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ABSTRACT

The Dynamics of Inattention in the
(Baseball) Field*

Recent theoretical and empirical work characterizes attention as a limited resource that

decision-makers strategically allocate. There has been less research on the dynamic
interdependence of attention: how paying attention now may affect performance later. In
this paper, we exploit high-frequency data on decision-making by Major League Baseball
umpires to examine this. We find that umpires not only apply greater effort to higher-
stakes decisions, but also that effort applied to earlier decisions increases errors later. These
findings are consistent with the umpire having a depletable ‘budget’ of attention. There is
no such dynamic interdependence after breaks during the game (at the end of each inning)
suggesting that even short rest periods can replenish attention budgets. We also find that
an expectation of higher stakes future decisions leads to reduced attention to current
decisions, consistent with forward-looking behavior by umpires aware of attention scarcity.
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1. Introduction

A growing body of evidence suggests that pedpl& @y Will attention to each of the
35,000 individual decisions they make ddilyistead, since attention requires costly effort,
people allocatd strategically to the more important decisions. Whereas evidence abounds to
support inattention in a static setting, much less exists about the dynamic allocation of attention,
particularly in a field setting.

In this paper, we extend upon recent theoretical work on the dynamics of attention, which
typically focuses on lags in reacting to novel information (e.g. Gabaix 2019), to consider
attention as a depletable stock that may be rationally managed. That is, we consider the direct
impact from paying attention at one point in time on attention paid at other points in time. This
opens up questions about the intertemporal allocation of attention: How does application of
effort to one decision affect the quality of subsequent yet otherwise independent ones? Does a
hiatus from decision-making reset the stock of attention? How does the anticipation of the need
to make difficult decisions in the future affect the current allocation of atteftion?

We explore theedynamics of inattention in a data-rich, high-stakes, field environment by
focusing on the decisions of home plate umpires from Major League Baseball (MLB). The MLB
umpire setting is useful for examining these issues for several reasons. First, we can
operationalize attention through observing not just an urpikecision, but also a measure of
the quality of the decision. Daam camera-technology in MLB stadia provide information on
the objectively correct ruling for each decision. Under the (mild) assumption that the greater
attention devoted to a decision increases the probability of a correct outcome, we can infer how
umpires vary the effort applidd specific decisions. That is, when umpires make correct
decisions, we infer they paid more attention than if they called it incorrectly, all else equal.

Second, the importance of decisions varies over time. We call the importance of each
decision3everage, defined as how pivotal any particular umpiring decision is in influencing the
game outcomé Leverage varies substantially across the course of a game, evolving as a function

of playersfactions and chance events. If the importance of a decision increases th# value

2 The 35,000 figure is from Erwin (2019). The exact numbeieafsions is not important, but rather that it is a large

number. Thank you for deciding to read this footnote.

3 Such anticipation may explain why individuals take forward-looking actionereerve cognitive capital, e.g. why

Mark Zuckerberg and Barack Obama wear the same outfit every day, @15).

47KH WHUP 30OHYHUDJH" LV FRPPRQO\ XVHG WOXVW IXWR ZVMPISFOUOND QMO DV § B LR
moment is to the outcome of the game.



paying attention, and umpires were allocating attention strategically, we would expect wanpires
make more correct calls as leverage increases, all else equal.

Third, in a typical game, a home-plate umpire makes around 120 distinct decisions in
approximately three hours. The number of decisions, along with the varying stakes associated
with each, allows us to explore the dynamic interdependence of attention. To test the idea of
attention as adepl&tEOH VWRFN ZH H][D PrioabbcEtRiE of &tsntionH-aifett S
contemporaneous expenditure. Moreover, we explore whether attention can be replenished after
short, externally-imposed periods of rest. To test for forward-looking behavior, we examine
ZKHW K HU axiehpatioHo¥ffiture attention needs leads them to conserve it now.

