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1 Introduction

This paper develops and structurally estimates a fully microfounded equilibrium busi-

ness cycle model of the US labour market with aggregate shocks. Those microfounda-

tions are consistent with evidence regarding the underlying distribution of firm growth

rates across firms [by age and size] and, when aggregated, are consistent with macro-

evidence regarding gross job creation and job destruction over the cycle (e.g. Davis and

Haltiwanger, 1992, Davis, et al., 2013, Sedlacek and Sterk, 2017, Haltiwanger et al., 2018

and Elsby et al., 2021). By additionally incorporating on-the-job search, we systematically

characterise and estimate the stochastic relationships between aggregate job creation and

job destruction flows across firms, gross hire and quit flows [churning] by workers across

firms, as well as the persistence and volatility of unemployment and of worker job finding

rates over the cycle.

Figure 1 motivates our approach: using BDS data, it describes yearly gross job cre-

ation flows [JCt] and gross job destruction flows [JDt] by age of firm, normalised by total

employment Nt. To reveal the underlying growth structure of firms, it groups the data

into three firm types: mature firms [those at least 6 years old], young firms [aged be-

tween 1-5 years] and start-ups [those aged less than one year]. Because the majority of

workers are employed in mature firms, gross job creation and gross destruction flows are

largest for this group of firms. Figure 1(a) and (b) show that for both young and mature

firms, gross job creation and job destruction flows are of the same order of magnitude.

Figure 1(b), however, shows that job destruction flows are strongly countercyclical where

every recession coincides with a large spike in gross job destruction flows. In contrast and

to the same scale, Figure 1(a) finds the variation in job creation flows is typically smaller

and less correlated with the business cycle, though the 2008 recession is a clear exception.

Putting this information together, Figure 1(c) identifies the business cycle nature of the

creative destruction process. On average, net job creation is negative in existing young

and mature firms as new, more productive start-ups enter the economy. But the employ-

ment reallocation process is far from smooth with infrequent but large spikes of net job

destruction. Which once again raises the two important questions as originally posed

in Mortensen and Pissarides (1994): (i) why are net job destruction flows so volatile and

(ii) why is the response of net job creation to rising unemployment so weak that recessions
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generate long (persistent) phases of high unemployment?

Figure 1: Job destruction and job creation by firm age

(a) JC / total N (b) JD / total N (c) net JC / total N

Job creation and job destruction flows by firm age from the Business Dynamics Statistics database. The
data give yearly JC and JD flows from 1978 to 2018, and all series are normalised by total economy-wide
employment (specifically, the average of this and last year’s employment, as is standard). Net JC is JC − JD
for each group.

The theoretical framework is based on Klette and Kortum (2004) extended to on-the-

job search; e.g. Lentz and Mortensen (2008), Coles and Mortensen (2016). Different to

the standard free entry approach of the canonical Diamond-Mortensen-Pissarides (DMP)

framework, here instead it takes time for new start-ups and existing firms to discover and

develop new product lines and so create new jobs (a process akin to Diamond, 1982). With

on-the-job search, the terms of trade are not determined competitively but instead by an

efficiency wage distortion: that firms which pay higher wages enjoy lower quit rates and

so firms trade-off paying higher wages against the additional recruitment and training

costs to replace workers who quit. Unlike Burdett and Mortensen (1998), however, wages

are dynamically consistent in that there is no precommitment by firms on future wages

paid. Instead there is an information asymmetry: firm productivity is private informa-

tion. By suitably adapting a standard first price auction structure, equilibrium finds a

higher posted wage signals higher firm productivity and, given that signal, employees

then anticipate higher expected wages in the future (relative to other firms) and so quit

rates fall.1

1The important sequential auctions approach, popularised by Postel-Vinay and Robin (2002), instead
assumes second price auctions. The approaches are not payoff equivalent for rents lost to outside hiring
firms are not the same.
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The paper contributes to the rapidly growing literature on disperse firm growth rates

and the aggregate dynamics of job creation, job destruction and employment; e.g. Schaal

(2017), Bilal et al. (2021), Elsby and Gottfries (2021) and Elsby et al. (2021). A very

useful property of our stochastic equilibrium, as is also the case in Schaal (2017), is that

the aggregate state has finite dimension. Rather than structurally estimate the model

based only on cross section evidence (and then use MIT shocks to consider out-of -steady

state dynamics), here instead we use full estimation on both cross section and business

cycle moments.2 The broader approach yields several new and important insights. For

example defining net job creation rate njc = (JC − JD)/N, Table 2 in the quantitative

section reports the surprising business cycle fact:

• net job creation (njc) is uncorrelated with unemployment.

Although unemployment (U) has seemingly little impact on net job creation rates (njc), it

does not imply there is no systematic business cycle relationship as Figure 2 demonstrates.

Figure 2: Joint cyclicality of U and njc
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Cyclical net job creation rate is constructed from the quarterly data used by Davis, Faberman and Halti-

wanger (2012), updated by these authors, and HP filtered with parameter 105. Cyclical unemployment is
constructed using quarterly data from the Current Population Survey and also HP filtered with parameter

105.

The three US recessions [1990Q2-2018Q4] each generated a large anti-clockwise loop

in (Ut, njct). For example the 2008 recession found unemployment increased quickly as

2Our approach also differs from the recent contribution by Audoly (2021). He also builds on the Coles
and Mortensen (2016) framework but is required to use numerical methods to approximate the infinitely
dimension state space of his stochastic equilibrium in order to analyse its cyclical properties.
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njc fell far below trend value. Of course once njc began to recover the increase in un-

employment slowed and unemployment ultimately recovered once njc rose above trend.

Figure 2 makes transparent that the observed volatility and persistence of cyclical unem-

ployment is directly related to the business cycle properties of net job creation, while njc

is itself uncorrelated with unemployment. Explaining these features of the data raises an

important challenge for any equilibrium theory of unemployment. For example our ap-

proach not only explains the aggregated JC and JD patterns by age of firm as described

in Figure 1, but also the persistence and volatility of unemployment consistent with busi-

ness cycle variations in aggregate job creation and destruction rates [jc = JC/N and

jd = JD/N] and so njc. In contrast the canonical free entry approach is typically crit-

icised for generating counterfactual Beveridge curve correlations in the event of a large

job destruction shock; i.e.vacancy creation rates react too strongly to increased unemploy-

ment.3 The more direct criticism, however, is to ask whether the theory generates data

consistent (jc, jd) dynamics.

The Klette and Kortum (2004) approach generates an equilibrium job creation/job de-

struction process at the firm level which is consistent with Gibrat’s law, that individual

firm growth rates depend on firm productivity but are otherwise independent of firm

size. An important contribution is that we identify the firm start-up and firm specific

productivity processes which generate distributions of firm size by age which are data

consistent. Specifically we follow the Haltiwanger et al. (2017) insight that some new

start-ups might be described as “gazelles”: high productivity start-ups which exhibit

high growth rates and mature into large firms. But there are also less fortunate start-

ups which instead have low productivity, low growth and low survival rates. Because

large mature firms are highly likely to have started life as gazelles, ex-ante start-up het-

erogeneity explains why “young” firms, on average, evolve differently to “mature” firms,

though steady state still implies most firms are small while most workers are employed

in large (mature) firms (which is an important feature of the data). Nevertheless the em-

3A well established literature argues that in a standard DMP matching model, large job destruction
shocks are inconsistent with the data. Coles and Moghaddasi (2018), however, show the difficulties which
arise in the seminal Mortensen and Pissarides (1994) paper, as detailed in the Shimer (2005) critique, are
largely due to the free entry of vacancies assumption. Specifically the free entry approach is problematic
because it implies net job creation flows which are far too elastic for the data (see Figure 3 below). With
a less than infinitely elastic job creation process, for example an entry process akin to Diamond (1982)
as considered here, Coles and Moghaddasi (2018) establish the key Shimer (2005) insight, that large job
destruction shocks yield counterfactual Beveridge curve correlations, no longer applies.
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pirical firm size distributions are not consistent with gazelles being gazelles forever. The

example of Rubik’s Cubes then motivates our approach. Rubik’s Cube manufacturers

initially had very high demand and production expanded quickly, but once everybody

had bought their cube, sales subsequently slumped. Rather than assuming decreasing

returns to scale (see Schaal, 2017, Bilal et al., 2021, Elsby and Gotffries, 2021, Elsby et al.,

2021), Schumpeter product cycles instead suggest a particular time structure for firms:

that an early gazelle phase with a high product price is potentially followed by a period

of stabilization and possible decline. Assuming constant returns to scale but with sunk

capital costs, our approach is to calibrate the firm productivity process so that the firm

size distributions by age are consistent with the data and thus with the typical life cycle

of firms.

By incorporating on-the-job search into the stochastic equilibrium we additionally ad-

dress two important issues. Firstly on-the-job search generates vacancy chains where if an

already employed worker takes a new job created, the worker’s previous employer may

then hire a replacement worker. Because around one half of hires involves an already

employed worker, vacancy chains and replacement hiring explain why gross quit and

hire flows are more volatile than gross job creation flows over the cycle; e.g. Faberman

and Nagypal (2008), Mercan and Schoefer (2020) and Elsby et al. (2021). Allowing on-

the-job search also generates a second channel of job destruction not through layoff but

instead by not replacing workers who quit. This job destruction channel has important

implications for unemployed worker job finding rates. For example (and ignoring for the

moment exogenous quits into unemployment) hires out of unemployment HUE
t satisfy

JCt = HUE
t + JDQ

t (1)

where JCt describes the flow of new jobs created, re-interpreted instead as new vacancy

chains created, while the right hand side describes the corresponding destruction of va-

cancy chains which occurs when either the job is taken by an unemployed worker HUE
t ,

or by a worker who quits and the previous employer declines to hire a replacement JDQ
t .

By directly crowding out re-employment flows HUE
t this job destruction channel has im-

portant business cycle implications. For example, unemployed worker job finding rates

over the cycle are typically measured as HUE
t /Ut. Taking on-the-job search into account,
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consider its log decomposition:

log
HUE

t

Ut
= log

HUE
t

JCt
+ log

JCt

Ut
. (2)

The first term HUE
t /JCt, describes job creation yield, the fraction of new jobs created which

result in a worker being hired out of unemployment, where equation (1) establishes that

JDQ
t 6= 0 implies HUE

t /JCt 6= 1. The second term JCt/Ut instead describes the gross flow

of new jobs created per unemployed worker.

Figure 3: Job finding rate decomposition

(a) Decomposing UE rate (b) JC vs. U

Left panel implements the decomposition in (2). JC flow is the quarterly flow from the Davis, Faberman,
and Haltiwanger (2012) dataset, and the UE hiring flow is computed from the Current Population Survey
following Shimer (2005). U gives the unemployment stock. Right panel plots the JC flow and U series

separately. All series are logged and HP-filtered with parameter 105.

Figure 3(a) uses data from Davis et al. (2012) and plots these three items where, con-

sistent with the standard view, job finding rates HUE
t /Ut vary widely over the cycle and

are highly persistent. Note, however, that job creation yield HUE
t /JCt actually increases

in the recession: a new job created is more likely to result in the hiring of an unemployed

worker. The model reproduces this feature of the data and explains it by crowding out,

that higher unemployment crowds out on-the-job search and so both quits and JDQ fall

in the recession. The crucial insight, however, is that despite this increase in yield, there

is a steep fall in job finding rates following a recession because of the even steeper fall

in jobs created per unemployed worker JCt/Ut. Furthermore Figure 3(b) demonstrates

this occurs not because JC flows fall dramatically following the recession but because JC

responds weakly to increasing unemployment; i.e. job finding rates fall steeply in the re-
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cession because there are so many more unemployed workers chasing the relatively few

new jobs being created per unemployed worker.

Finally our approach also resolves a seeming puzzle: although there is the well-known

large firm wage effect, that firm size and wages paid are positively correlated (Brown

and Medoff, 1989), and that job to job quits are typically to higher wage paying firms,

Haltiwanger et al. (2018) find there is no systematic drift of workers from small to large

firms. Our estimated model also exhibits these properties.

The paper is structured as follows. Section 2 describes the model, and Section 3 derives

the equilibrium. Section 4 details the estimation of the quantitative model and steady-

state results. Section 5 gives the business cycle results, and Section 6 concludes.

2 The Model

Time t is continuous, has an infinite horizon and we consider a stochastic equilibrium

with aggregate shocks. There is a unit measure of equally productive workers who are

risk neutral, infinitely lived and each has the same discount rate r > 0. At any point

in time each worker is either employed (earning a wage w) or unemployed (with home

production b > 0). Unemployed workers receive job offers according to a Poisson process

with time varying parameter λ0t, where a job offer is considered a random draw from the

set of hiring firms. There is on-the-job search where employed workers instead receive

job offers at rate λ1t = φλ0t where φ ∈ (0, 1] is an exogenous parameter. In what follows

λ0t, λ1t are endogenous objects where a Markov equilibrium determines λ0t = λ0(Ωt)

and λ1t = φλ0(Ωt) with Ωt describing the aggregate state.

Firms are heterogeneous, risk neutral and have the same discount rate r > 0. For

ease of exposition we initially assume a continuum of firm productivity states i ∈ [0, 1]

but in the application shall restrict to finite states. There are constant returns to produc-

tion: given aggregate productivity s ∈ {1, 2, .., S}, firm i ∈ [0, 1] with integer n ∈ N
+

employees generates flow revenue nps(i) which is strictly increasing in i and s.

Unlike the matching function approach, here there are no “search frictions” as usually

considered. Instead there is stock-flow matching where the stock of unemployed workers

[on the long side of the market] matches immediately with the inflow of new jobs [on

the short-side of the market]; e.g. Shapiro and Stiglitz (1984), Coles and Smith (1998)
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among many others. Because matching is sequential and random, the equilibrium might

be considered a limiting random matching equilibrium as frictions become small. The

formal assumption is that by paying hiring cost c0 the firm immediately and randomly

fills a job from the set of workers who prefer this job to their current position (taking into

account on-the-job search effectiveness φ < 1). c0 thus depends on the direct recruitment

and training costs of hiring a new employee. On the other side of the market, however, a

positive stock of unemployed workers and a finite flow of new jobs implies it takes time

for unemployed workers to obtain work, where random matching yields crowding out

effects in the sense that already employed workers (who seek better paid employment)

adversely affect the matching opportunities of the unemployed.

Following Coles and Mortensen (2016) we assume firms cannot precommit to future

wages and do not observe outside job offers (i.e. there is no job offer matching). Each firm

thus pays a sequence of spot wages to each of its [equally productive] employees. The

firm’s productivity state i is private information and so, in a Bayesian equilibrium, the

firm’s posted wage is a signal of its productivity. Of course a signalling equilibrium im-

plies the firm’s wage strategy potentially depends on its entire wage posting history. Fur-

thermore different employees are hired at different dates and so observe different parts

of that wage history. In the stationary [Markov Bayesian] equilibrium considered here,

the wage structure is analogous to that of a first price auction with independent private

values, where hiring firms with higher [private] productivities bid strictly higher wages.

Because there are repeated transactions, however, where each firm typically employs the

same workers from day to day, the auction structure is not equivalent to a static one-shot

first price auction. Instead with repeated trade, the current wage is a predictor of future

wages. The key assumption for tractability is each firm’s productivity follows a positively

autocorrelated Markov process so that a high productivity firm is more likely to have high

productivity in the future.

Because higher i firms have higher values, the auction structure finds higher i firms

bid higher wages and the wage offer strategies of hiring firms fully reveal their state i.

Should a firm cut its wage, its employees believe it has received an adverse i shock and,

anticipating lower wages in the future, worker quit rates increase [to higher wage paying

firms]. Because replacing a worker who quits is costly, each firm trades-off paying lower

wages against a higher quit rate. We adopt the tie-breaking conventions that the worker
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quits when indifferent and that the firm invests if indifferent. There is no recall of rejected

job offers. Indeed if a worker rejects a job offer, equilibrium finds the job is anyway filled

by someone else.

