
missing 7.55

Alcoholic drink " 5 days per week
yes 7.26
no 76.36
missing 16.37

Source: UKHLS Waves 2 and 5

Note: missing values before the imputation of missing values on drinking behaviour.

Table 3 shows the correlation of the lifestyle variable with the observed be-
havioural variables involved in the analysis. The sign of the correlation is pos-
itive for healthy habits such as non-sedentary lifestyle and healthy diet, whilst
it is negative for heavy drinking and intensity of smoking.

All of the circumstances and the scalar index of lifestyle are then used to
estimate the model-based tree. The algorithm is tuned by 5-fold cross vali-
dation. We tested di! erent critical values for the Bonferroni-adjusted p-value
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Figure 2: PCA for lifestyle and observed behaviours
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Table 3: Spearman correlation with e! ort

Behaviours &

Sport activity 0.5275***
Smoke intensity -0.5593***
Ex smoker 0.1545***
Fruit per week 0.6456***
Vegetables per week 0.5410***
Days walked at least 10 minutes 0.6033***
Drink " 5 days per week -0.0139***
% of total variance explained 43.7

Source: UKHLS Waves 2 and 5.
Note: Signif. values: *** ( p < 0.001).

(% = 0 , % = 0 .001, % = 0 .01, % = 0 .05, % = 0 .1) and di! erent health-e! ort
polynomial link speciÞcations (degree 1 to 4). Moreover, in order to guarantee
su" cient degrees of freedom for each type, we impose a minimum number of
200 observations per terminal node. The output of the MOB speciÞcation with
the smallest out-of-sample prediction error is shown in Figure 3, it is obtained
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with %= 0 .1 and assuming a linear relationship between our measure of lifestyle
and physical health (PCS-12) rather than higher order polynomials.

The selected tree is made of 11 splits and 12 types. Circumstances used
to partition the population are: ethnic group, sex , fatherÕs activity, motherÕs
activity, motherÕs education, fatherÕs education, place of birth. Each terminal
node contains a scatter plot in which lifestyle is on the horizontal axis and health
outcome is on the vertical axis. All type-speciÞc regression models have highly
signiÞcant regression coe" cients and a positive slope (the healthier the lifestyle
the higher the expected health). The Þtted model explains about 10% of the
total health variance in the sample. In what follows we estimate how much of
this explained variability is to be considered unfair.

Table 4 reports for each type: the average health status, the average e! ort
exerted, the two parameters (! 0 and ! 1) and the population share of each type.

Table 4: Types description

Type Av. h Av. ef f % Pop. ! 0 SE ! 1 SE
1 -4.728 3.153 3.96 -9.991*** (0.991) 1.668*** (0.290)
2 -2.606 3.093 2.02 -6.310*** (1.169) 1.197*** (0.346)
3 -2.400 3.042 6.97 -8.306*** (0.702) 1.940*** (0.204)
4 -0.755 3.695 1.76 -6.082*** (1.634) 1.441*** (0.418)
5 -0.608 3.542 1.12 -8.405*** (1.651) 2.201*** (0.434)
6 -0.063 3.587 3.84 -3.702*** (0.966) 1.014*** (0.249)
7 0.082 3.172 17.19 -7.077*** (0.428) 2.257*** (0.120)
8 0.380 3.494 15.20 -8.067*** (0.534) 2.417*** (0.140)
9 0.487 3.480 25.48 -5.737*** (0.371) 1.788*** (0.097)

10 1.172 3.351 1.59 -3.302*** (1.218) 1.335*** (0.334)
11 1.494 3.424 13.57 -5.095*** (0.459) 1.924*** (0.122)
12 2.871 3.584 7.26 -1.725*** (0.485) 1.282*** (0.123)

Source: UKHLS Waves 2, 5 and 6.

Note: In the Þrst column types rank is determined by their average health (second column),

the third column reports the average e ! ort and the fourth the share of observations in each

type. The other columns contain modelsÕ parameters. Signif. values: *** ( p < 0.001)

In terms of average health, the worst-o! type is type 1 made up of mixed
race, other ethnic and Asian women whose mother did not work. This group
represents about 4% of the sample and has an expected health outcome of
! 4.728 (not far from the 25th percentile of the entire PCS-12 distribution).
The best-o! type is type 12 made up of white or black men whose mother left
school with at least some qualiÞcation and whose father has at least a post-
school qualiÞcation (or for a few respondents is unknown). This type represents
slightly more than 7% of the sample and their average health is 2.871 (clearly
above the population mean 0.1964).