Finally, rich data are available. We exploit data on the more than 3 million decisions made by
127 home-plate umpires in 26,523 games between 2008 and 2018, enabling us to cantrol for
wide set of potential confounders. The large sample allows for precise estimates even from
econometric specifications that include game fixed effects that control for time-invariant
characteristics of the umpire, the teams involved in the game, and the date of the game. We
flexibly control for time elapsed, allowing us to separate the effects of decision fatigue from
physical fatigue associated purely with passage of time. In addition to decision accuracy, our
data includes an array of characteristics for each pitch thrown (pitch speed, type, location, and
movement) that allow us to control in detail for the complexity or difficulty an umpire faces at
any moment.

Contrary to conventional models of decision-making that predict that errors are random and
therefore uncorrelated with leverage, our results reject the prediction that umpires exert equal
effort to all decisionsWe find that umpires adjust the attention paid to a decision in response to
the importance of the decision; a one standard deviation increase in the leverage of a decision
increases the likelihood of a correct call by 0.6t%quivalent to improving the accuracy of the
median umpire to that of the "#Percentile umpire. This finding supports the concept of rational
inattention umpires allocate more attention when the benefits from doing so increase.

We also find that periods of highleverage in the past lead to less contemporaneous
attention even with controls for current leverage. A one standard deviation increase in past
leverage reduces the probability of a correct decision by 0.32%. This is equivalent to reducing
the accuracy of the median umpire to that of tHe gé&rcentile umpire. This finding is consistent

with a model of a depletable budget of decision resource, such that more attention devoted to one



decision depletes availability for subsequent decisions, i.e., it increases the marginal cost of
subsequent attention.

However, short respites in the decision set@dich are provided by the break that the
structure of the game gives the umpire between each half-inma=gt the procesHigher
leverage irpreviousinnings has no discernible effect on attention to current decisions. While it
is intuitive that rest would increase productivity in a physical work setting, for example because
of muscle fatigue, it is less obvious how the design of shift patterns and work breaks might
impact overall performance in cognitively-intensive workplaces. Our results suggest breaks
allow for replenishment of cognitive capital.

Further, we provide evidence consistent with forward-looking behavior by umpires. A
rational expectation of having to deal with higher leverage (more important) decisions in the
future of the decision series leads to reduced attention to current decisions. More concretely, an
increase of one standard deviation in expected future leverage in the half-inning reduces the
probability of a correct decision by 0.49%; equivalent to reducing the accuracy of the median
umpire to that of the 39percentile umpire. Just as an athlete in a physical endeavour might
conserve brenergy for late in a game when she anticipates it might be particularly valuable, our
subjects conserve cognitive budget by relaxing on current calls when they expect higher stakes
decisions to come later.

Taken together, tisefindings significantly extend existing evidence on rational inattention in
several waysThe centralstatic prediction of rational inattention models is that agents allocate
more attention to more important decisions. Laboratory and field studies find that intensity of
attention is increasing in the importance or stakes associated with a decision acrossoé range
settings. Examples in the field include consumer purchases of durable goods (Allcott and Wozny,
2014; Levav et al, 2010), investor responses to earnings announcements (Dellavigna and Pollett
2009), consumer reactions to taxessfChetty et al 2009), hiring decisions (Acharya and Wee,
2020) and information acquisition in the rental housing market (Bartos et al, 2016) to name a few.

The first of our results adds to this evidence in the context of an adjudicator whose decision directly

5n baseball an inning is the basic unit of play and a game typically cesmiise scheduled innings. Each inning

LV GLYLGHG LQWR WZR KDO! LQQLQJ\EDWVWKHMHWIWRE K K H & | RIXKWH/ YOLWH. W DG H
half the home team bats until three outs are made. The umpire receives ¢escheshk between each half inning

as the teams reset their positions.



affects the outcomes of others: the attention that an umpire applies to any decision is increasing in
the leverage of that decision.