The equilibrium framework allows rich micro-firm dynamics. There is firm turnover

where, on start-up [described below], a new firm has n0 ∈ {1, 2, .., N0 + 1} employees and

initial productivity i considered a random draw from the uniform distribution U[0, 1].

While the firm survives it is subject to a wide variety of shocks:

(i) Aggregate productivity shocks: given current state s ∈ {1, 2, .., S}, an aggregate pro-

ductivity shock occurs at exogenous rate αa ≥ 0 and transition matrix Υss′ describes the

probability the new state is s′;

(ii) Firm specific productivity shocks: at exogenous rate αγ ≥ 0 a firm i has new pro-

ductivity i′ ∈ [0, 1] considered a random draw from c.d.f. Γ(i′|i). For the moment we

shall assume no mass points in Γ(.) but shall relax this for the application. The transition

probabilities Γ(.) satisfy first order stochastic dominance so that higher state i firms are

more likely to be higher productivity firms in the entire future;

(iii) Firm level job creation is described by an idiosyncratic growth process: an expansion

opportunity occurs at firm (i, n) according to a Poisson process with parameter µ1n where

µ1 > 0 is exogenous. Associated with any expansion opportunity is an idiosyncratic

capital investment cost cJC ≥ 0 considered a random draw from cdf H JC(.). If the firm

invests, it pays cJC and so creates an additional [unfilled] job. The post is then filled by

paying an additional recruitment cost c0 ≥ 0 whereupon the firm’s size increases to n + 1

and one job is created. If the firm declines the expansion opportunity, its firm size n

remains unchanged and there is no recall;

(iv) Firm level downsizing: idiosyncratic capital destruction shocks occur at an exoge-

nous rate δD. If a unit of capital is destroyed, the firm can re-invest at cost cJD ≥ 0 con-

sidered a random draw from H JD(.). If the firm re-invests the firm’s size n is unchanged

and JD = 0. If the firm does not re-invest, the corresponding employee is laid-off into

unemployment and the firm downsizes to n − 1 with one job destroyed.

(v) Quit shocks: employees may receive a preferred outside offer and so quit. Whenever

a quit occurs, the firm has the option of paying a recruitment cost c0 > 0 to hire a replace-

ment employee. If it does so, firm size n remains unchanged with JD = 0. If instead the
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firm chooses not to hire a replacement employee, firm size falls to n − 1 and one job is

destroyed.

(vi) Exogenous firm exit shocks: at exogenous rate δF a firm experiences an exit shock

and closes down with n jobs destroyed.

(vii) Exogenous separations: an employee separates into unemployment at exogenous

rate λu and the firm then decides whether to hire a replacement. In the data it is am-

biguous whether such a separation is a layoff or a quit. For ease of exposition, the theory

section considers exogenous separations as quits. The quantitative section, however, cal-

ibrates λu to match the aggregate layoff rate of firms.

There is a unit measure of entrepreneurs who independently seek business ventures.

At rate µ0 an entrepreneur identifies a possible business venture whose investment cost

cE ≥ 0 is considered an independent random draw from cost distribution HE(.). If the

entrepreneur chooses not to invest, the venture is lost with no recall. If the entrepreneur

invests, a start-up is created with a single employee drawn randomly from the pool of

unemployed workers. Its productivity i ∼ U[0, 1] is then revealed at which point we

refer to the start-up as a new firm. The new firm thus has a single employee, is in state

i and subsequently pays wages and expands/contracts like all other existing firms. For

calibration purposes, however, we suppose each new firm also has N0 immediate poten-

tial expansion jobs where N0 ∈ N
+ is exogenous. The job creation process is the same as

for existing firms: associated with each potential expansion is an independent cost draw

cJC ∼ H JC and recruitment cost c0 to hire a worker. If the new firm invests its initial

size n0 increases by 1. If the new firm does not invest, the expansion opportunity is lost

with no recall. Hence each new firm begins life with initial employment n0 = 1 + ñi

where hires ñi are a binomially distributed random variable with N0 independent trials

and an [endogenous] probability of investment which depends on (i, Ω). Consistent with

the data, this extension allows that many new firms have starting employment n0 > 1

while allowing that start-up size is potentially sensitive to the aggregate state Ωt. This

completes the description of the model.

Some Preliminary Comments: Events (iii)-(iv) describe hold-up problems at the

firm’s job creation and job destruction margins. Although hold-up often leads to inef-

ficient outcomes, this is not necessarily the case (e.g. Hosios, 1991). Nevertheless outside
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of a competitive equilibrium, an optimal contract might require employees to contribute

to [firm specific] re-investment costs. We rule this out. Rather than introduce a compli-

cated negotiating problem where such investments may not be observable/verifiable by

workers, and given the firm’s productivity i is already private information, the frame-

work simply adopts a standard hold-up structure: the firm either immediately invests or

the opportunity is lost. That is not to say that wages are unaffected by such costs, for

the re-investment process generates a positive user cost of capital which reduces match

surplus. The hold-up problem essentially implies wages paid reflect the [expected] user

cost of capital rather than specific realisations.

Because a start-up (exogenously) recruits one unemployed worker with no crowding

out by employed workers, we consider that recruitment channel separately from the anal-

ysis that follows. Of course we take all recruitments into account when describing gross

job creation flows. Throughout we distinguish between rates and flows by using lower

case to describe rates; e.g. jc(i, Ω) will denote the job creation rate per employee at in-

cumbent firms, and upper case JC(i, Ω) will denote the total job creation flow across all

incumbent and entrant firms.

3 Equilibrium

Because a dynamic signalling equilibrium with repeated trade, aggregate productivity

shocks and (privately observed) firm specific productivity shocks is complex, we only

consider stationary [Markov Bayesian] equilibria with the following properties. Let Ut

denote the measure of workers who are unemployed at date t and let Gt(i) denote the

fraction of employed workers at firms no greater than i ∈ [0, 1]. For ease of exposition

we assume Gt(.) has a connected support and that its density exists. If st ∈ {1, 2, .., S}

is aggregate productivity at date t, the aggregate state is Ωt = (st, Ut, Gt(.)).4 The sta-

tionary [Markov Bayesian] equilibrium implies each firm is fully described by (i, n, Ω).

Reflecting the constant returns to scale structure, optimality also implies the wage and

investment strategies of firms are size independent. At first sight this seems inconsistent

with the large firm wage effect, that wages paid are positively correlated with firm size.

4Note this aggregate state is infinitely dimensional. Importantly we will show that it reduces to a finite
vector when we instead consider a finite set of productivity states i ∈ {1, 2, .., I}.
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The approach also implies a version of Gibrat’s Law which some argue is not consistent

with data on firm growth outcomes. The quantitative section, however, finds there is no

inconsistency once we allow for ex-ante new firm heterogeneity, where “gazelles” evolve

differently to other new firms.

Definition 1 (Stationary equilibrium). For Ω = (s, U, G(.)), a stationary [Markov Bayesian]

equilibrium is the following set of functions:

Existing firms (i, n, Ω):

1. w(i, Ω) is the profit maximising wage strategy of each firm (i, n, Ω);

2. jc(i, Ω) ≥ 0 is the profit maximising job creation rate per employee, and so n[jc(i, Ω)]

describes its expected gross job creation flow;

3. jd(i, Ω) ≥ 0 is the profit maximising job destruction rate per employee, and so n[jd(i, Ω)]

describes its expected gross job destruction flow;

4. h(i, Ω) is the optimal hiring rate per employee, and so n[h(i, Ω)] describes its expected gross

hire flow;

New firms (i, n0, Ω):

5. PE(Ω) is the probability an entrepreneur invests in a start-up in state Ω and, given realised

i, its starting size n0 = 1 + ñ(i, Ω) maximises expected profit;

Worker search:

6. F(w, Ω) is the distribution of wage offers across (new and existing) firms;

7. λ0(Ω) and λ1(Ω) are the corresponding job offer arrival rates for unemployed and employed

workers respectively;

8. q̂(w, Ω) is the optimal quit rate of a worker employed at a firm paying wage w;

9. employed and unemployed workers use job search strategies to maximise expected lifetime

value where given any wage paid w, the worker’s belief on the firm’s underlying state i is

consistent with the set of equilibrium wage strategies and Bayes’ rule;

Markov restriction:

10. Ω follows a first order Markov process consistent with the equilibrium strategies of firms

and workers, where µ0PE(Ω) describes the additional inflow of unemployed workers into

new start-ups and δF is the exogenous closure of firms through bankruptcy;
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11. q(i, Ω) = q̂(w(i, Ω), Ω) is the equilibrium quit rate per employee at productivity i firms.

A stationary equilibrium is a complex object, especially because a Bayesian equilib-

rium requires a complete description of worker beliefs for all possible wage announce-

ments. Coles and Mortensen (2016) show that without restrictions on out-of-equilibrium

beliefs, it is possible to support a plethora of equilibria. Such possibilities, however, are

ruled out by the following restriction.

Assumption 1 (Monotone Beliefs). For any Ω, worker beliefs on the firm’s state i is first order

stochastically increasing in the posted wage.

The restriction to monotone beliefs rules out punishment strategies. For example con-

sider a posted wage w′ where there does not exist any firm i′ ∈ [0, 1] with w′ = w(i′, Ω).

If firm i increases its wage paid to w′
> w(i, Ω), it is consistent with a Bayesian equilib-

rium that its employees then believe the firm’s state i = 0 [the least productive state] and

the higher wage paid is then punished by an increased higher quit rate. Such punishment

strategies can always be used to deter firms from offering higher wages. Monotone beliefs

rules this out: firms which pay higher wages induce more favourable worker beliefs on

its productivity i. The arguments in Coles and Mortensen (2016) establish the following

Claim which we state here without proof.

Claim 1. A stationary equilibrium with monotone beliefs implies the job offer wage distribution

F(w, .) is continuous and has a connected support.

The Claim describes a standard property in the equilibrium wage dispersion litera-

ture – essentially the monotonicity restriction ensures that standard arguments apply. An

important corollary is that wage strategies w(i, Ω) must then be continuous and strictly

increasing in i across hiring firms. Consider now wt defined as the lowest wage paid in

the market. Coles and Mortensen (2016) assumes φ = 1; i.e. λ0(Ω) = λ1(Ω), from which

it followed that the reservation wage of workers R(Ωt) = b [worker home productivity]

and the lowest wage paid wt = R(Ωt) = b. Assuming φ < 1, however, is the more em-

pirically reasonable case. For this case it is straightforward to show workers still adopt a

reservation wage strategy Rt = R(Ωt) and equilibrium wage posting implies the lowest

wage offered wt = Rt. The conditions which determine R(Ωt), however, are complex,

and to focus on firm growth and turnover, we simplify by assuming there is a binding
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minimum wage policy: the government imposes a minimum wage wmin below which

firms cannot pay. Thus although unemployed workers are willing to accept a lower start-

ing wage w0 = R(Ω) < wmin, the minimum wage policy constrains the lowest wage paid

w = wmin.5

To fix ideas we quickly describe the key features of the stationary equilibrium, which

we will derive formally in the following sections. In the following, firm i = ic(Ω) is the

marginal surviving firm [the firm closure margin] while firm i = ih(Ω) is indifferent to

replacing a worker who quits [the hiring margin]. Equilibrium finds firms with i < ic

immediately close down, firms with i ∈ [ic, ih) survive but do not recruit, while firms

i ≥ ih have a strictly positive hire flow for they (at least) replace workers who quit. The

equilibrium wage strategies will be found to satisfy:

1. w(i, Ω) = wmin for i ∈ [ic, ih];

2. w(i, Ω) is continuous and strictly increasing in i for i ≥ ih.
(3)

Although the distribution of wage offers across hiring firms contains no mass points,

that does not imply there is no mass point in the distribution of wages paid. Low pro-

ductivity firms with i ∈ [ic, ih) are in decline – they survive but do not invest in new job

creation and do not replace workers who quit. Equilibrium finds all such firms pay the

minimum wage. Bayes rule, (3), and monotone beliefs then imply the following equilib-

rium worker beliefs:

Belief 1: if a firm posts wage w′ ∈ (wmin, w] where w = w(1, Ω), the worker believes the

firm’s productivity i = î(w′, Ω) where î is the unique solution to w(î, Ω) = w′; i.e. beliefs

î are the inverse of the equilibrium wage function;

Belief 2: if a firm posts wage w′ = wmin and it is an outside job offer the worker believes

the firm’s productivity î = ih for it is a hiring firm. At a non-hiring firm an employee

instead believes î ∈ [ic, ih] where the specific choice plays no important role;

Belief 3: if a firm posts wage w′
> w = w(1, Ω), monotonicity implies the worker believes

firm productivity î = 1.

These beliefs imply an employee holding an outside offer will quit if and only if the

wage offered by the outside firm is (weakly) higher than the worker’s current wage w′.

5Formally we assume b sufficiently small that R(Ωt) < wmin for all realised Ωt.
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This follows because a higher outside offer and Beliefs 1-3 imply the outside firm is be-

lieved to have higher productivity, and first order stochastic dominance in Γ(.) and (3)

then imply the outside firm is more likely to post higher wages in the entire future. Hence

the quit rate of each worker at a continuing firm (i, n, Ω) which posts wage w′ is

q̂(w′, Ω) = λ1(Ω)[1 − F(w′, Ω)] + λu. (4)

Since all firms below the hiring margin (i < ih(Ω)) pay wage wmin, equation (4) implies

that they all have common quit rate: q(i, Ω) = q̂(wmin, Ω) = λ1(Ω) + λu for all i < ih(Ω).

Given this characterisation of worker quit behaviour, we now consider the optimal

choices of (existing) firms (i, n, Ω) and (new) firms (i, n0, Ω).

3.1 Firm Optimality [Existing Firms]

Consider any existing firm (i, n, Ω) in a stationary equilibrium. Standard arguments im-

ply the following Bellman equation for continuing firms with value Π(i, n, Ω) > 0:

rΠ(i, n, Ω) = max
w′≥wmin

n[ps(i)− w′] + nq̂(w′, Ω)max[Π(i, n − 1, Ω)− Π(i, n, Ω),−c0]

+ µ1nE max[Π(i, n + 1, Ω)− Π(i, n, Ω)− [c0 + cJC], 0]

+ δDnE max[Π(i, n − 1, Ω)− Π(i, n, Ω),−cJD] + δF[−Π(i, n, Ω)]

+ αγ

∫ 1

0
[max[Π(j, n, Ω), 0]− Π(i, n, Ω)] dΓ(j|i)

+ αa ∑
s′

Υss′ [Π(i, n, Ω(s′))− Π(i, n, Ω(s))] +
∂Π(i, n, Ω)

∂t
.

(5)

Given posted wage w′ ≥ wmin, the firm’s flow return equals its flow profit, plus the

capital gains which arise when (i) a quit occurs (where the firm has the option of paying

c0 to hire a replacement), (ii) an expansion opportunity occurs with cost cJC ∼ H JC, (iii) a

downsizing shock occurs with cost cJD ∼ H JD, (iv) a bankruptcy shock occurs, (v) a firm

specific productivity shock occurs, (vi) an aggregate productivity shock occurs and the

final term is shorthand for describing the change in Π(.) as the state variables (Ut, Gt(.))

evolve endogenously over time.

The constant returns structure implies that value is linear in employment, giving
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Π(i, n, Ω) ≡ nv(i, Ω), and (5) simplifies to

(r + αγ + αa + δF)v(i, Ω) = max
w′≥wmin

ps(i)− w′ − q̂(w′, Ω)min[v(i, Ω), c0]

+ µ1E max[v(i, Ω)− [c0 + cJC], 0]− δDEc min[v(i, Ω), cJD]

+ αγ

∫ 1

0
max[v(j, Ω), 0]dΓ(j|i) + αa ∑

s′
Υss′ [v(i, Ω(s′))] +

∂v(i, Ω)

∂t
.