In general, the splitting rules selected by the MOB algorithm are consis-
tent with what might be expected: ethnicity, place of birth, sex and parental
background all play some role. A more advantaged socioeconomic background,
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Figure 3: MOB tree diagram
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motherÕs labour force participation, being born in the UK, and being white are
predictive of a better health outcome. Less obviously, being either a white or
black male is predictive of a better outcome. In terms of the parameters esti-
mated type 1 and 12 are also the types with the lowest and highest intercepts.
Type 6 has the lowest return to e! ort ( ! 1 = 1 .014). This type is made of women
that deÞne themselves as non-UK white or black and whose father was working
during their adolescence. Women that deÞne themselves as UK white whose
father was working, but whose mother was not (type 8), have the highest return
(! 1 = 2 .417), a gradient that is two-and-a-half times that of type 6. Note that
slopes heterogeneity is a source of clash between compensation and reward dis-
cussed in Section 2 that justiÞes the need of considering two families of unfair
inequality measures.

Figure 4 shows the Þtted regression lines for each type. These can be in-
terpreted as the opportunity set (or health constraint) faced by individuals
belonging to di! erent types.

Figure 4: Opportunity sets by types: health - level of e! ort proÞles
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Note: health-e ! ort relationship is shown on the entire e ! ort range of variation.

What emerges is that having favourable circumstances will produce a Þxed
advantage (higher intercept) but it will not necessarily imply a higher return
to a healthy lifestyle (higher slope). That is, there is a correlation between the
intercept and the typesÕ rank in terms of expected health. But there is not a
monotonic relationship between slopes and intercepts nor between slopes and
expected outcome.
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Having estimated the opportunity sets individuals face is not su" cient to
obtain the two counterfactual distributions necessary to estimateUI . The coun-
terfactual distributions will depend on these parameters and also on the the
type-speciÞc distributions of e! ort that deÞne the degree of e! ort that corre-
sponds to the observed levels of e! ort for each type. An initial intuition regard-
ing the role of e! ort in determining the di ! erent type-speciÞc health outcomes
is provided by Figures 5 and 6a. Figure 5 shows the distribution of e! ort in the
12 types, ranked according to their average health. The e! ort distribution in
better-o! types is more dispersed and higher than the overall average (dashed
vertical line). The between-type variability of e ! ort is limited ranging between
3.040 and 3.695 (the 39th and 55th percentile of the distribution in the popula-
tion). There is also a moderate negative correlation between the average e! ort
exerted and return to e! ort (-0.1478). So both individuals with more favourable
circumstances and with lower return to e! ort tend to have healthier lifestyles.

Figure 5: Distribution of e! ort across types
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However, focusing on the type-speciÞc empirical cumulative distribution
function (ECDF) of e ! ort and health what is striking is the clear dominance in
terms of expected health condition for better o! types accompanied by absence
of dominance in terms of e! ort.

Consider for example Figures 6a and 6b where both ECDFs are shown for
the the two extreme types. Type 1 made of women with Asian or mixed origin,
and an absent or non-working mother, and type 12 made of white men with
both parents with at least post-school qualiÞcation.

20



While the e! ort ECDFs cross, with individuals in the least favourable type
behaving better at the bottom of the distribution (6a), health ECDFs show a
clear dominance of type 12 over type 1, with a particularly marked di! erence
in expected health especially in the left tail of the distribution (6b).

Figure 6: Empirical Cumulative Distribution Functions
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Finally, adopting John RoemerÕs view about what is the morally-relevant
measure of e! ort, we remove the variation of e! ort systematically correlated
with types by comparing individuals considering the degree of e! ort they ex-
erted. ÷HDU and ÷HF G are therefore constructed ignoring the absolute level of
e! ort (Þrst component of the PCA) and comparing instead individuals belong-
ing to the same quantile of the type-speciÞc distribution of the same variable.
This transforms Figure 4 into Figure 7. The distribution described by these
segmented lines together with the typesÕ population shares provides all the in-
formation needed to estimateUI DU and UI F G .

The two measures of health unfair inequality are calculated for the 12 pos-
sible reference types and for 10 possible reference responsibility values (e! ort
tranches) deÞned by the deciles of the scalar lifestyle index within each type.
For both measures we calculate conÞdence intervals by bootstraping observa-
tions by types. This implies Þxing the structure of the tree and then resampling
each type 200 times. This procedure is likely to underestimate the level of
uncertainty about point estimates. A more robust approach would consist in
estimating a di! erent MOB for each sample. However, the need to set a refer-
ence type to calculateUI F G requires to Þx the structure in types. Figure 8a
reports our estimates forUI F G based on the 12 reference types. Types are or-
dered according to their average health status (labelled below) but the expected
outcome does not a! ect the value of UI F G . Its value is entirely determined by
the slope of the regression line estimated for the reference type. The ßatter the
regression line the more health variability is reproduced in the counterfactual
distribution. In the extreme case in which the line is ßat, health is independent
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Figure 7: Distribution of health inequality: health - degree of e! ort proÞles
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from the degree of e! ort in the reference type and all health inequality is to be
considered unfair. After all, if choices do not play a role, what sort of inequality
can be justiÞed? In our case, when type 6 is the reference (! 1 = 1 .014) close to
50% of the explained variability is to be considered unfair inequality. Moreover,
no matter what reference type is selectedUI F G is never lower than 30%.