Our results on the dynamics of attention are more novel. As already noted, an appealing
feature of the baseball setting is that we observe our subjects making a long sequence of
decisions within a contained period. This allows us to explore both backward- and forward-
looking responses in a field setting for the first time, to the best of our knovA&igreresults
generally supporfaudget-of-attentioffimodels (Dragone, 2019; Gabaix et al., 2006) in which
there is a linkage between decisions in a series through the (endogenous) evolution of the
remaining stock of attention. Effort exerted at one decision moment is expected to influence
optimal attention allocation in a subsequent decision, conditional on the importance of that later
decision. Broadly consistent with this framework, we find both prior high leverage decisions and
rationally-anticipated future high leverage reduce attention to current decidibedatter is in
contrast to the experimental assumptions of, for example, Levav et al (2010), who interpret
consumer choices in the sequence of (mentally-taxing) decisions required to configure an
automobile under the assumption tRansumers are partially myopic in their allocation of
mental resources. Instead of distributing their mental effort efficiently across the configuration
SURFHVV « WKH\ EHK @DetiHiob M alskquéeKdd idpxadtidatyXir last, despite

the fact that in our experiments it is obvious that subsequent decisions will folfage 276¥.

% The closest laboratory experimental evidence is that presented by Gabaix et all{2D@d)set-up subjects face

an open-ended series of choices between pairs of goods and giventeriexbddget (25 minutes). Collecting
LQIRUPDWLRQ DERXW D SDLU RI JRRGV HOQO FBO MNHEXIQRQ@ E R [ HD/OXO\RLZYJ | WK H
decision in that round but depgHV EXGJHW RI WLPH DYDLODEOH WR GHYRWH WR IXWXL
also allows us to evaluate how subjects allocate scarce seardietmeenJDPHV «°~ *DEDL[ HW DO

They find that subjects devote more effort to higher value rountig|4o show increased propensity to stop

analyzing the current game as the remaining budget of decisionitimmesthes.

7 If an umpire anticipates that paying high attention to one decision negatyeygts subsequent, perhaps more

important, dFLVLRQV KH ZLOO RSWLPDOO\ FRQVHUYH DWWWYQW® LWRIQHES LYRMHIQNW
analogy would be a soccer player conserving physical effort early inetgaapply to possibly more important

game situations later. Most readers likely have no objection to the idea pmatsperson would seek to allocate a

limited budget of physical energy across time, rather than workingulatte@very moment. Our results suggest

umpires engage in the same sort of strategic allocation of cognitive effort.

8 An important feature of our setting shared by Levav et al (2010tishtby have a proxy for decision complexity,

namely the number of options among which the consumer is eedquilchoose at any stage of the customization

process. They show, contrary to predictions of conventional choice/thieder unlimited attention, that the vehicle

ultimately configured by the consumer is sensitive to the (experimemsaliypulated) order in which decisions

over options are required. If complex decisions are posed eahly setjuence, a consumer is more likely to revert

to reliance on heuristics, such as accepting the default, later. Apart fronaldangg-sample field setting, an

additional advantage of the environment that we study is that we have an eaaaterof decision quality, whether

WKH pULJKWYT GHFLVLRQ L-MaKising spgdifichtior bf Veelé i3 nstwisented/ \



Our finding that prior decisions affect current ones is consistent with predictions and
HYLGHQFH |UR EegddiptetioiH O DW/HHHE Q¥ Xy WwiHlecisions deteriorates with the

number of decisions made (Baumeister et al 1998gre are numerous studies on decision
fatigue from healthcare (Linder et al, 2014; Philpot et al 2018; Chan et al 2009; Kim et al 2015),
financial forecasting (Hirshleifer et al, 2019), voting behavior (Augenblick and Nicholson,
2016), consumer science (Bruyneel et al, 2006)), manuscript evaluation (Kwan et al, 2016) and
air traffic control (Orasunu et al, 2012). However, our study goes beyond this by not only
showing fatigue arising as a function of the cumulative number of decisions made, but by
explicitly analyzing themportanceof the decision, which we have already established impacts
the effort exerted, as contributing to fatigue. Our findings therefore point to the depletion of
attention capital stock as depending not only on the cumulative number of decisions made but
also their qualitative characteristics.