(6)

v(i, Ω) is the key element in what follows and describes the firm’s expected value per

employee. Bellman equation (6) implies the following optimal investment policies:

1. if an employee quits, the firm hires a replacement if and only if v(i, Ω) ≥ c0 [other-

wise JD = 1];

2. if an expansion opportunity arises with cost cJC, the firm invests and expands if and

only if v(i, Ω) ≥ cJC + c0 [whereupon JC = 1];

3. if a capital destruction shock occurs with cost cJD, the firm re-invests if and only if

v(i, Ω) ≥ cJD [otherwise JD = 1].

Because first order stochastic dominance in Γ(.|i) implies equilibrium firm values are

increasing in i, the firm closure margin ic is identified where v(ic, Ω) = 0. The hiring

margin ih is instead given by v(ih, Ω) = c0 where firms with i < ih have v(ih, Ω) < c0

and so do not hire. Finally note that a firm only expands when an expansion opportunity

arises with investment cost cJC
< v(i, Ω) − c0. Hence the job creation rate jc(i, Ω) =

µ1H JC(v(i, Ω)− c0) for i ≥ ih and is zero otherwise.

3.2 Firm Optimality [New Firms]

Suppose in state Ω, an entrepreneur creates a new firm with revealed productivity i ∼

U[0, 1]. If i < ic the entrepreneur closes the firm [because v(i, Ω) < 0]. If i ∈ [ic, ih)

the firm survives but the entrepreneur does not invest in new jobs [because v(i, Ω) < c0]

and so initial firm size n0 = 1. For i ≥ ih, the entrepreneur invests in each expansion

opportunity if and only if realised cJC ≤ v(i, Ω) − c0. Thus start-up employment n0 =

1+ ñ(i, Ω) where ñ(i, Ω) is a binomially distributed random variable with expected value
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N0H JC(v(i, Ω)− c0). The expected value of a start-up is therefore

ΠSU(Ω) =
∫ 1

ic

{
v(i, Ω) + N0

∫ v(i,Ω)−c0

0
[v(i, Ω)− c0 − c′]dH JC(c′)

}
di.

Hence given the investment opportunity, the entrepreneur proceeds with a new start-up

when cE ≤ ΠSU(Ω) and so PE(Ω) = HE(ΠSU(Ω)). Initial firm size [in expectation] is

then En0 = 1 + N0H JC(v(i, Ω)− c0), noting that H JC(v(i, Ω)− c0) = 0 for all i < ih.

The above establishes the characterisation of firm level job creation, job destruction

and hire strategies, which we summarise in the following proposition.

Proposition 1 (Optimal job creation, job destruction, and hiring policies). A stationary

equilibrium with monotone beliefs implies:

(i) for existing firms (i, n, Ω) with i ≥ ih:

jc(i, Ω) = µ1H JC(v(i, Ω)− c0)

jd(i, Ω) = δD[1 − H JD(v(i, Ω))]

and because these firms replace workers who quit, their hiring rate is

h(i, Ω) = q(i, Ω) + jc(i, Ω); (7)

(ii) for existing firms (i, n, Ω) with i ∈ [ic, ih), jc(i, Ω) = 0, and their quit rate is q(i, Ω) =

λ1 + λu. As these firms do not replace workers who quit, their hiring rate is h(i, Ω) = 0, and

jd(i, Ω) = δD[1 − H JD(v(i, Ω))] + λ1 + λu.

(iii) for new firms (i, Ω), optimal investment implies expected starting firm size

En0 = 1 +
N0

µ1
jc(i, Ω).

For (iii), we used that H JC(v(i, Ω)− c0) = jc(i, Ω)/µ1.

To calculate the total job creation flow, by the definition of G, [1 − U]G′(i)jc(i, Ω) de-

scribes the total job creation flow from all existing i ≥ ih firms. Similarly the uniform

distribution implies gross job creation flows (excluding the initial unemployed worker)

at new i ≥ ih firms is µ0PE(Ω)N0H JC(v(i, Ω) − c0). Adding both flows together yields

the total job creation flow by firm productivity

JC(i, Ω) =

{
[1 − U]G′(i) +

µ0

µ1
N0PE(Ω)

}
jc(i, Ω) (8)
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Doing the same for job destruction and adding job destruction due to the firm exit shock

similarly yields the total job destruction flow by firm productivity

JD(i, Ω) = [1 − U]G′(i)
{

δD[1 − H JD(v(i, Ω))] + δF + 1(i < ih)(λu + λ1)
}

(9)

Given this characterisation of optimal hiring strategies and job flows, the next step is to

determine the equilibrium wage strategies.

3.3 Equilibrium Wages w(i, Ω)

For any firm (i, n, Ω) with v(i, Ω) > 0, combining (4) with the first line of (6) implies that

the optimal wage satisfies:

w(i, Ω) = argminw′≥wmin

[
w′ + λ1[1 − F(w′, Ω)]min[v(i, Ω), c0]

]
. (10)

Equation (10) describes the equilibrium trade-off between paying lower wages and trig-

gering a higher [costly] quit rate. Identifying the equilibrium wage strategies is a well

known fixed point problem where the individually optimal wage strategies w(i, Ω) must,

when aggregated, yield the assumed distribution of offered wages F(w′, Ω). This fixed

point problem is additionally complicated by being outside of steady state with an en-

dogenously evolving distribution of employment across heterogeneous firms.

The first step to characterising the equilibrium wage outcome is to construct the arrival

rate of job offers λ1[1 − F(w, .)]. Following Proposition 1, the equilibrium flow of hires

at each existing firm (i, n, Ω) is nh(i, Ω) = n[q(i, Ω) + jc(i, Ω)] if i ≥ ih, and 0 otherwise.

Hence by definition of G, [1−U]G′(i)[q(i, Ω)+ jc(i, Ω)] describes the total gross hire flow

from all existing i ≥ ih firms. Similarly the uniform distribution implies gross hire flows

at new i ≥ ih firms is µ0PE(Ω)N0H JC(v(i, Ω) − c0). Adding both flows together yields

gross hire flows

H(i, Ω) =





0 if i < ih

[1 − U]G′(i)q(i, Ω) + JC(i, Ω) if i ≥ ih,
(11)

where for i ≥ ih the first term describes hire flows due to replacing workers who quit at

existing firms and the second term is hire flows due to endogenous job creation by both

existing and new firms. Finally, H(i, Ω) = 0 for i < ih, since neither incumbents nor

entrants hire.
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Although job offers are randomly made, φ < 1 implies the unemployed receive rel-

atively more offers. Let λ = Uλ0 + (1 − U)λ1 denote the total flow of job offers and

so fraction α = [Uλ0]/λ = U/(U + φ(1 − U)) of job offers go to the unemployed, the

remaining 1 − α go to employed workers. Note further that an equilibrium job offer by

firm i ≥ ih is only accepted by unemployed workers and those employed at firms i′ ≤ i.

Hence random contacts implies a job offer by hiring firm i is only accepted with proba-

bility α + (1 − α)G(i). Thus if state i firms have gross hiring flows H(i, Ω), it necessarily

follows that the gross flow of job offers by such firms is H(i, Ω)/[α + (1 − α)G(i)] where

the denominator takes into account that not all job offers are accepted. Aggregating across

i now identifies the total flow of job offers:

λ(Ω) =
∫ 1

0

H(i, Ω)

α + (1 − α)G(i)
di. (12)

Furthermore monotonicity of the wage strategies implies the fraction of wage offers greater

than w′ is:

1 − F(w′, Ω) =

∫ 1
i′

H(i,Ω)
α+(1−α)G(i)

di
∫ 1

0
H(i,Ω)

α+(1−α)G(i)
di

=
1

λ

∫ 1

i′

H(i, Ω)

α + (1 − α)G(i)
di,

where i′ solves w(i′, Ω) = w′. Hence the wage offer arrival rate for employed workers

with current wage w′ is:

λ1[1 − F(w′, .)] =
λ1

λ

∫ 1

î(w′,Ω)

H(i, Ω)

α + (1 − α)G(i)
di. (13)

Using (13) in (10) now implies Lemma 1 below.

Lemma 1. A stationary equilibrium with monotone beliefs implies w(i, Ω) solves:

w(i, Ω) = argminw′≥wmin

[
w′ +

[
λ1

λ

∫ 1

î(w′,Ω)

H(i, Ω)

α + (1 − α)G(i)
di

]
min[v(i, Ω), c0]

]
. (14)

We can now describe equilibrium wages. Consider any hiring firm i > ih and suppose

it posts optimal wage w′
> wmin. The necessary condition for optimal w′ implies

1 −
λ1

λ

H(î, Ω)

α + (1 − α)G(î)
c0

dî

dw′
= 0,

where paying a marginally higher wage signals a marginally higher productivity î and so

yields a corresponding marginal fall in the quit rate. But a stationary equilibrium requires
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w(i, Ω) describes the solution to this first order condition. Because î is the inverse wage

function, the equilibrium wage equation must therefore satisfy the differential equation:

dw

di
=

λ1

λ

H(i, Ω)

α + (1 − α)G(i)
c0 for i > ih,

and integration now yields Proposition 2.6

Proposition 2 (Optimal wages). A stationary equilibrium with monotone beliefs implies

w(i, Ω) =





wmin if i ∈ [ic, ih)

wmin +
c0λ1

λ

∫ i
ih

H(j,Ω)
α+(1−α)G(j)

dj if i ≥ ih.
(15)

Given these wage strategies, it is easy to verify that firms i < ih (who have v < c0)

strictly prefer to post wage w = wmin [paying a higher wage reduces the employee quit

rate but the firm’s gain by doing so v < c0 and this wage deviation is profit reduc-

ing]. Conversely each hiring firm is indifferent to posting any wage w ∈ [wmin, w]. This

property arises because all hiring firms face the same trade-off: paying a higher wage

marginally reduces the quit rate but the replacement recruitment cost c0 is the same for

all.7,8

Because all (surviving) firms i ∈ [ic, ih] strictly prefer to post wage w = wmin, while all

6Proposition 2 implies equilibrium wage dispersion depends directly on c0. If hiring costs c0 → 0, so
that it is near costless to hiring replacement workers, then w → wmin and equilibrium converges to the
Diamond paradox.

7The wage equation can also be usefully expressed in terms of the firm’s equilibrium quit rate. Combin-
ing (15) with (17) (given below) yields w(i, Ω) = wmin + c0 (q0(Ω)− q(i, Ω)), where q0(Ω) = λ1(Ω) + λu

denotes the quit rate at non-hiring firms at the bottom of the ladder. This makes explicit the retention
motive, by showing that firms achieve lower quit rates by paying higher wages.

8An extended approach might instead assume it takes time ε > 0 to fill a vacancy and so, taking foregone
profit into account during the recruitment phase, the cost of a quit c(i) is then strictly increasing in i. The

arguments above would yield equilibrium wage equation dw
di = λ1

λ
H(i)

α+(1−α)G(i)
c(i). Although each hiring

firm i > ih remains marginally indifferent to raising its wage to reduce its quit rate, equilibrium implies
higher productivity firms strictly prefer to bid higher equilibrium wages for their replacement costs are
greater. A useful interpretation of Proposition 2 is that it describes (the limiting) equilibrium when the time
to fill a vacancy becomes small.
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firms i ≥ ih are indifferent to doing so, Proposition 1 implies (6) simplifies to:

(r + αγ + αa + δF)v(i, Ω) = ps(i)− wmin − [λ1(Ω) + λu]min[v(i, Ω), c0]

+ µ1E max[v(i, Ω)− [c0 + cJC], 0]− δDEc min[v(i, Ω), cJD]

+ αγ

∫ 1

0
max[v(j, Ω), 0]dΓ(j|i) + αa ∑

s′
Υss′ [v(i, Ω(s′))] +

∂v(i, Ω)

∂t
,

(16)

recalling that q̂(wmin, Ω) = λ1(Ω) + λu, as implied by (4). The first line of (16) reveals

the efficiency wage structure of this approach: that given firms set wages optimally, it

is the outside job offer rate of employees, λ1(Ω), which drives firm value and thus firm

investment choices. Equation (19) below now closes the model by identifying a closed

form solution for λ1(Ω). Doing this reveals the important role played by vacancy chains.

3.4 Vacancy Chains

The equilibrium job offer rates λ0, λ1 depend on the aggregated hire flows of firms but the

interaction between hires and quits is complicated: Equation (11) shows that hiring flows

depend positively on quit rates due to firms which hire to replace quit workers. Addi-

tionally, standard job ladder logic means that a firm’s quits are determined by the hiring

rates of firms higher up the job ladder. Specifically, combining q(i, Ω) = q̂(w(i, Ω), Ω)

with equations (4) and (13) yields

q(i, Ω) = λu +
λ1

λ

∫ 1

i

H(j, Ω)

α + (1 − α)G(j)
dj. (17)

The interaction between (11) and (17) generates a multiplier effect where quits and hires

positively affect each other. This has the potential to explain both their volatility and why

they track each other over the cycle [as shown in Figure 3(b)]. The proof of Lemma 2

below identifies their closed form solution.

That solution, however, has a simple intuition which reflects the underlying vacancy

chain process, and which we illustrate first. Suppose an existing firm i > ih creates a

new job, either through investment in job creation or because an existing employee is

separated into unemployment and the firm hires a replacement. This creates a vacancy

chain. If the vacancy is filled by an already employed worker but at a firm i′ ≥ ih, the

“vacancy chain” survives in the sense that firm i′ immediately creates a replacement post.
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Conversely if the job is filled by an unemployed worker or a worker employed at i <

ih, the “vacancy chain” is destroyed for there is no replacement job. With stock-flow

matching this process implies

λ0U + λ1[1 − U]G(ih) =
∫ 1

ih

{
JC(i, .) + λu[1 − U]G′(i)

}
di (18)

because the left hand side describes the flow destruction of vacancy chains which must

equal the flow creation of vacancy chains, shown on the right hand side. Combining (18)

with λ1(Ω) = φλ0(Ω) yields the equilibrium job offer arrival rate for employed workers:

λ1(Ω) =
φ
∫ 1

ih {JC(i, .) + λu[1 − U]G′(i)} di

U + φ[1 − U]G(ih)
. (19)

As λ0(Ω) = 1
φ λ1(Ω), equation (19) also controls the re-employment rate of unemployed

workers. There are three crowding out effects. First there is direct crowding out by other

unemployed workers: ceteris paribus a higher U implies lower λ0 and λ1. Second if a

job offer goes to an employed worker in a firm i < ih, the vacancy chain is destroyed

and the employment opportunity is lost. Thus [1 − U]G(ih) also crowds out worker re-

employment rates. But there is also wage crowding out. Consider for example the (most

preferred) unfilled job i = 1. Because all want the best paid job, random offers implies

the probability it is filled by an unemployed worker is U/[U + φ(1 − U)] which is 37%

according to the estimates in the quantitative section. In contrast only employed workers

at firms i ≤ ih will quit to a hiring firm paying minimum wage and so the probability

a minimum wage job is filled by an unemployed worker is then U/[U + φ(1 − U)G(ih)]

which, in steady state, is estimated at 83%. This behaviour generates the job ladder: on-

the-job search especially crowds out unemployed worker job finding prospects at the

highest wage paying firms.

Lemma 2 now identifies the solution for quits and hires across the firm distribution.

Lemma 2. A stationary equilibrium with monotone beliefs implies equilibrium quit rate

q(i, Ω) =





λu + λ1(Ω) if i ∈ [ic, ih)

λu +
φ
∫ 1

i {JC(j,.)+λu[1−U]G′(j)}dj

U+φ[1−U]G(i)
if i ≥ ih,

(20)
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and corresponding hire rate

h(i, Ω) =





0 if i ∈ [ic, ih)

jc(i, Ω) + λu +
φ
∫ 1

i {JC(j,.)+λu[1−U]G′(j)}dj

U+φ[1−U]G(i)
if i ≥ ih.