Figure 8b reports estimates for direct unfairness for ten reference e! ort
tranches (deciles in ascending order). The ten unfairness measures are sig-
niÞcantly smaller than the compensation-consistent measures and their value
follows a U-shaped pattern. Unfair inequality is higher when the reference ef-
fort is at the two extremes of the lifestyle spectrum (close to 30% and 25% of the
explained variance respectively). Figure 7 shows that this pattern is driven by
the outcomes for the worse-o! types converging on those of the better o! types
as e! ort increases from the lower deciles to a more healthy pattern of behaviour
in the middle deciles. This is due to the less dispersed distribution of e! ort in
the worse-o! types, who appear to catch-up with more advantaged types simply
because the average e! ort exerted in the left tail of the distribution increases
more quickly. This pattern is then reversed for individuals in the highest ef-
fort tranches. For individuals that adopt the healthiest lifestyle a clear social
gradient is visible with two types lagging behind (1 and 2) in terms of health
status. The comparison between the two extreme types is striking; no matter
how healthily they behave, individuals in type 1 have a predicted health out-
come below that of the worst-behaving individuals who have the most favourable
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Figure 8: Unfair health inequality
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Note: In 8a reference types are sorted by increasing type-speciÞc expected health.

ConÞdence intervals are obtained from 200 stratiÞed bootstrap samples.

circumstances (type 12). For type 1 there is no level of e! ort that could com-
pensate for their adverse circumstances (no matter how badly an individual in
type 12 behaves she has a higher predicted health).

5 Conclusions

This study aims to provide both a methodological innovation for the measure-
ment of unfair health inequality, as well as new evidence on health inequalities
measured in the UKHLS. The methodological innovation is the adoption of the
MOB algorithm to estimate the health-to-lifestyle relationship while considering
the di! erent socioeconomic backgrounds in childhood. Moreover, a normatively
deÞned responsibility-sensitive framework is adopted to measure Direct Unfair-
ness and the Fairness Gap̀a là Fleurbaey and Schokkaert (2009). Among the
main features of the use of MOB in the measurement of unfair health inequality
is its ability to capture those socioeconomic characteristics which are fundamen-
tal to determine a change in the conditional distribution of the outcome in the
health-to-lifestyle model.

The empirical application uses data from the UK Household Longitudinal
Study (Waves 2, 5 and 6) considering all observations for which data on physi-
cal health status, relevant circumstances beyond individual control, and health-
related behaviours are observed. We show that circumstances beyond individual
control are a clear source of unfair health inequality. However, this is mostly
driven by a Þxed advantage for better-o! types. Moreover, while on average indi-
viduals characterised by more favourable circumstances tend to have a healthier
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lifestyle, this seems not to be due to systematic heterogeneity in the return to
e! ort across types.

The estimated UI DU and UI F G show that, when a compensation-consistent
approach is adopted, unfair inequality varies in a non-monotonic way depend-
ing on the reference type considered. Poorer socioeconomic conditions tend to
be associated with lower expected health outcomes more because of a direct
contribution (intercept) than due to an indirect contribution through a lower
return to e! orts (slope). This echoes the Þndings of Carrieri and Jones (2018)
and Carrieri et al. (2020). When adopting a reward-consistent approach, and
measuring UI DU , a clear pattern emerges; when the reference degree of e! ort
is at the two extremes the level of unfairness detected is higher. This result is
driven by the interactions of typesÕ direct contribution to health (the intercept),
the return to a healthier lifestyle (the slope) and the type-speciÞc distribution
of e! ort being more compressed for less advantaged types. The combined e! ect
makes between-type inequality lower for individuals exerting an intermediate
degree of e! ort.

Overall, our results show that the variation in physical health can only
be partially explained by observed lifestyle and childhood socioeconomic back-
ground in the UKHLS. Indeed, there are many aspects which are not included
in the model even though they have an impact on health status. Some of these
are likely to remain unobservable, such as genetic endowments, others, however,
could Þt in the Fleurbaey and Schokkaert (2009) framework and, given suitable
data, could be taken into account, such as healthcare consumption and the role
of public healthcare services.
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A Appendix

Figure A.1: Missing circumstances and outcome
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Source: UKHLS Wave 6

Note: The missing values (NA) are shown for the following variables: health (sf12pcs dv),

father activity status at respondentÕs age of 14 (f actstat), mother and father skill in

occupation (m skill occ, f skill occ), mother and father education (mother ed, father ed).
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Figure A.2: Missing e! orts
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Source: UKHLS Waves 2 and 5

Note: The missing values (NA) are shown for the following variables: fruit units eaten per

week (wkfruit), vegetable units eaten per week (wkvege), days walked at least 10 minutes

(daywlk), ex-smoker (smoke ex), sport activity (sportact), drinking alcohol at least 5 days

per week (drink alot).
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