Moreover, our forward-looking results point to tricipationof ego depletion playing an
important role in the decision-making process. Subjects act in a way consistent with being aware
that their attentional capital is depletable, and attempt to conserve it for later degisions
particularly where future decisions are rationally expected to be high stakes. This provides the
first evidence of a further level of rationality and sophistication with which agents manage their
expenditure of attention when faced with a series of mental tasks of varying challenge and
importance.

We proceed as follows. In next section we provide basic background on MLBegmpir
including what they do during a game, the incentives they face, and how we measure
performance. In Section 3 we describe the basic dataset, provide basic summary statistics, and
PRWLYDWH DQG GHVFULEH KRZ ARXRB SPHHDDANX URIQPIOG HHF B'Q HR @1 WL
Section 4 provides an overview of the basic econometric approach. In Section 5, we present our

main results, including a battery of robustness checks. Section 6 concludes.

2. Background
Baseball umpiring is a skilled job, requiring sustained mental effort. We study professional

umpires operating at the highest level of the game, Major League Ba3éledtiallparks where

® See however Zheng et al (2020) for evidence to the contrary.



they work are dispersed across many of the major cities of the United States, plus Toronto. MLB

as an organization employs around 100 umpires in anyQiW¢HDVRQ RUJDQL]JHG LQWR
four, with each serving as the home plate umpire every fourth game. Umpiring at this level is a
lucrative and competitive career, with an experienced umpire commanding a base salary of
$350,000 per season, which can be supplemented by post-season assignments and writing and
speaking engagements for the high performers.

The most significant task that the home plate umpire faces in his working &aiisg " the
game deciding which pitches are balls and which are strikes. A pitch should be called a strike if
any portion of the baseball passes through the strike zone (see Figure 1), and a ball dtherwise.

The accuracy of the adjudications is fundamental to the gammas®Whether a call is correct as
our measure of decision quality.

In an average game, an umpire makes calls on around 120 pitches. We dlddeile XPSLUH TV
decision as well as the objectively correct call. We obtained the latter from a high-precision
pitch-tracking technology called PITCHf/x which has been in operation at every MLB ballpark
since 2008. The output of the PITCHf/x camera system will be familiar to baseball watchers
since it forms the basis for the real-time on-screen pitch location graphic used in television
broadcasts of games. Researchers have used the same data as a testbed for other hypotheses,
including racial discrimination (Parsons et al, 2011), the effect of status on evaluations and the
so-called Matthew Effect (Kim and King, 2014)WKH JDPEOHUYV |P01®)DHoWw & KHQ F
decision quality is affected by exposure to air pollution (Archsmith et al, 2018) and as a test of
models of strategic interaction (Bhattacharya and Howard, Forthcoming).

Figure 1 presents a spatial scatterplot of the true locations of pitches upon which the umpire
had to make a call in one game, as generated by PITCHf/x. Correct and incorrect calls are the
hollow and solid black shapes, respectively. Umpires make both Type 1 and Type 2 errors. A
solid triangle in the plot denotes a pitch that passed outside the zone that an umpire erroneously
called a strike. A solid circle indicates that a pitch passed through thebzdniee umpire called
it a ball. Not surprisingly, only pitches close to the strike zone boundary are called incorrectly.

[Figure 1 About Here]

10 the pitcher throws three strike8y KH EDWWHU LV FRQVLGHUHG RXW D 3VWWKHMH RXW’
EDWWHU DGYDQFHVY WR ILUVW EDVH D 3ZDON" RU EDVH RQ EDOOV’



The incentive for umpires to make correct calls is substantial. MLB operates a $sygjem
of monitoring and incentives for its umpires, called the Supervisor Umpire Review and Evaluation
(SURE) system. This system uses various sources, including evaluations and on-site supervisors,
to track the performance of umpires (Drellich, 2012). More generally, in the PITCHf/x era umpire
errors are easily observed by a wider audience. As i€, X P SL U H T Vs lad<sso/WdhW L R Q
sensitive to how often he makes mistakes, especially at those important (high leverage) moments

in games when players, fans and the media are paying the most attention.