(21)

Finally, the employed worker offer arrival rate is given by λ1(Ω) = q(ih, Ω)− λu.

Proof of Lemma 2 is in the Online Appendix. Equation (20) reflects the underlying

vacancy chain process but from the perspective of a worker employed at a firm i. The

integral in (20) describes the rate at which new jobs are created at higher wage firms j > i.

For employee i, however, the relevant vacancy chain is destroyed once the job is either

filled by an unemployed worker or by an employed worker at firm i′ < i, for worker i is

not interested in a replacement job i′ < i. Thus U + φ[1 − U]G(i) describes the death rate

of employee i’s vacancy chain and (20) then describes worker i’s equilibrium quit rate.

The hiring policies described in Proposition 1 then yield (21) and note the multiplier

effect. A favourable aggregate productivity shock implies job creation rates increase at

all levels i ≥ ih. Hire flows increase at each i ≥ ih not only because jc(i, Ω) increases but

because greater job creation rates at firms ĩ > i imply more quits and so hire flows ad-

ditionally increase via quit replacement. A second important insight for what follows is

that higher unemployment U not only crowds out unemployed worker job finding rates,

it also reduces worker quit rates. The mechanism reflects the vacancy chain effect: higher

unemployment directly shortens the average length of a vacancy chain and so reduces

(replacement) hires. This explains why, in the data, worker quit rates are positively cor-

related with firm job creation rates but much more strongly [negatively] correlated with

unemployment. We return to this issue in the quantitative section.

Given closed form solution (19) for λ1(Ω) and the resulting turnover dynamics for

(U, G), (16) determines v(.) and so closes the model. For this case, however, the aggregate

state includes the function G(.) which is infinitely dimensional. The next section quickly

specialises the model to finite firm productivity states and formally establishes that the

aggregate state then reduces to a finite vector. This is important for it is then possible to

estimate the model precisely using standard simulated method of moments.
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3.5 Finite Productivities

For estimation purposes we specialise the model to finite I productivity states, so that

firm productivity p = pis with i ∈ {1, 2, ..., I}. A very important property of the model

is that the aggregate state now reduces to a finite vector, a result which holds even in the

extended case with endogenous worker reservation wages R = R(Ω) and φ < 1. This

property does not arise in the standard Burdett and Mortensen (1998) framework, e.g.

Coles (2001), Moscarini and Postel Vinay (2013) and Audoly (2020), and only holds in

Coles and Mortensen (2016) for the special case φ = 1.

The reason for the finite state space result is simple but subtle and reflects the re-

placement hiring process. Define Ni as the measure of workers employed in firms in

state i, the employment vector N = (N1, ..., NI) where adding up implies unemployment

U = 1 − ∑
I
i=1 Ni. We now show the aggregate state reduces to vector Ω = (s, N) with

corresponding vector of firm values v(Ω) = {vi(Ω)}I
i=1, job creation rates {jci(Ω)}I

i=1

and so on as previously determined.

The first step is to extend the notation because firms in the same state i post differ-

ent wages [i.e. there is equilibrium wage dispersion within each state i]. The cleanest

approach is to assume firms select wage strategies as follows: i) On start-up, a firm is

allocated a wage rank χ ∼ U[0, 1). In the stationary equilibrium, firm (i, χ, n, Ω) posts

wage with rank χ in the firm i wage distribution. ii) On receiving a firm specific pro-

ductivity shock with updated productivity i′ the firm also updates to a new wage rank

χ′ ∼ U[0, 1). Because all χ-wage strategies yield equal value, such wage selection is con-

sistent with equilibrium. We choose this wage selection process because it guarantees

first order stochastic dominance in wages, and so a worker will always quit to a higher

wage offer.

To match to the previous notation, consider the following partition of line [0, 1] into a

grid {x0, x1, .., xI} where x0 = 0, xi = xi−1 + γ0i and xI = 1. A firm in state i ∈ {1, 2, ..., I}

with wage rank χ ∈ [0, 1) is correspondingly defined as being in state x ∈ [0, 1] where

x = xi−1 + χ[xi − xi−1]. Each start-up is then equivalently defined as having initial state

x ∼ U[0, 1], where ps(x) = pis for x ∈ [xi−1, xi) ⊂ [0, 1]. The only material difference

to the previous section is that firm productivity ps(x) is increasing in x ∈ [0, 1] but not

strictly increasing. The underlying wage structure (3), however, continues to apply and

(16) describes the equilibrium values vi(Ω).
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So why is the state space finite? The critical property is that despite there being wage

and quit rate dispersion across firms x ∈ [xi−1, xi) within a productivity level, all such

firms have identical expected employment dynamics. Why? Because all firms with i ≥ ih

immediately replace any worker who quits and so their expected employment dynamics

are independent of χ. Additionally, all firms with i < ih post the same wage, wmin and

so their expected employment dynamics are also independent of χ. Now recall that G(x)

describes the distribution of employment across firms x ∈ [0, 1]. By definition of the parti-

tion above, firm x = xi has productivity i + 1 and rank 0 and so G(xi) = ∑
i
j=1 Ni/(1−U).

Because firm size is orthogonal to rank we then have

G(x) =
∑

i−1
j=1 Nj +

x−xi−1
xi−xi−1

Ni

1 − U
for all x ∈ [xi−1, xi).

and so N is indeed a sufficient statistic for G(.). Thus with finite productivity states the

previous analysis all goes through with the added simplification that the aggregate space

is a finite vector Ω = (s, N).

4 Quantitative Analysis

We estimate the model using simulated method of moments and targeting a wide range of

worker and job flows as well as firm dynamics moments for the US economy. We use data

from the Business Dynamics Statistics (BDS), Job Opening and Labor Turnover Survey

(JOLTS), Compustat and the Current Population Survey (CPS) for the period 1990Q2 to

2018Q4. In Sections 4.1 and 4.2 we describe the estimation, with further details in the

Online Appendix. Steady state results are presented in Sections 4.3 and 4.4, and business

cycle results in Section 5.

4.1 Parameterization and pre-set parameters

We set a period to be equal to a month and the time preference parameter to r = 0.0043

to match a yearly discount rate of 5%. We assume S = 3 aggregate productivity states

indexed by s = 1, 2, 3. Let as denote the aggregate productivity shifter in state s such that

it follows a discretised AR(1) process, where a new value is drawn at rate αa = 1/3 from

the transition matrix Υss′ . The latter is obtained using a Rouwenhurst approximation
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for a given autocorrelation parameter ρa and variance parameter σa. These parameters

are chosen to match the persistence and variance of as to that of aggregate output per

worker in the data.9 We further suppose I = 5 firm productivity states to keep the state

space reasonably tractable while allowing us to match well the microdata, indexed by

i = 1, 2, ..., I. A firm in state (i, s) has productivity pis = as pi and equilibrium implies

the aggregate state is Ω = (s, N) where N = {N1, N2, .., N5} is the vector of employment

across states i. Throughout we restrict parameter values so that vi(Ω) > 0 for all Ω,

otherwise entire productivity bins of firms instantaneously close down in the event of

an adverse aggregate shock which generates discrete pulses of job destruction which are

much too volatile for the data.

We now turn to describe firms’ microturnover structure. Define mature states Im =

{2, 3, 4}. While mature firms may transition across these states, we assume any firm in a

mature state i ∈ Im cannot transit to states i = 1, 5; i.e. only entrant firms may have the

extreme productivities i = 5 [gazelles] and i = 1 [struggling entrants]. Allowing more

extreme productivity states for entrant firms is important to account for the difference

in growth outcomes between new start ups and existing (mature) firms. The reason for

3 mature states i ∈ Im is to capture disperse job creation and job destruction outcomes

across mature firms. Specifically, the parameters of the model are chosen to impose the

following properties of each bin in the non-stochastic steady state. Mature firms i = 4

have positive expected growth: they occasionally create new jobs and do not destroy jobs.

Firms in state i = 3 are instead in expected decline, with positive job destruction and zero

job creation. They are, however, still profitable enough that they replace workers who

quit, and thus shrink only due to layoffs. Firms in state i = 2 are the least productive, so

much so that they do not replace workers who quit, and additionally have the highest job

destruction rate. Thus, we impose in the estimation that ih = 3 in steady state, meaning

that only firms with i = 1, 2 do not replace worker quits. The mature states i ∈ Im are

a convenient shorthand for describing different types of (mature) firm behaviors: some

are growing, others are declining, with firm decline being driven by a mix of layoffs and

unreplaced quits.

9Output per worker in the data is constructed using the ratio of real GDP over total employment. In the
model, output per worker and the productivity shifter as are not identical, due to endogenous composition
effects. However, the differences are small (see Table 2) so we calibrate the process of as directly in order to
remove ρa and σa from the estimation routine and save on computation.
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Conditional on survival, all firms receive a firm specific productivity shock at rate

α f =
1
3 [i.e. roughly once a quarter], which is within the range of estimates from the data

(see Online Appendix). We assume firm i ∈ Im transits to state j ∈ Im with probability γj

and so is independent of i. For parsimony we simply set γ3 = γ4 = 1
2 [1 − γ2]. For firms

i = 5 then γ55 describes the probability the firm remains a gazelle and so determines

gazelle persistency. With probability 1 − γ55, the firm otherwise becomes a mature firm

j ∈ Im in proportions γj. Similarly if instead in state i = 1, γ11 is the probability the firm

remains as a struggling entrant. With probability 1 − γ11, the firm instead becomes ma-

ture j ∈ Im in the proportions γj. In this way the transition matrix {γij} is fully described

by the choice of just three parameters (γ2, γ55, γ11). Consistent with this structure, we

assume an entrant firm is a gazelle with probability γ05, a struggling entrant with prob-

ability γ01 and with complementary probability (1 − γ05 − γ01) is a mature firm in states

j ∈ Im with proportions γj. Our quantitative results show that this very simple turnover

structure is sufficiently rich to capture the firm age and size dynamics described in the

data.

The specification of distributions H JC, H JD is central to determining the response of

job creation and job destruction gross flows to aggregate shocks. Following Coles and

Moghaddasi (2018), we specify distributions H JC(.), 1 − H JD(.) which are isoelastic with

respective elasticities ξ JC, ξ JD. In particular, for firms with i ≥ ih the firm level job cre-

ation and job destruction rates are considered as jci(Ω) = µ1[vi(Ω)− c0]
ξ JC and jdi(Ω) =

δJD[vi(Ω))]−ξ JD . A useful motivation is that the typical free entry approach assumes the

job creation margin is infinitely elastic; i.e. entry is infinite when c0 < v(Ω) and so free

entry implies v(Ω) = c0. Our estimation instead identifies the job creation elasticity ξ JC

so that implied gross job creation flows are indeed consistent with the data, and similarly

with ξ JD and job destruction flows. Heterogeneity in firm types also allows a cleansing ef-

fect of recessions: a negative aggregate productivity shock will trigger relatively high job

destruction rates in the lowest surplus states i = 1, 2, though such flows may be relatively

short-lived if employment N1 + N2 quickly falls.

An important challenge is to make the notions of job creation and destruction in our

model equivalent to how they are measured in the data. To do this, we make assumptions

so that each productivity bin only performs job creation or job destruction, but not both.

This is achieved by assuming a lower support for H JC of cJC and an upper support for
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H JD of c̄JD. We place these support parameters to ensure that, in steady state, only firms

in states 1, 2 and 3 destroy jobs after a δD job destruction shock, and only firms in states 4

and 5 create new jobs after a µ1 job creation shock.

To estimate the entry process we parametrise HE(ΠSU(Ω)) = (ΠSU(Ω))ξE to also

generate a constant entry elasticity with respect to the expected value of entry. For quan-

titative reasons we additionally modify the model so that new firms enter with two un-

employed workers, rather than one, which raises the minimum size of entrants to two

workers. In our model, if a firm ever reaches zero employees, the constant returns to

scale structure implies that this is an absorbing state, where the firm never produces or

has positive employment again. We thus treat these firms as having exited, and so we

measure exit in our model as both the bankruptcy shock and firms who drop from one

to zero employees. We set δF = 0.0004 to give a 0.1% yearly exit rate from this shock, to

roughly match the very low exit rate among firms with more than 500 employees in the

BDS data. The remainder of exit in the model is driven by job destruction.

4.2 Estimation Strategy

The above functional forms and the remaining non-pre-set structural parameters of the

model lead to a set of 23 parameters to estimate. Table 1 present all these parameters and

their corresponding targeted moments. Here we briefly discuss the targeted moments,

noting that parameters are jointly estimated.

Firm productivity process To recover the entrant’s productivity process and their

maximum number of unfilled positions, N0, we target the age and employment-age dis-

tributions of firms in 2005 obtained from the BDS. In particular, we target the fraction of

firms at age 0, 1, 2, 3-5, 6-10 and 11-15, the fraction of aggregate employment at firms in

the same age groups. The productivities of the entrant-specific productivity states p1 and

p5, control how large is JC and JD among new entrants relative to older firms. N0 con-

trols the average initial size of entrants, particularly measured size at age 0. The transition

probabilities γ11 and γ55 control for how long entrant JC and JD rates remain elevated.

The entrant probabilities γ01 and γ05 control whether this is experienced by a small or

large share of entrants. In the data, the shares of employment by firm age imply the net

job creation rates of firms of different ages; while the shares of firms by age imply the
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Table 1: Parameter values and target moments

Interpretation Value Source
Pre-set parameters

r Discount rate 0.0043 5% annual interest rate
αa Arrival rate of agg shocks 0.3333 Normalisation
αγ Arrival rate of firm prod shocks 0.3333 Autocorr. of idiosyncratic prod. (see text)
ρa Persistence of aggregate productivity shock 0.7800 Autocorr. of aggregate labour prod.
σa Std. of aggregate productivity shock 0.0120 Std. of aggregate labour prod.
δF Arrival rate of bankruptcy shock 8.3E − 05 Exit rate of firms with size > 500

Firm productivity process
p1 Prod. in state 1 0.9265 Firm age distribution
p2 Prod. in state 2 0.6747 Firm age distribution
p3 Prod. in state 3 0.7133 Std. of idiosyncratic labour prod. = 30%
p4 Prod. in state 4 1.3076 Normalise Y/N = 1
p5 Prod. in state 5 1.1379 Firm age distribution
γ11 Prob. remain in state 1 0.9000 Firm age distribution
γ55 Prob. remain in state 5 0.4885 Firm age distribution
γ01 Share born with prod. 1 0.5191 Firm age distribution
γ05 Share born with prod. 5 0.1001 Firm age distribution
γ2 Prob. mature draw state 2 0.158 80% of quits replaced
N0 Potential unfilled positions of entrants 51.652 Firm age distribution

Cost structure of JC and JD
ξe Elasticity of entry with respect to firm value 3.5139 Std deviation of cyclical firm entry
ξ JC Elasticity of JC with respect to firm value 2.2113 Std deviation of cyclical JC
ξ JD Elasticity of JD with respect to firm value 3.7975 Std deviation of cyclical JD

cJC Lower bound of H JC(.) 0.9504 JC only in states 4 and 5

c̄JD Upper bound of H JD(.) 1.7301 JD only in states 1, 2 and 3
µ0 Firm entry flow 0.0004 Average firm size 22.4 employees
µ1 Arrival rate of capital investment shock 0.0114 Average JC rate = 2.17% per month
δD Arrival rate of capital destruction shock 0.0144 Average JD rate = 2.43% per month
c0 Worker replacement cost 0.7797 Autocorr. of JC and JD

Worker turnover
λu Quit rate to unemployment 0.0087 Worker EU rate 7.78% per quarter
φ Employed fixed search intensity 0.1027 EE rate of 6.81% per quarter
wmin Minimum wage 0.6515 Labour share = 2/3

Calibrated parameter values and source moments. See text and Online Appendix for further details.

different exit rates across age groups, thus informing these parameters.10

In the case of mature firms we use several moments to identify their productivities and

stochastic process. We use p4 to normalise aggregate labour productivity in the model to

one: Y/N = 1. We use p3, particularly its value relative to p4, to target the standard de-

viation of within-firm labour productivity obtained from Compustat, which we estimate

10The estimation finds that the productivity grid is non-monotone, as p1 > p2 and p5 < p4. Nonetheless,
firm values remain monotone, with vi < vi+1 for all i, which is sufficient for the job ladder to be directed
monotonically by i, and hence for our notion of equilibrium to remain well defined. The disconnect be-
tween the ordering of productivities and values occurs simply because the entrant states i = 1, 5 are more
persistent than the mature states.
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to be 30% (see Online Appendix). Further, noting that p2 controls the overall JD and exit

rates of state 2 firms we target the average exit rate of firms consistent with on the overall

distribution of firms by age. The high JD rate in this state means that it drives 37% of

total exit, despite only containing 14% of firms. γ2 controls the equilibrium mass of firms

in state 2, who choose not to replace workers who quit, and so the higher is γ2, the larger

the fraction of firms who do not replace quit workers. Using data from Davis et al. (2012),

we estimate that firms replace around 80% of workers who quit (see Online Appendix)

and target this fraction.11

Cost structure of JC and JD To inform the JC and JD elasticity parameters ξ JC and ξ JD

we target the volatility of the JC and JD rates series obtained from Davis et al. (2012) using

JOLTS data. Both in the model and data, we use an HP-filter with parameter 105 to obtain

the cyclical component these series and compute its standard deviation. The arrival rates

µ1 and δD control the average JC and JD rates, respectively. We target a monthly JD

rate of 2.43%, the average documented in Davis et al. (2012) based on JOLTS data. We

also target a 5.73% unemployment rate, the average from the CPS in our sample, which

requires a 2.17% monthly JC rate (excluding JC from firm entry) to balance employment

flows in steady state. We are careful to account for other sources of job creation (e.g. firm

entry) and job destruction (e.g. unreplaced quits) when computing these series in the

model.

To inform the firm entry elasticity ξe we target the volatility of the firm entry series

obtained from the BDS. The firm entry flow shifter, µ0, is chosen to control the number of

firms in equilibrium. For given targeted total employment N, µ0 controls the equilibrium

number of firms, and hence the average employment per firm. We choose µ0 so that

average firm size (total employment / total number of firms) is equal to 22.4, as in the

BDS data in 2005.

To inform the worker hiring cost, c0, we target the autocorrelation of aggregate JC

and JD rates in the data. Intuitively, the larger is c0 the larger is the general equilibrium

effect that rising unemployment in a recession raises firm value, since firms must pay the

replacement cost c0 less often in recessions. The larger is this offsetting effect, the less

11We additionally validate this estimate by comparing other measures of replacement hiring in our model
to the estimates of Elsby et al. (2021) in the data.
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persistent are JC and JD rates, as they recover faster in recessions.

Worker turnover To estimate the worker turnover parameters, we require the model

to be consistent with the average worker transition rates from Davis et al. (2012). In par-

ticular, we target a quarterly 7.78% layoff rate, which we equate with the EU rate in our

model. We match this rate using layoffs due to job destruction from firms in states 1, 2, 3

and add exogenous separations, λu, to capture that in growing firms in states 4, 5 some

workers transit into unemployment. The relative search intensity of employed workers,

φ, is then chosen to match the quarterly quit rate of 6.81%. Finally, the exogenous mini-

mum wage, wmin, is used to target a labour share of 2/3.

4.3 Steady state results: Micro firm growth rates

The data find that 9.8% of existing firms close per year which, in a steady state, are re-

placed by an equivalent inflow of new start-up firms. Figure 4 shows that the model fits

very well the firm age distribution. Figure 4(a) describes the fraction of workers employed

in firms within a particular age range, while Figure 4(b) describes the fraction of firms in

that age range. Taking into account the range of each age bin, Figure 4(b) implies the

average death rate of firms falls steeply with age. Allowing ex-ante start-up heterogene-

ity is central to capturing this age structure: some start-ups are born struggling entrants

[i = 1] which quickly die, others are longer-lived gazelles [i = 5], while the rest enter the

mature states Im directly. Matching to the firm survival data, the estimated model finds

52% of new start-ups are born struggling entrants with a high associated firm death rate.

Conversely firms which survive to age 25 are on average very large: more than 50% of all

workers are employed in firms over 25 years old, yet there are relatively few such firms.

Although the survival rate of gazelles is high, the relative scarcity of old but very large

firms implies that the gazelle state cannot be highly persistent. Matching data moments

finds around 10% of new start-ups are born as gazelles but, conditional on survival, the

expected duration of a gazelle is short, being only 2 months (γ55 = 0.49). In this way

few start-ups remain gazelles for long and relatively few are fortunate to grow into very

large firms. Conversely the struggling entrant state i = 1 is estimated to be much more

persistent with an expected duration of 10 months (γ11 = 0.9). Their high death rate then

implies a struggling entrant is more likely to close than reach a mature state.
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Figure 4: Firm age distributions in the model and data
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(b) Number of firms

Left (right) panel plots the fraction of total employment (firms) contained in each firm age bin. Data corre-
sponds to the BDS data for firms in 2005. Model corresponds to the steady state of the model.

Given this firm heterogeneity structure, the estimated parameters imply that most

employment Ni is in the mature states i ∈ Im and so job creation flows by mature firms

(specifically, JC4) are responsible for the larger part of gross job creation. But mature firms

are also responsible for the larger part of gross job destruction flows through JD2 + JD3.

Combining these two effects, Figure 5(a) shows that the implied net job creation flows of

mature firms are negative as in the data. It is only young firms who have positive net job

creation, due to the extra job creation of entrants, and in particular gazelles. In this way

a typical gazelle life cycle is to burn brightly for a relatively short while, during which

it becomes a net job creator, but as it matures it ultimately enters an (ergodic) phase of

general decline. At the same time, the model remains consistent with the higher exit rates

of young firms due to non-gazelle entrants, as shown in Figure 5(b).

An important insight is that despite firm closure rates being high the amount of job

destruction due to such closures is surprisingly small for most firm closures are small

firms. For example, according to the 2005 BDS data, firm exit rates in the 1-4 employee

size category is 12.3% per annum, while the exit rate for all larger size categories is much

smaller, for example it is only 2.9% in the next size bin of firms with 5-9 employees. The

large 9.8% closure rate thus reflects that 88% of firm closures involve the very smallest of

firms. Although average firm closure rates are high, the model confirms that the larger
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Figure 5: Net job creation and exit in the model and data
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(b) Exit rate

Left panel plots the yearly net job creation rate in firm age bin, computed as the net JC flow divided by
the employment denominator. Data corresponds to the BDS data for firms in 2005. Model corresponds to
the steady state of the model. Right panel plots the fraction of firms who exit per year. Model yearly rates

computed as 1 − e−12r, where r are the theoretical monthly rates.

component of job destruction is the gradual downsizing of employment by larger state

i = 2, 3 mature firms.

Figure 6: Firm size distributions in the model and data
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(b) Number of firms

Left (right) panel plots the fraction of total employment (firms) contained in each firm size bin. Data corre-
sponds to the BDS data for firms in 2005. Model corresponds to the steady state of the model.

Although the model is matched to employment by firm age and survival rates, it is

not matched to the distribution of firm size nor employment by firm size. The Gibrat’s

Law structure automatically implies substantial size dispersion across firms of the same
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age, because realised firm size depends on the firm’s history of productivity outcomes

and growth rates. If the model implied firm growth processes were a poor descriptor of

actual firm size evolution, the simulated firm size distributions would not likely match

the actual distributions of employment across firms. The match turns out to be very good

indeed, as shown in Figure 6. The figure reveals that in the data the majority (over 55%)

of firms are very small, in the 1-4 employee bin and constitute only 5% of employment. In

contrast, nearly 50% of total employment is in firms which employ more than 500 workers

while the number of such firms is very small. This property of the labour market is well

known. The important point, however, is that the growth structure here also replicates

the (un-targeted) distributions of firm size and of employment by firm size. This provides

(at least indirect) support for the Gibrat’s Law approach taken here.

Finally Figure 7(a) shows the (micro) firm growth structure is also consistent with

the (untargeted) empirical employment growth distribution documented in Davis et al.

(2012) and Elsby et al. (2021).12 A key feature of the data is that around 55% of firms report

zero growth (see Elsby et al., 2021), while a somewhat equal share of the remaining firms

report either positive growth or negative growth. The model yields precisely this out-

come: employment at most firms does not change over the year with an approximately

even break of firms showing positive and negative growth. Of course for firms where

employment does not change, hiring is not zero for those firms actively replace work-

ers who quit. Nevertheless the important point, as also argued in Bertola and Caballero

(1994) and Cooper and Halitwanger (2006), is that many firms do not change employment

and the smooth evolution of aggregate unemployment arises because of the aggregation

of disperse employment decisions made by heterogeneous firms. A representative firm

approach with smooth, convex adjustment costs is inconsistent with microeconomic be-

haviour.

We now turn to describing the job ladder structure of the model and how we match

data to information on quit and hire outcomes at the firm level.

12We refer the reader to these papers to view the empirical employment growth distributions based on
JOLTS and the Quarterly Census of Employment and Wages.
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Figure 7: Employment growth distribution and relation with worker flows
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Left panel plots the distribution of quarterly employment growth rates across firms, excluding entry and
exit, as in Elsby et al. (2021). Right panel plots the average hiring, EE and EU separation rates of firms with
each employment rate (computed for bins of width 0.01 and smoothed with a 10 bin moving average). Both
figures calculated from a simulation of a panel of firms in the steady state of the model.

4.4 Steady state results: Quit Turnover and Wage Competition

Quits are costly: a firm must either pay a cost c0 to hire a replacement worker, or choose

not to replace the worker and downsize. Although job creation rates jci and job destruc-

tion rates jdi are the same for all firms i, wage competition with on the job search implies

firms in the same state i post different wages w ∈ [wi, wi+1), where paying a marginally

higher wage marginally reduces worker quit rates. An important difference to the Burdett

and Mortensen (1998) framework, however, is that wage offers here are not fundamen-

tally related to firm size. Instead higher productivity firms post higher wages which fun-

damentally changes the structure of quit turnover dynamics over the cycle. Specifically

it allows that small but fast growing gazelles poach employees from lower productivity

but possibly larger firms. Haltiwanger et al. (2018) show this is an important property of

the data: there is clear evidence that workers typically quit to better wages, but there is

no evidence of a systematic drift of workers from small to large firms.

Our estimation targets the average turnover rates in the economy, but is also consistent

with un-targeted turnover properties across the firm growth rate distribution. Davis et

al. (2012) document “hockey sticks” relationships between hires, layoffs and quits and

firms’ growth rates. Figure 7(b) shows that the model also generates such hockey sticks.

Job-to-job quit rates decline as we move from the [low wage] negative growth firms to the
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[high wage] positive growth firms; i.e. the highest growth firms pay the highest wages,

have the lowest quit rates and expand with a high hiring rate. Figure 7(b) also shows

that the firms with the largest negative growth rates shrink more by layoffs than quits.

Thus although unreplaced quits describe a significant channel for job destruction, high

separation rates at the faster declining firms instead depend more on high layoff rates,

consistent with the hockey stick relationships in the data.

Figure 8: Poaching flows by age and size

0-1 2-3 4-5 6-10 11+

firm age

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

data

model

(a) Age

1-19 20-49 50-249 250-499 500+

firm size

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

data

model

(b) Size

Left (right) panel plots the quarterly net poaching rate by firm age (size) bin. This is computed as total
hires from poaching less total separations from poaching as a fraction of employment in each bin. Data are
for 2005, from the Census job-to-job database. Model corresponds to the steady state of the model, with

quarterly rates computed 1 − e−3r, where r are the theoretical monthly rates.

Figure 8 shows that the model also exhibits a job ladder by firm age. Following Halti-

wanger et al. (2018), in this case we measure the job ladder through a firm’s net poaching

rate, defined as the difference between the rate at which it hires employed workers hp less

the number of workers it loses to other firms sp and so describes net quit drift. These data

were not targeted. By firm age, the model generates the observed poaching structure:

young firms are large net poachers [from older firms] while older firms are net losers to

young firms. This large net poaching figure reflects that gazelles [10% of entrants] will

hire many new workers while struggling entrants [52% of entrants] have few workers

who can be poached.

Because firm specific productivity, and so firm growth, is positively autocorrelated,

the model implies a positive, but weak, correlation between firm size and productivity.

The wage setting process, in turn, then generates a positive correlation between firm size
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and wages, where a one standard deviation rise in firm size leads to a 14% standard

deviation rise in wages (see also Brown and Medoff, 1989).13 But job-to-job quit turnover

is confounded by entrant gazelles who are currently small but responsible for most of the

net poaching in the data. As described in Haltiwanger et al. (2018), there is no simple

relationship between the job ladder and firm size.

5 Business Cycle Facts and Insights

This section considers the business cycle properties of this approach, its match to the data

and corresponding new insights into business cycle frequencies [further details are pro-

vided in the Online Appendix]. Table 2 describes the business cycle facts, where moments

marked with † symbols are targeted, the rest are untargeted. The first (data) rows record

the estimated volatility and persistence of key aggregate variables. Consistent with Fig-

ure 1 in the Introduction, the job destruction rate (jd = JD/N) is more volatile than the

job creation rate (jc = JC/N) and, perhaps surprisingly given the insights of Mortensen

and Pissarides (1994), the job destruction rate is also the more persistent. Importantly for

what follows, notice that jc is the least persistent time series of all, while unemployment

U is both the most persistent and has the greatest volatility.

In the model aggregate productivity [the sole driving variable] evolves exogenously

with a persistence (ρ = 0.85) and volatility (σ = 0.01) matched to that of measured ag-

gregate productivity Y/N. Note these productivity shocks are small and less persistent

than unemployment, though more persistent than jc, jd [both as measured in the data and

the simulated model]. The only targeted moments in Table 2 are the volatility and persis-

tence of job creation, job destruction and layoff rates.14 Yet despite only targeting those

13We regress wage on firm size (measured as number of employees) in the ergodic distribution. Specifi-
cally, we construct an average wage for every firm size on our firm size grid, by integrating over the within-
size productivity and rank distribution. We then regress this average wage on firm size using weighted
OLS, with one observation per size node, with the weight for each size node given by its density in the
ergodic distribution.