3. Data

We compile data to reconstruct the decision environment and outcomes faced by MLB
umpires during professional baseball games. Our primary data are based on detailed information
from actual games. We augment these data with a calculation of decision leverage and the
outcomes of additional simulated games. Below, we describe each data source in detail.
3.1MLB Pitch Data

Following Archsmith et al (2018) we compile data on the details of every pitch in all MLB
games from 2008 to 2018 from the MLB website. These data are reported as pagof ML
PITCHf/x tracking system. Game-level data include variables for the home and away team,
venue, the umpires and their position on the field, starting time, starting weather conditions,
game attendance, and total runs scored by each team. Pitch-level data include identity of the
players on the field and their position (including the pitcher, batter and catcher), attributes of the
game situation (current runs by each team, inning, inning part, baserunner positions, outs, balls,
and strikes), attributes of the pitched ball, the location of the pitch as it crosses home plate, and
the result of the play after the pitch QFOXGLQJ WKH XPSLUHYVY EDOO VWULNH

Given that the ending of a baseball game is endogetaggmme can go intéxtra innings
if the score is tied at the end &Egular innings twe choose to focus our samples on only the
pitches in the regular innings.
3.2 A measure of decision importance

Our empirical analysis investigates whether MLB umpires expend more effort to make
correct decisions when the stakes of that decision are large. Doing so requires an objective

measure of the stakes of each decision. To this end, we adapt the coteagiagi(aterm



already used in baseball to refer to the importance of a game sijuatgpecific pitch-level
ball/strike decisions of MLB umpires.

Leverage is a scalar metric that assigns large values to important or pivotal moments in
sporting events. For example, a decision or action that breaks a tie late in a game will have
much larger impact on the probability of winning than breaking a tie early in the game because
the opposing team has fewer chances to equalize the score. We define leverage for a given pitch
asthe absolute difference in the probability the home team wins in the situation where the
XPSLUH FDOOV D 3SEDOO" DQG WKH VLW XiTN StRKOs Zak ehdrgeW K H X |
substantially from pitch to pitch, and umpires can make independent decisions at each pitch over
the level of effort to expend on adjudicating it correctly.

7KLV OHYHUDJH PHWULF FDSWXUHYVY WKH XPSLUHYV VWDWH
decision is made. The umpire knows the current situation of the game, but future events
impacting the outcome of the game (many beydd H X P S L U)fe\unkridvhWrbuR, O
computing this leverage measure requires determining two expected probathiktipsobability
WKH EDWWLQJ WHDP ZLa@dWXH 1$Q EDBEL OLMWHN WADHDZLQ JLYHQ
conditional on the current situation in the game. In each case, we assume events in a baseball
game follow a Markov process with st#gencompassing the game situation at pitch

We estimate leverage using probabilities derived from simulated MLB games. By simulating
the evolution of a large number of games, we can compute win probabilities for states that occur
infrequently in the available history of baseball games at the cost of additional assumptions over
the evolution of game states. There are four basic steps in the simulation (see the appendix for
details):

1. We define the state of the game by the number of outs, baserunner positions, strikes, and

balls.
2. Using actual MLB data, we compute the probability of transitioning from given states to
new states plus new runs scored. We compute these state transitions within each half-

inning.

11 Unlike many other sports, the rules of regular- and post-seakBrglimes prohibit games that end in draws.

Therefore, the probability the away team wins conditional on some dgaragos A is simply one minus the
SUREDELOLW\ WKH KRPH WHDP ZLQV JLEHRL WKRQW \RUIWEDO®QOR @ HIL\NAMZ BV W L
mutually exclusive and collectively exhaustive when an umpire adjud@atiésh. As such changing the team for

ZKLFK ZH FRPSXWH OHYHUDJH RU ZKHWKHU 3EDOXC0 W \L @ XOEQN IU®H @M IGF DUCR P
metric.