14Note that while the simulated persistence (ρt−1) of job creation and job destruction are of similar mag-
nitudes, in the data the persistence of job creation is about half of that of job destruction. A key reason why
the model does not produce a better fit in this dimension is because we only use the parameter co to capture
the cyclical behaviour of both jc and jd. The estimation procedure tries to resolve this tension by choosing a
co that places the values of (ρt−1) for jc and jd somewhere in the middle of their empirical targets. Further,
as job destruction flows in the model are mostly made up of workers laid-off after a δD shock (70% of all
job destruction), the cyclical behaviour the layoff rate then follows closely that of jd.
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Table 2: Logged and HP-filtered Business Cycle Statistics. Data and Model

jc jd quits hires layoffs UE U N net jc
Volatility and Persistence

Data

σ 0.042† 0.055† 0.116 0.058 0.048† 0.169 0.204 0.018 0.006
ρt−1 0.433† 0.755† 0.945 0.904 0.761† 0.959 0.977 0.973 0.722

Model
σ 0.041 0.051 0.177 0.077 0.046 0.218 0.221 0.014 0.005

ρt−1 0.674 0.595 0.934 0.899 0.546 0.936 0.934 0.937 0.468

Cyclical Correlation

Data
U -0.305 -0.254 -0.923 -0.760 0.174 -0.972 1.000 -0.922 0.012
N 0.061 0.386 0.780 0.539 -0.015 0.867 -0.922 1.000 -0.230

net JC 0.751 -0.870 0.245 0.511 -0.760 0.120 0.012 -0.230 1.000
Model

U -0.616 -0.571 -0.989 -0.940 0.305 -0.994 1.000 -0.988 0.054
N 0.602 0.559 0.983 0.925 -0.294 0.985 -0.988 1.000 -0.053

net JC 0.751 -0.847 0.086 0.287 -0.933 0.054 0.054 -0.053 1.000

Time series in the model are obtained by simulating the model for 1,000 years and then aggregating to
quarterly frequency as in the data. The cyclical components of the (log) of these time series are obtained

using an HP filter with parameter 105. Net jc (jc − jd) is not logged as it takes negative values. jc, jd,
quits, hires, and layoffs are rates relative to employment, and UE gives the job finding rate of unemployed,

HUE/U. At any time t the flows refer to flows between t and t + 1, and the stocks (U and N) are measured
at t. Moments targeted in the estimation are marked with a † symbol.

moments, Table 2 reveals the model’s remarkable success at qualitatively matching the

untargeted persistence, volatility and cyclical properties of the remaining key aggregate

variables. For example the framework matches the fact that hire and quit rates are much

more persistent and more volatile than job creation jc and job destruction jd rates. Sim-

ilarly the framework also generates the wide and persistent variation in unemployment

U and job finding UE rates measured as HUE/U.15

Most importantly Table 2 identifies a new data property which is central for under-

standing the macroeconomic properties of unemployment:

• net job creation is strongly positively autocorrelated and uncorrelated with un-

employment.

Given the dynamic specification ∆Ut = JDt − JCt, it is this property of the data which

15Not shown in the table are the dynamics of firm entry and exit, which are instead calculated at an
annual frequency as in the BDS data. The model closely replicates the standard deviation of entry, which
is 0.0688 in the model and 0.0720 in the data. The firm exit flow is untargeted, and the model generates a
standard deviation of 0.0193, which is somewhat lower than the 0.0656 in the data. However, the model
successfully matches that firm exit is less volatile than firm entry, as in our data and discussed by Lee and
Mukoyama (2015).
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explains why estimated reduced form unemployment dynamics are typically close to con-

taining a unit root. Figure 2 in the Introduction shows the unemployment process is stable

and so there is no unit root. However it also confirms that recessionary shocks generate

large and persistent unemployment loops. And by generating qualitatively identical net

job creation dynamics, the estimated model also generates large and persistent unem-

ployment loops with a volatility and persistence of unemployment comparable to that of

the data. Of course the central question is why does this occur? According to the model

it is due to the efficiency wage structure, that wages are not competitively determined.

The underlying structure is not dissimilar to the insider/outside approach where each

firm pays its employees the same wage. Except here this is optimal because the firm faces

a trade-off between reduced employee quit rates and higher turnover costs. But a stan-

dard criticism of the typical insider/outsider approach is why doesn’t the firm charge

“outsiders” a job fee? An important difference here is firm productivity is private infor-

mation. For example if workers are willing to pay jobs fees, what is to stop a struggling

entrant from scamming workers by initially paying high gazelle wages, collecting high

entry fees from new employees, only to subsequently declare an unfavourable produc-

tivity shock and so close down? Given the natural reticence of workers to pay job fees,

the efficiency wage structure reduces wage flexibility over the cycle. The resulting net job

creation dynamics then ensure large recessionary shocks generate large unemployment

loops.

5.1 Replacement hiring and vacancy chains

This section describes the interaction between quit turnover, replacement hiring and va-

cancy chains over the cycle. Figure 9(a) plots the (log) job creation jc, gross hire h and

gross quit q rates for the US (1990Q2-2018Q4) while Figure 9(b) describes the model’s

“impulse” response to a recessionary shock. Specifically Figure 9(b) supposes the model

is initially in its conditional steady state s = 2 (the intermediate aggregate state). At date

0 there is a recessionary shock to low productivity state s = 1 which lasts for 15 months

[the expected duration of the low state], after which aggregate productivity permanently

reverts to s = 2. Of course agent expectations are always consistent with the full model

and so Figure 9(b) describes the economy response to a particular sequence of realised
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productivities at which we refer to as a “typical recession”.16

Figure 9: JC, hires, quits in the data and model

(a) Data: HP-filtered
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(b) Model: typical recession

Left panel plots Davis, Faberman and Haltiwanger (2012) data on the job creation, hire, and quit rates in

the data, which have been logged and HP-filtered with parameter 105. Right panel plots the path for these
variables in the model, during a “typical recession” experiment (see text for details), expressed as deviations
from their initial values.

Figure 9(a) demonstrates that job creation, hire and quit rates are highly positively

autocorrelated where quits vary the most and job creation varies the least. Table 2 also

reveals that quit rates are more highly correlated with unemployment U. To understand

why our model reproduces these features, note first estimated employed worker search

intensity is φ̂ = 0.1 and so any increase in unemployment implies an increase in aggregate

search intensity. This has important crowding out effects: for example in the “typical

recession” 51% of hires are from unemployment in the initial conditional steady state

which rises to 60% at the trough of the recession. Furthermore job finding rates collapse

as the number of jobs created per unemployed worker, JC/U, collapses in the recession

[see Figure 3 in the Introduction]. Thus like unemployed worker job finding rates, a

“typical recession” finds quit rates also fall steeply [and the job ladder collapses].

The “typical recession” shows that job creation rates are the first to start recovering

(before hires and quits and so is the least persistent process). This behaviour is clearly

reflected in the data: for example Figure 9(a) shows the 2008 recession led to a steep fall

in all three series but job creation was the first to recover. The “typical recession” finds

16In the Online Appendix we provide the impulse responses of the main aggregate variables, describing
their behaviour under a typical recession.
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in the subsequent recovery, i.e. once the economy returns to s = 2 at 15 months, that job

creation rates increase by a discrete amount, as do quit rates (because higher job creation

makes finding work easier). Nevertheless quit rates continue to be suppressed while

unemployment remains above trend. And because unemployment is the most volatile

and highly persistent process, job search crowding out implies quit rates are more volatile

and more persistent than job creation rates.

An interesting insight due to Figure 9(a) is that when quit rates are above trend [i.e.

when q > 0] then [detrended] gross hire rates typically exceed job creation rates, and vice

versa. This reflects the underlying replacement hiring process: that replacement hiring

increases as quits increase, and gross hires equal job creation plus replacement hiring.

The large quit dynamic described above thus explains why gross hires are more volatile

and more persistent than job creation. And, of course, replacement hiring causes vacancy

chains, where if a new job created is filled by an already employed worker then a “new

job” continues to exist should the previous employer choose to hire a replacement worker.

As described in Elsby et al. (2021), this vacancy chain effect magnifies the gap between

gross hires and job creation.

5.2 Job creation and job destruction

Job creation and destruction are the fundamental drivers of unemployment over the cycle.

Figure 1 in the Introduction describes how actual jc and jd evolve in the US economy

and in the Online Appendix we present its model equivalent. Instead Figure 10 plots

the behaviours of jc and jd over a “typical recession”. Job destruction is additionally

decomposed into jdL, jobs destroyed where the worker is laid off into unemployment

(mostly) as a result of a δD shock, and jdQ, jobs destroyed where the firm instead declines

to replace a worker who quits.

Consider first the jc process in a “typical recession”: panel (b) plots both the job cre-

ation rate and also the firm entry flow [the number of start up firms], as deviations from

their initial values. In line with the data, the typical recession finds firm entry is more

volatile than gross job creation but firm entry only has a modest effect on total job cre-

ation because new start-ups begin small [though more gazelles is clearly good for future

growth]. The efficiency wage structure implies firm value depends directly on worker
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Figure 10: Impulse response to typical recession: Unemployment and quit dynamics
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Panels plot the paths for variables during a “typical recession” experiment (see text for details). Job creation
and destruction are given as rates to the employment stock, which are expressed as deviations from their

pre-recession values. jdL and jdQ refer to job destruction from layoffs and unreplaced quits respectively.

quit rates and the previous section has shown quit rates fall directly with unemployment.

Equilibrium unemployment is thus stable. However to generate large variations in un-

employment consistent with the data, the feedback of higher unemployment into greater

net job creation has to be relatively weak. The framework thus estimates the elasticity

of job creation rates to firm value. This is important because the free entry approach as-

sumes a penny increase in value yields an infinite number of entrants and this creation

process is far too elastic for the data. The estimated elasticities of firm entry (ξe = 4.3727)

and job creation (ξ JC = 2.8495) to firm value are more than one, and so relatively elastic

(with start-up entry being the more elastic), but both are a long way from infinity (the free

entry case).

The endogenous job destruction process is more complicated for it has two separate

channels. Similar to Mortensen and Pissarides (1994), a small (unfavourable) aggregate

productivity shock has a large, immediate impact on layoffs precisely because the lowest

productivity firms have small surplus. The onset of the typical recession causes a [30%]

spike the job destruction rate through increased layoffs. Although this spike in layoffs

has an immediate and large impact on unemployment, the cleansing effect of recessions

implies this spike is relatively short-lived. In contrast the job destruction channel via

unreplaced quits is more persistent precisely because quits are a highly persistent process.

The fall in quit rates in the recession results in lower job destruction via unreplaced quits
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which partly compensates for the spike in layoffs.

6 Conclusion

This paper has developed a new fully microfounded equilibrium business cycle model

of the US labor market which is consistent both with the underlying distribution of firm

growth rates across firms [by age and size] and macro-evidence regarding gross job cre-

ation and job destruction flows over the cycle. The framework not only successfully

generates the (targeted) average firm size distribution by age but also the (untargeted)

distributions of firms and of employment by firm size. The approach also provides an

important new insight - that net job creation is uncorrelated with unemployment. We

have shown that it is this property of the data which is central to explaining the business

cycle frequencies of unemployment.

The approach has used aggregate productivity shocks, rather than discounting shocks,

as the driver of the economy. It would seem unlikely that changing to discounting shocks

would much affect our insights. For example any negative aggregate shock will always

lead to a spike in layoffs because a key component of the job destruction process is low

productivity firms have small surplus. Furthermore as described above, the efficiency

wage distortion will always imply it is the quit process, rather than wages, which move

the most over the cycle. That is, high unemployment always causes a steep fall in quit

rates, the consequent collapse of the job ladder and a slow recovery because net job cre-

ation rates respond (at most) weakly to high unemployment.
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ONLINE APPENDIX

A Proofs

Proof of Lemma 2: For convenience we suppress reference to Ω. It is immediate that

q(i) = λu + λ1 for i ≤ ih. Consider now i > ih where (13) implies equilibrium quit rate

q(i) = λu +
λ1

λ

∫ 1

i

h(j)[1 − U]G′(j)

α + (1 − α)G(j)
dj.

Now λ1 = φλ0 and λ = λ0U + λ1(1 − U) implies λ1/λ = φ/[U + φ(1 − U)] while

α ≡ λ0U/λ = U/[U + φ(1 − U)]. Substituting out λ1/λ and α in the above yields

q(i) = λu +
∫ 1

i

h(j)G′(j)
U

φ(1−U)
+ G(j)

dj.

Because h(j) = JC(j) + q(j) for j ≥ i > ih we also have

h′(j) = JC′(j)−
h(j)G′(j)
U

φ(1−U)
+ G(j)

.

Now define Z(j) = U
φ(1−U)

+ G(j) and so Z′(j) = G′(j). Integration by parts establishes:

∫ 1

i
Z′(j)h(j)dj = [Z(j)h(j)]1i −

∫ 1

i
Z(j)

[
JC′(j)−

h(j)G′(j)
U

φ(1−U)
+ G(j)

]
dj

and simplifying yields:

Z(1)h(1)− Z(i)h(i) =
∫ 1

i
Z(j)JC′(j)dj.

Integrating by parts then yields:

Z(1)h(1)− Z(i)h(i) = Z(1)JC(1)− Z(i)JC(i)−
∫ 1

i
Z′(j)JC(j)dj.

Substituting out h(1) = λu + JC(1), h(i) = JC(i) + q(i) implies:

Z(i)q(i) = Z(1)λu +
∫ 1

i
Z′(j)JC(j)dj

= Z(i)λu +
∫ 1

i
Z′(j)[λu + JC(j)]dj.

Using Z(i) = U
φ(1−U)

+ G(i) and Z′(j) = G′(j) then establishes the Lemma.
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B Quantitative model appendix

B.1 Finite productivity model summary

In this section we briefly summarise the equations of the finite productivity model, which

is used in our quantitative work. We also explain the minor additions to the model made

relative to the continuous productivity model in the text. Our calibrated model features

ic(Ω) = 1 at all times, and we present the equations for this case of the model. Recall

that we specialise to a finite number of productivities i = 1, ..., I, where within each pro-

ductivity level firms additionally separate into different wage ranks χ ∈ [0, 1]. We then

define the overall wage rank across all firms as x ∈ [0, 1], as specified in the text.

Firm HJB and policy functions: All firms with the same productivity pi achieve the

same value vi, regardless of their wage rank. With aggregate shocks the HJB includes the

aggregate state Ω = (s, N1, ..., NI). If ic(Ω) = 1 at all times, the Ni evolve continuously

over time. In this case, the HJB can be written

(r+ δF)vi(Ω) = as pi − c f −wmin − (λ1(Ω)+λu)min[vi(Ω), c0]+µ1Ec max[vi(Ω)− [c0 + c], 0]

− δDEc min[vi(Ω), c] + αγ ∑
j

γij(vj(Ω)− vi(Ω))

+ αa ∑
s′

γs,s′(vi(s
′, N)− vi(Ω)) +

I

∑
j=1

∂vi(Ω)

∂Nj
Ṅj(Ω). (22)

Notice that we extend the model relative to the main text by introducing a flow cost

of capital maintenance, c f . This is a cost which must be paid each period to maintain

each existing unit of capital. The introduction of c f does not change the economics of

the model, but it is useful as it allows us to more easily partition the productivity bins

into those which do and do not replace quits (see Section B.4 for more details). The only

aggregate “price” which affects firm value is the scalar λ1(Ω). The expectations over

JC and JD cost draws have closed form solutions under the assumed distributions. The

hiring threshold ih(Ω) is defined as the first i for which vi(Ω) > c0.

In the finite productivity model, most policy functions – and in particular those which

relate to net employment dynamics – depend only on i and not the wage rank. Specif-

ically, the job creation rate per employee is jci(Ω) = µ1H JC(vi(Ω) − c0). The job de-
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struction rate is jdi(Ω) = δD[1 − H JD(vi(Ω))] for firms with i > ih(Ω) and jdi(Ω) =

δD[1 − H JD(vi(Ω))] + λ1(Ω) + λu otherwise. Entrants who draw productivity i have

average initial employment n̄0,i(Ω) = nu + N0
µ1

jci(Ω). Here, nu is the number of ini-

tial workers a firm can draw from unemployment for free upon startup. We define

n̂0,i(Ω) = N0
µ1

jci(Ω) as average entrant size excluding the initial nu free hires from un-

employment.

Evolution of employment distribution: The total mass of employment at each pro-

ductivity bin evolves according to:

Ṅi(Ω) = µ0PE(Ω)γ0in̄0,i(Ω) + Ni

[
jci(Ω)− jdi(Ω)− δF − αγ ∑

j 6=i

γij

]
+ αγ ∑

j 6=i

γjiNj. (23)

The first term on the right hand side is the inflow of employment from firm entry. The

term in square brackets gives net job creation accounting for job creation and destruction

including the firm exit shock. The terms proceeded by αγ gives the transition of firms

across productivity bins. Total unemployment is U = 1 − ∑i Ni. The distribution across

firm wage ranks can then be calculated from our closed form solution:

G(x, Ω) =
∑

i−1
j=1 Nj +

x−xi−1
xi−xi−1

Ni

1 − U
for all x ∈ [xi−1, xi). (24)

Recall that we define the boundaries x0 = 0, xi = xi−1 + γ0i and xI = 1. A firm in state

i ∈ {1, 2, ..., I} with wage rank χ ∈ [0, 1) is correspondingly defined as being in state

x ∈ [0, 1] where x = xi−1 + χ[xi − xi−1].

Quits and hires across the x distribution: To close the model, we need to calculate

the offer arrival rate λ1(Ω). To do this, we must solve the quit rates across the wage rank

distribution. As in the continuous productivity model, the quit rate for incumbent firms

at any wage rank x is given by (20), which we rewrite in our x notation as

q(x, Ω) =





λu + λ1(Ω) if x ∈ [0, xh(Ω))

λu +
φ
∫ 1

x {JC(y,.)+λu[1−U]G′(y)}dy

U+φ[1−U]G(y)
if x ≥ xh(Ω)

(25)

where xh(Ω) = xih(Ω)−1 corresponds to the lowest ranked hiring firm, who has i = ih(Ω)

and χ = 0. The total job creation flow at each x is JC(x, Ω) =
{
[1 − U]G′(x) + µ0

µ1
N0PE(Ω)

}
jci(Ω).

The closed form solution for G(x) similarly defines a closed form solution for G′(x),
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which is well defined except at the xi boundaries where G(x) is non-differentiable. Per-

forming the integration in (25) yields a closed form solution for q(x, Ω) for any x ≥ xh(Ω):

q(x, Ω) = λu +
(1 − χ)

[
(jci + λu)Ni + µ0PE(Ω)γ0,in̂0,i

]
+ ∑

I
j=i+1

[
(jcj + λu)Nj + µ0PE(Ω)γ0,jn̂0,j

]

U/φ + ∑
i−1
j=1 Nj + χNi

(26)

This equation uses the reverse mapping χ(x) to find the χ associated with the current x

from χ = x−xi−1
γ0i

, and similarly the productivity level i(x) associated with the current x.

The hiring rate for incumbent firms can then be simply computed as h(x, Ω) = jci(Ω) +

1(i ≥ ih(Ω))q(x, Ω). Finally, λ1(Ω) is just q(x, Ω) evaluated at x = xh(Ω) and then

subtracting λu, which gives

λ1(Ω) =
∑

I
j=ih(Ω)

[
(jcj(Ω) + λu)Nj + µ0PE(Ω)γ0,jn̂0,j(Ω)

]

U/φ + ∑
ih(Ω)−1
j=1 Nj

(27)

This closes the model, and provides sufficient information to simulate the model keeping

track only of the finite employment vector N. In particular, the model can be solved and

simulated using only the HJB (22), the evolution of total employment by productivity bin

(23), and the closed-form solution for the job offer arrival rate (27).

B.2 Data sources and treatment

We use the following data throughout the paper. Our main sample period used for es-

timation purposes is the one for which we can get data on all variables simultaneously,

which is 1990Q2 to 2018Q4.

Business Dynamics Statistics (BDS): We use the BDS to construct data stratified by

firm age. We use the 2018 release, which is available yearly from 1978 to 2018, and take

the national data, split by firm age. We use data on the number of firms (and total em-

ployment in firms) of each age bin to calibrate our model. We also measure firm entry

using this dataset, as the number of firms aged 0 in each year, and firm exit, as given in

the dataset. We also use the data on Job Creation and Destruction by age for Figure 1 in

the Introduction of the paper, but instead calibrate our model to the quarterly JC and JD

data from Davis, et al. (2012).

Davis, Faberman, and Haltiwanger (2012, DFH): We extensively use the data pro-

vided by Davis et al. (2012) which underlies the analysis in their paper. We are grateful to
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the authors for sharing the (updated) data which underlies the plots in their paper with

us. This data consists of quarterly data from 1990Q2 to 2018Q4. We use their estimates of

aggregate job creation and job destruction, as well as layoffs and quits. We add their mea-

sure of “other separations” to layoffs. Their data are given as rates of total employment.

We calibrate our model to match the average of these data over our sample, as well as the

HP-filtered time series. As well as this, we use data from this paper to form an estimate

of the fraction of worker quits that firms replace by undertaking a replacement hire. We

discuss this further below.

Bureau of Labor Statistics (BLS): We use monthly aggregate data from the Current

Population Survey. We aggregate these data up to a quarterly frequency by taking the

simple average. We use data on total employment (CE16OV) and unemployment (UN-

EMPLOY), in levels and seasonally adjusted. We additionally use data on the total num-

ber of people unemployed for less than five weeks (UEMPLT5) to construct the unem-

ployed worker UE rate, following the approach of Shimer (2005).

Bureau of Economic Analysis (BEA): To construct our measure of labor productivity

(output per worker) we use data on quarterly real GDP (GDPC1) from the BEA. Labor

productivity is calculated as real GDP divided by total employment from the BLS data.

Compustat: Since our model assumes constant returns to scale, we do not allow for

permanent productivity differences across firms, as these would lead to permanent dif-

ferences in employment growth rates (rather than levels, as would be true in a model

with decreasing returns to scale). Therefore, we calibrate our firm-level productivity pro-

cess to the within-firm standard deviation of productivity shocks, rather than the across

firm standard deviation. To compute this measure, we use data from Compustat. We

use data on all US based firms in their sample, and use data only on sales and total em-

ployment. We deflate sales using the GDP deflator (GDPDEF, from the BEA) to create a

measure of real sales, and then define firm-level labor productivity each year as real sales

over employment. We drop firm-year observations with missing or negative sales or em-

ployment, and winsorize the data by dropping the top and bottom 1% of data by both

yearly sales growth and employment growth. We take the log of labor productivity, and

regress it on firm and year fixed effects, and take the residual as our measure of firm-level

productivity, corrected for firm-level averages and aggregate changes. We take the stan-

dard deviation of this measure, which yields a value of 28.38%, computed from 291,703
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firm-year observations.

Estimating the fraction of quits which are replaced: To estimate the amount of re-

placement hiring in the model, we draw information both from gross flows and from

underlying firm-level data. Firstly, we note that the amount of replacement hiring is not

simple to observe from aggregate flows, due to the fact that firms may do replacement

hiring for two reasons: either to replace workers who quit, or to replace workers they lay

off for being a bad match but where the firm wants to keep the job open. Through the

lens of the model, the total hiring rate is equal to

ht = jct + q f rt (qt + λu) (28)

where we define q f rt as the fraction of worker quits (and layoffs due to bad worker match)

which are replaced. Recall that λu is the rate at which workers are fired for being a bad

match, but where the firm’s capital remains intact so the firm has the option to hire to

replace them. q f r serves as our calibration target for the amount of replacement hiring in

the model. Notice that three objects in this equation are observable in the DFH dataset:

hiring (ht), job creation (jct), and quits (qt). If we assumed that all layoffs were due to job

destruction (and firms never fired workers with the aim of replacing them with another

worker) then λu = 0, and estimating the degree of replacement hiring would be simple

using this aggregate data alone. In this case, simply rearrange (28) to yield q f rt = (ht −

jct)/qt.

However, the data in DFH suggest that firms do indeed replace some of their workers

who leave due to layoff, so this approach is likely not valid. In particular, in their well-

known “hockeystick” plot (their Figure 7(b)) we observe that firms who have positive

employment growth, and hence are expanding, still extensively use worker layoffs. In

fact, our calculations below suggest that the average layoff rate for non-contracting firms

appears to be around 2.73% per quarter. Given that these firms are expanding their em-

ployment on net, it is likely that they are replacing some of the workers who they have

laid off, meaning that λu
> 0. Indeed, through the lens of our model, firms which perform

job creation necessarily replace worker quits.

Given that λu
> 0 therefore seems like a more reasonable assumption, we can then

return to (28) to understand the impact this has on estimated quit replacement. Express-
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ing the relationship in steady state gives h = jc + q f r (q + λu), where we take h, jc, and

q directly from the average values in DFH’s data. This gives the implied value of q f r for

any assumed λu as q f r = (h − jc)/(q + λu). Without any further information, λu is con-

strained to lie within the range 0 (in which case all layoffs are due to job destruction) and

the total layoff rate in the data, l (in which case all layoffs are replaced, and not due to job

destruction) [see equation (30) below]. We plot the implied value of q f r in this range in

the blue line in Figure B.1 below.

Figure B.1: Estimated fraction of quits replaced vs. assumed λu
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This procedure bounds the fraction of quits and layoffs which are replaced to be be-

tween around 50%, if all layoffs are assumed to be replaced, and 100%, if only 10% of

layoffs are assumed to be replaced. Notice that for values below 10% the data implies

that more than 100% of quits are replaced. Before going further, we therefore note that

our chosen value for the estimation, q f r = 80%, happens to lie approximately in the

middle of the upper and lower bounds implied by the aggregate flow data.

One could potentially use other aggregate flow relationships, such as those between

job destruction and layoffs, might help estimate the fraction of layoffs which are replaced,

and hence pin down q f r. However, we found this challenging as the aggregate relation-

ships are by definition collinear, and more information is needed. To see this, consider

that job destruction is given by

jdt = jdl
t + jd

q
t = jdl

t + (1 − q f rt)(qt + λu) (29)

and layoffs by

lt = jdl
t + λu (30)
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where lt is layoffs in the data, jdl
t is job destruction shocks which induce layoffs, and jd

q
t

is job destruction due to unreplaced quits and layoffs. Taking jc, jd, q, and l as data, (28),

(29), and (30) appear to provide three equations which can solve for the three unknowns

q f rt, λu, and jdl
t. However, the equations actually contain the same economic content and

are collinear. Combining (29) and (30) to yield

q f rt(qt + λu) = lt − jdt + qt (31)

and rearrange (28) to yield

q f rt(qt + λu) = ht − jct. (32)

As the left hand sides of these equations are identical, the three equations together cannot

be solved for a unique solution for q f rt, λu, and jdl
t. Instead, combining these two equa-

tions implies an adding-up condition which should hold in the data in theory: jct − jdt =

ht − lt − qt. In practice, the adding up condition is very slightly violated, meaning that

(31) and (32) provide very slightly different estimates of q f rt for a given assumed λu. The

estimate from (31) is given in Figure B.1 as the dashed red line, which is very similar the

the previous estimate.

The discussion above shows that additional data must be included to estimate the

fraction of quits which are replaced, and we investigate two approaches.

As a first approach, note that with knowledge of λu, the value of q f r can be calculated

using the accounting relationship above. λu is the rate at which workers are fired for

being a bad match, with the firm having the option to replace them if desired. Through

the lens of the model, this can be identified as the layoff rate at expanding firms, who

perform no job destruction and so any layoffs must be due to the λu shock. To estimate

this in the data, we use the hockeystick and growth rate distribution plots in DFH.17 We

have access only to the growth rate distributions from 2006 and 2008-9 (as plotted in DFH)

and so use data for the distribution and hockeysticks from 2006 to construct our estimate.

Accordingly, this is data from a single year, which corresponds to an estimate for a typical

non-recession year.18 For each growth rate bin i = −200, 199, ..., 200, we have data on the

17The authors very kindly provided us with the data behind these plots, which consists of the hires,
layoff, total separation, and quit rate at each growth rate bin (their Figures 6 and 8), and the (employment
weighted) kernal density function of firms in each bin (their Figure 5). The data are provided on slightly
different grids for each plot, and we interpolate the data onto an integer grid from -200 to 200.

18The results are robust to using the hockeysticks from all years (their Figure 6) integrated using the
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mass of employment at establishments with that growth rate (di) and the construct a layoff

rate at that bin (li). We calculate the average layoff rate in all bins with non-declining

employment growth as ∑
200
i=0 lidi/ ∑

200
i=0 di = 2.73%. Under the identifying assumption

that λu is constant across firms (as it is in the model), this implies an estimate λu = 2.73%,

which is 39% of the average layoff rate of 7.0% in the DFH data in 2006. Referring back

to Figure B.1, we see that 39% of layoffs being potentially replaceable implies a value of

q f r of approximately 80%, which is the value used in our calibration.19 As an alternative,

we also directly calculated the fraction of quits replaced from the 2006 hockeystick data

for quits and hires, and found that 79.6% of quits were replaced. Specifically, we assume

that expanding firm bins replace all quits and layoffs (q f ri = 1). For contracting bins,

we calculated the fraction of quits replaced as q f ri = hi/(qi + λu). Taking the (qi + λu)-

weighted average of q f ri across the whole distribution yields 79.6%.

As a second approach, we consider the notion of replacement hiring in Elsby et al.

(2021). They define a broad notion of replacement hiring using JOLTS data as follows.

For each establishment, they consider replacement hires as the minimum of gross hires

and quits in a given quarter. They then sum across establishments, and find that, by this

definition, around 45% of all hires are replacement hires. Doing the same exercise on sim-

ulated data from our model finds that 40% of hires are replacement hires. As mentioned

in the text, our model also generates that around 50% of firms have zero net employment

change over 3 months, and since these firms also lose workers to quits, this serves as an-

other measure of replacement hiring. Elsby et al. (2021) find this number to be around

55% and 65% in the QCEW and JOLTS data respectively. Finally, their strictest measure of

replacement hiring is the total hiring at firms with zero net employment change as a frac-

tion of total hiring. This number is 7.5% in their data, and 7.1% in our model. By all these

measures our model generates a substantial amount of replacement hiring, close to the

measures in the data. This provides an alternative justification for our calibrated value

of q f r = 0.8, which delivers a sensible amount of replacement hiring by these alternative

measures, and suggests that our results would be robust to instead using these measures

as targets in our estimation.

average of the 2006 and 2008-9 growth rate distributions to roughly attempt to form an estimate for all
years. However, since the match of hockeysticks and growth rate distribution sample is not exact in this
case, we prefer to use the data from 2006 only.

19If roughly 40% of layoffs are replaceable and the replacement rate is 80%, this implies that 32% of layoffs
are actually replaced.
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B.3 Numerical methods

Steady state: For given parameter values, solving the core equations of the model

in steady state reduces to solving for a vector of I values vi and employment stocks Ni,

as well as the arrival rate λ1. This is a simple problem to solve using the steady state

versions of (22), (23), and (27). Intuitively, one can guess a value of λ1, solve the HJB for

the values vi, use the implied policy functions to calculate the employment stocks Ni, and

use these to update your guess for λ1. In practice, we solve the model in steady state at

the same time as calibrating our parameters, which involves calculating other statistics,

which we detail further below.

Calculating average quit and hiring rates involves integrating over the wage rank dis-

tribution, x. To do this, we build an uniform grid over χ ∈ [0, 1] with 1,000 nodes. This

is then combined with the xi to build a grid over x with I × 1, 000 nodes. We calculate all

integrals on this grid using trapezoid integration.

To calculate the firm age and size distribution we solve for the densities of firms on

grids for age and size. This is thus reminiscent of the non-stochastic simulation approach

of Young (2010), or the methods of Achdou et al. (2021). To calculate the size distribution,

we build a grid over firm sizes. Recalling that the number of employees in a given firm

is an integer, we define a size grid as integer values from 0 to 20,000 employees. We

solve for the mass of firms at each size s and productivity i. We use the firm dynamics

processes (job creation, destruction, entry, exit, and so on) to construct flow rates across

these joint size-productivity bins, which we use to build a matrix of transitions. We can

then solve for the steady-state density of the number of firms at each size-productivity

bin by inverting this matrix.

To calculate the age distribution we follow a similar process. However, since age is

a continuous number, we discretise the age grid on a uniform grid from age 0 to age 26

years old (since this is the maximum age bin recorded in the BDS data) with 1,000 nodes.

We solve for the mass of firms and employment at each age-productivity bin. Finally, to

compute the mass of active firms at each age, we actually need to compute the joint age-

size distribution, since we define firms with 0 employees as having exited. To do this, we

must solve for the joint age-size-productivity distribution, which we do using the same

methods. Given the high dimension of this object, we solve for this distribution using a

reduced firm size grid from 0 to 1,000 employees, and confirm that raising this maximum
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has no impact on the moments for which this distribution is used.