3. Using these probabilities, we simulate 5 million MLB games from start to finish,
collecting the states observed in each half-inning of a game and the eventual winner. This
information is used to compute the probability the home team wins conditional on a given
State.
4. Using these win probabilities, we compute a leverage measure for each situation using
the same method as the measure based on actual game data.
The appendix also examines robustness of our results to an alternative approach to calculating
leverage, using actual game outcomes.
3.3Past and Future Leverage

We also consider the impact of accumulated past and expected future leverage. Past leverage
is simply the sum of the leverage measure for all past pitches during the current inning. Expected
future leverage is computed from simulated baseball g&hies.each possible game situation
and across all simulated games, we compute the leverage for all future pitches in that inning.
Expected future leverage is the mean future leverage across all times that situation occurred.
3.4 Summary Statistics

Table 1 shows game-level summary statistics. We have data on 26,536 games, with an
average of 291 pitches per game. Of these, about 120 pitch&sked "‘meaning they are
subject to umpire discretion. This leaves about 3.2 million observations where the umpire makes
a call about a ball in flight. Table 2 shows summary statistics for these pitches on the full sample
(column 1), the final regression sample (column 2), and then further limits the latter to decisions
in the first inning (column 3) and ninth inning (column 4). On average, umpires call 84 percent
of pitches correctly.

The main explanatory variable in our analyses is leverage. In theory, leverage ranges from O
to 1, but the average leverage at any point in the game is low \0&daluse any single pitch
generally has a small effect on the outcome of the game. Note that columns 3 and 4 show that
average leverage increases throughout the game, as later decisions are more impactful on the

final outcome. However, even the'™®percentile value of leverage is small (.08). Past and future

2 Here simulated games are essential since even situations which are overall uatiketyt frequently observed
in the 11 years of available datanay have a relatively large probability of occurring conditionahencurrent
state and thus influenc&ktH XPSLUHNVY H[SHFWDWLRQ RYHU IXWXUH OHYHUDJH

10



leverage are higher than current leverage because they capture the accumulation of leverage
within a half-inning.

[Table 1 about here]

[Table 2 about here]

To illustrate our leverage measures, Table 3 provides specific examples of current and

future leverage. For example, thé"g@ercentile of current leverage, measured as .0097,
corresponds to a situation where there are 2 outs, 0 balls, 2 strikes, a rurfdsase,vith the
home team leading by 3 runs in the bottom of thénGing. The value of .0097 is the difference
in the probability the home team wins\WW KH X P SLUH RDoOmMpered t¢ W2 othe
XPSLUH FDQOV D 3VWULNH

[Table 3 about here]
A potential concern with our measure of future leverage is that it lacks independent

variation from current leverage. That is, if current leverage reflects not only the current situation
but also future possibilities, then future leverage may be highly correlated with current. Figure 2,
which presents a scatter plot of the two, shows ample independent variation in the two measures
of leverage, suggesting multicollinearity will not be an issue for our arsalyse

[Figure 2 about here]

Likewise, Figure 3 shows the evolution of the leverage metrics over time through one
particular MLB game. Current leverage is highest toward the ends of games with close scores,
particularly in crucial situations. Accumulated leverage is highest after these critical situations,
even if the current leverage is low. Expected future leverage generally increases over the course
of the game and tends to peak as the game approaches critical junctures.

[Figure 3 about here]
4. Methods
Our goal is to investigate the relationship between the effort an umpire expends on correctly
adjudicating a decision and the leverage of the decision. We estimate this relationship using a

linear regression for each pitptin gameg as follows!?
a?5 ]
Uk %o L B k#to EBI .:# :EUQ NI .:#  OEGE%E QE ay
@5 @a>5

BWe estimate these regressions usingdiiteife package from Correia (2014).