To compute the growth rate density and hockeystick plots (Figure 7 in the main text)

we simulate a panel of firms for one quarter, with their initial states drawn from the

steady-state size-productivity distribution. We simulate a panel of one million firms and

calculate net employment growth and gross flows from the beginning to the end of the

quarter.

Business cycle: For given parameter values, solving the core equations of the model

over the business cycle reduces to solving for the functions vi(Ω), Ṅi(Ω), and λ1(Ω) over

the state space Ω = (s, N1, ..., NI), using the equations (22), (23), and (27). In terms of

approximation, it actually suffices to approximate only the function vi(Ω), as the values

of Ṅi(Ω), and λ1(Ω) can then be calculated exactly using (23) and (27) at any grid point

or point in a simulation.

We approximate vi(Ω) using second order polynomials in N1, ..., NI , with different co-

efficients for each of the discrete productivity level pairs i, s. In particular, first adjust the

value function notation to vi(Ω) = vi,s(N1, ..., NI) to acknowledge that aggregate produc-

tivity s is also a discrete state. Then for each i, s we approximate vi,s(N1, ..., NI) as

vi,s(N1, ..., NI) ≃ h0
i,s +

I

∑
j=1

(
h1

i,s,jNj + h2
i,s,jN

2
j

)
(33)

where h0
i,s h1

i,s,j and h2
i,s,j are scalar coefficients to be estimated. h0

i,s is the intercept, and

h1
i,s,j and h2

i,s,j capture the first and second order effect on the value of firms with state i

of changing total employment of firms with productivity j . Notice that we exclude cross

terms in the second-order approximation, since these are known to typically be unstable

given that the N1, ..., NI tend to be highly correlated. For each i, s this approximation uses

1 + 2 × I = 1 + 2 × 5 = 11 coefficients. Since we use I = 5 idiosyncratic and S = 3

aggregate productivity nodes, this gives 5 × 3 × 11 = 165 coefficients to estimate.

To solve the HJB, we need to know both the level of value and its derivative with

respect to the aggregate employment bins. The derivatives are easy to compute given our

approximation, as

∂vi,s(N1, ..., NI)

∂Nj
= h1

i,s,j + 2h2
i,s,jNj (34)

In order to solve the full business-cycle version of the model, we use the following proce-
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dure:

1. We need a grid of values for (N1, ..., NI) to approximate our second-order poly-

nomial on. To generate this, we use a Sobol set, which generates values of the

(N1, ..., NI) vector which are roughly equally spaced between a minimum and max-

imum value for each Ni. We generate 50 of such vectors, denoting the values of

(N1, ..., NI) at each candidate z as Nz = (N1,z, ..., NI,z) for z = 1, ..., 50. Note that

the aggregate state at any grid point is now denoted s, z, where s corresponds to

aggregate productivity and z to the vector of N̄ values.

2. Generate initial guesses for the parameters h0
i,s h1

i,s,j and h2
i,s,j. Generate an initial

guess for λ1(Ω) = λ1,s,z at each aggregate state. Generate an initial guess for

Ṅi(Ω) = Ṅi,s,z at each aggregate state.

3. Given these guesses, solve the value function (22) for values vi,s(Ω) = vi,s,z at each

idiosyncratic productivity node and aggregate state node. In solving (22), replace

λ1(Ω) with the current guess λ1,s,z, and the drift term, ∑
I
j=1

∂vi(Ω)
∂Nj

Ṅj(Ω), using i) the

current guesses for the value function derivative implied by h1
i,s,j and h2

i,s,j and ii) the

current guess for the drifts Ṅi,s,z.

4. Using the new values of vi,s,z, perform OLS regressions on (33) to update the param-

eters h0
i,s h1

i,s,j and h2
i,s,j with dampening.

5. Using the new values of vi,s,z, calculate the new policy functions for job creation and

destruction. Use these to update the drifts Ṅi,s,z using (23) and the offer arrival rates

λ1,s,z using (27), both with dampening.

6. Return to step 3 and iterate to convergence.

As a measure of the accuracy of our second-order approximation, the R2 of the regressions

used to fit the polynomial is 99% on average across the I × S = 15 regressions. This R2

is a measure of the error between the predicted value from the second-order polynomial

and the exactly computed value from the HJB of the vi,s,z on the nodes where the HJB is

evaluated.

With our approximated policy function parameters h0
i,s, h1

i,s,j, and h2
i,s,j in hand, we can

simulate the aggregate model, calculating all other objects exactly using the true nonlin-

ear equations of the model. When estimating the model, we simulate using a one month
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aggregate time step ∆t = 1, but finer grids do not affect the results. For most data com-

parisons, we aggregate up to quarterly data via averaging and HP-filter the model data

as in the data.

Post estimation, we also simulate our impulse response to a typical recession using

the same procedure. We additionally simulate the age and size distributions over time, by

first solving for the aggregate dynamics, and then extending our age and size distribution

codes to allow for aggregate dynamics.

Overview of estimation procedure: We pre-set six parameters, and our estimation

procedure then chooses 23 parameters to minimize the distance to a large number of

moments. To speed up the estimation, we split the estimation into two layers: an inner

loop and an outer loop. Conditional on outer loop parameter values, in the inner loop we

solve for the values of 11 parameters to exactly hit 11 moments. Intuitively, each of these

11 parameters has a tight link to a particular moment, which we are able to exploit to

quickly solve for the value of these parameters. In the outer loop, we use the remaining

12 parameters to minimize the average distance to a set of 18 moments using a global

minimization routine, every time repeating the inner loop procedure.

A key step in speeding up our estimation is that we calibrate many parameters in the

non-stochastic steady state of the model (i.e. a version of the model without aggregate

shocks) as is standard in heterogeneous agent modelling. In brief, the procedure operates

as follows:

1. Guess values for the 12 outer loop parameters.

2. Given the current guess for the outer loop parameters, use the inner loop to exactly

solve for the 11 inner loop parameters, to exactly hit the inner loop moments. These

moments are calculated in the non-stochastic steady state of the model.

3. Given the values of the inner and outer loop parameters, now solve the full model

(out of steady state), and simulate to construct aggregate time series.

4. Calculate the moments used in the outer loop. The moments related to the firm age

distribution are calculated from the non-stochastic steady state, and the moments

related to the business cycle are calculated from the business cycle simulation.
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5. Calculate the distance measure of the outer loop moments to the moments in the

data. Update the outer loop parameters using the global minimization routine, and

return to step 2. Repeat until the global minimization routine completes.

For our global minimization routine in the outer loop, we program a simplification of the

“TikTak” algorithm of Arnoud et al. (2019). Specifically, we draw 6,000 initial guesses of

the outer loop parameters from a Sobol set, and calculate the outer loop moments at each

guess. We then choose the five best performing guesses and run a local optimizer (pattern

search) at each to find the local minima, and choose the lowest error among these as our

final estimate.

B.4 Further details of calibration and parameterization

As we impose a relatively small number of productivity states, we use parameter choices

to impose the key behaviour (perform JC or not, perform JD or not, replacing quits or

not) of each state, rather than letting the estimation decide. The estimation is allowed to

affect behaviour within each node (for example the level of JC in the node, if it is positive)

and the probabilities that nodes are drawn.

Additional flow cost of capital maintenance: In the estimation we impose that ih = 3

in steady state, which requires that v2 < c0 < v3. This could be imposed using a penalty

function approach, which penalises the SMD error whenever either of these inequalities

is violated. We take a simpler approach, which speeds up the estimation (by allowing

more parameters to be chosen in the inner loop) at the cost of introducing one new pa-

rameter, the flow cost of capital maintenance. Specifically, we firstly impose p2 < p3 in

the estimation, which ensures that v2 < v3. Secondly, we then choose c f in the inner loop

to ensure that c0 = 0.5(v2 + v3), which guarantees that v2 < c0 < v3. Intuitively, we thus

introduce the flow cost of capital to shift the average value to ensure that c0 lies exactly in

the middle of v2 and v3 in steady state. The estimated value of this cost is small, at 0.05,

which is a small fraction of average productivity (which is one) and small compared to

the hiring cost c0.

We also impose that ih should not move over the business cycle, so that ih(Ω) = 3

almost always during a simulation. We do this by computing the fraction of periods
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where ih(Ω) 6= 3 during our business cycle simulation and adding this as a penalty in the

SMD function. At the estimated parameters, ih(Ω) 6= 3 only 0.01% of the time during our

long business cycle simulation, and ih(Ω) = 3 at all times in our typical recession impulse

response function plots.

Placement of cost function support parameters: We place the lower support of H JC

and upper support of H JD so that (in steady state) i) firms with i = 1, 2, 3 perform JD in

response to the H JD shock, but never JC in response to the H JC shock, and ii) firms with

i = 4, 5 perform JC but not JD. To do this requires that i) v3 < c̄JD
< v4, so that firms

with i = 4 have high enough value to survive any draw of cJD, and ii) v3 < cJC + c0 < v4,

so that firms with i = 3 have low enough value so that the minimum cost of performing

JC is too high. In order to not introduce additional degrees of freedom into the model, we

simply set c̄JD = 0.5(v3 + v4) and cJC = 0.5(v3 + v4)− c0, which we can impose simply

at every iteration of the inner loop.

JC and JD definition in the model vs. the data: The definitions of JC and JD in the

model are built to correspond as closely as possible to their notions in the data. However,

practical computational limitations mean that their definitions are not identical. In par-

ticular, in the data JC is defined as the sum of employment increases across firms which

saw an increase in employment between two dates, and JD is defined as the sum of em-

ployment falls at firms which saw a decrease in employment (see, e.g., DFH). Computing

these measures exactly therefore would require simulating a panel of firms over the busi-

ness cycle, which slows down the estimation and simulation of the model.

Instead, we are careful to segment our model so that firms in states i = 1, 2, 3 have

declining employment at any instant of time, and firms in states i = 4, 5 have increasing

employment at any instant in time. Abstracting for the moment from entry and exit,

JC can therefore be measured as the employment change at state i = 4, 5 firms, which

corresponds exactly to the job creation flow ∑
5
i=1 jci(Ω)Ni,t in the model, since jci(Ω) = 0

for i = 1, 2, 3. Similarly, JD can be measured as the employment change at state i =

1, 2, 3 firms, which corresponds to ∑
5
i=1 jdi(Ω)Ni,t since jdi(Ω) = 0 for i = 4, 5. This is

complicated slightly by two factors. Firstly, firms may switch from being in state i =

1, 2, 3 to i = 4, 5 within the same quarter, which is the period over which JC and JD are
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measured in the DFH data. This means that measured and theoretical measures may

differ, as a firm might receive a JC and JD shock in the same quarter. However, this is

a rare occurrence, as our productivity shocks occur on average only once per quarter.

Secondly, we must account for entry and exit. Entry is simple, as all entrants create jobs

and therefore can simply be added to the job creation flow. Exit complicates the analysis

somewhat, as even firms with i = 4, 5 might receive the δF exit shock. However, this

shock is calibrated to be very rare so this does not matter much in practice.

In order to check the applicability of our JC and JD measures, we simulate a large

panel of firms after estimating the model. We focus on the steady state, and simulate the

firms for one quarter of data, with the firms drawn from the ergodic productivity and size

distribution. We compute the job destruction rate exactly as is done on the data, and find a

quarterly rate of 6.2%, while the theoretical rate as calculated by jd = ∑
I
i=1 [jdi + δF] Ni/N

exactly equals the targeted value of 7.0%. While not identical, this difference of roughly

10% is in line with the average error of the other moments in the outer loop of our SMD

routine.

Comparison of firm-level autocorrelation to data: Our parameter values generate

an autocorrelation of 0.21 for yearly productivity in a year-averaged simulated firm-level

productivity series, or 0.53 for quarterly productivity (within mature firms). Elsby et al.

(2017) discuss empirical estimates of the persistence of idiosyncratic productivity, and

find a wide range of values. Our estimate lies within this range. Specifically, Cooper,

Haltiwanger, and Willis (2015) imply a quarterly autocorrelation of 0.4, which is below

our value, while Abraham and White (2008) imply 0.68 which is above our value. While

our productivity process has relatively low persistence, our constant returns to scale

structure means that current productivity controls the growth rate of employment, not

the level. Hence, even temporary productivity shocks will generate permanent effects on

a firm’s employment.

Further details of the Outer loop: The 12 parameters chosen in the outer loop fall into

two broad categories: those relating to the firm age distribution (p1, p2, p5, γ11, γ55, γ01, γ05, N0)

and those relating to business cycle moments (ξe, ξ JC, ξ JD, c0). The 12 age distribution mo-

ments are computed using the non-stochastic simulation of the age distribution in steady
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state. The six business cycle moments are computed by simulating the model for 1,000

years. The simulated data are then aggregated to a quarterly frequency and HP-filtered,

as in the data. We apply a simple diagonal weighting to the moments, with the total

weight given to business cycle moments slightly overweighted to ensure the model per-

forms well on both business cycle and steady state dimensions.

The estimation finds that the productivity grid is non-monotone, as p1 > p2 and

p5 < p4. Nonetheless, firm values remain monotone, with vi < vi+1 for all i, which is

sufficient for the job ladder to be directed monotonically by i, and hence for our notion of

equilibrium to remain well defined. The disconnect between the ordering of productivi-

ties and values occurs simply because the entrant states i = 1, 5 are more persistent than

the mature states.

Further details of the Inner loop: We present below a list of the 11 parameters (plus

the additional parameter c f ) chosen in the inner loop, and how the moment used to

choose the parameter is calculated. The inner loop is terminated when the error in all

moments is below 10−8. All moments are computed in the non-stochastic steady state of

the model.

p4 is chosen to normalise aggregate labor productivity to one. p3 is chosen to generate

a standard deviation of idiosyncratic productivity of 30%. γ2 is chosen to match that 80%

of quits (and replaceable layoffs) are replaced, calculated as q f r =
∫ 1

xh q(x)dG(x)/
∫ 1

0 q(x)dG(x).

cJC, c̄JD, and c f are set as discussed above. The firm entry flow µ0 is set to hit the

average size of firms, measured as N/M, where M is the mass of firms with at least one

employee. µ1, δD, λu, and φ are set to match the theoretically computed JC, JD, layoff,

and EE quit rates. Finally, wmin is set to match the labor share, defined as LS = Ew× N/Y,

where Ew =
∫ 1

0 w(x)dG(x).
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C Additional tables and figures

Table 3: Equilibrium policies and values in steady state

i = 1 i = 2 i = 3 i = 4 i = 5

vi 0.7285 0.7316 0.8278 2.6324 2.6551
pi 0.9265 0.6747 0.7133 1.3076 1.1379
jci 0 0 0 0.0445 0.0458
jdi 0.0995 0.0987 0.0295 0 0

njci -0.0996 -0.0988 -0.0296 0.0445 0.0457
Ni/N 0.0030 0.1213 0.3848 0.4849 0.0061

Mi/M 0.0471 0.1429 0.3989 0.4061 0.0050

Table summarizes the value and policy functions in steady state across productivity levels i = 1, ..., I. vi is
firm value, and pi productivity. Value is monotonically increasing across states. jci and jdi are job creation
and destruction rates per employee for incumbent firms, excluding the δF exit shock. njci is net job creation:
njci = jci − jdi − δF. The final two rows give the fraction of employment and active firms (with at least one
employee) repectively at each i in the ergodic distribution.

Figure C.1: Impulse Response Function - Cyclical behaviour of key aggregates
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Figure plots additional aggregates from our typical recession impulse response function. See Figure 10 for
further details of the experiment.
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Figure C.2: Experiment 1: JC and JD by firm age, as prop. of total employment
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Figure plots JC and JD flows by firm age for our typical recession experiment. See Figure 10 for further

details of the experiment. JC and JD flows are yearly, and computed as 1 − e−12r, where r are the average
theoretical monthly rates within each bin.
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