11



Where %is the decision of the umpiréjgis the correct call given the point at which the pitch
crossed home plate,k # ois the leverage in the situation where ppalk thrown, : 5 is a vector

of continuous (such as velocity or rate of spin) and discrete (such as an indicator for fastballs or
curveballs) controls for pitch attribute3f is fixed effect for each inning(f}is a game fixed

effect, and g, gis an idiosyncratic error potentially correlated within gaiid@he parameters of

interest areU” the coefficient on the current pitch Ieverag'E,the coefficient on accumulated
past leverage, ant¥ the coefficient on future leverage expected prior to adjudicating the current
pitch. Given our definition of leverage, we interprets the effect of a change in win probability
for the home team, conditional on the game situation, on the probability of the umpire making
correct call.

Our use of game fixed effects controls for many unobserved factors. Specifically, these
fixed effects control for all time invariant characteristics of the umpire, the teams that are
playing, the venue of the game, and the date and time of the game. This will control for features
like a game between two rivals, a venue more amenable to home runs, or a hot day. With game
fixed effects, we are exploiting how leverage within a game affects correct calling within the
same game. This enhances our ability to intergfret* D Q & causal parameters.

Although this approach controls for many time invariant components, there may be
IDFWRUV YDU\LQJ ZLWKLQ WKH Jdbéhlds phisaalfaiigulerthRrd/playd? SLUH V
changes. We include inning fixed-effec&) to control for physical fatigue as the game wears
on, enabling us to separately identify the effects of decision fatigue. Teams may change pitchers
in later innings as the starting pitcher tires or the situation calls for a particular pitcher. These
relief pitchers often have different pitching styles than the starter, and these different styles may
DIIHFW WKH XPSLUHVY D E EOTo\accovnRioPsDdk FactoR linsehieW FDO OV
specifications we control for various pitch attributes in the vector X. A potential concern with
this approach is that pitch attributes may be endogeonoidd: D G F R (ANglisRa@d\Pishke,

¥ Following Archsmith et al (2018) and Kim and King (2014) we controbfl pitch attributes reported in
PITCHYf/x using linear controls for continuous attributes and fixed &ffiec discrete attributes. Unlike previous
work, there is substantial within-game variation in our variable of intenelsiva can identify our parameters of
interest relying on only within-game variation using game fixed effefdaever, variation in leverage is driven by
the game situation, so we do not control for game situation variables adfiak the state space for our leverage
metric.

15 For example, relief pitchers are likely to throw more fastballs relative t&ihgeballs, and fastballs are easier for
an umpire to adjudicate.

12



2008). Because of this, our preferred specification excludes controls for pitch attributes.
However, we report results of a specification including pitch controls in Section 5.3.

For defining past and future leverage, we accumulate leverage measures within the same half
of an inning. For example, for a game in the top of the third inning, imagine we are 4t the 5
pitch in the inning. Past leverage is the sum of the contemporaneous leverage from the first four
pitches in the inning. Future leverage is the expected sum of leverage for all remaining pitches in
the inning. As we move forward to th# gitch, past and future leverage update to include'the 5
pitch. Given that the effects from past leverage may extend beyond the current inning, we also
include past leverage from previous innings. The existence of a two minute break between
innings enables us to explore whether the umpires stock of attention is replenished by a short

respite.

5. Results
5.1Main Results

Our main results are shownTable 4 The first column reports results from our estimating
eqguation in which our measure of past leverage is from the current inning only, with the next
column adding the lag of past leverage. We exclude data from the first inning to keep the sample
of pitches we explore fixetf. All coefficients are multiplied by 100 to improve readability. In
JHQHUDO ZH FRQWHPSRUDQHRXY OHYHUDJH LQFUHDVHYV XPS
leverage decreases it.

[Table 4 about here]

JREFEXVLQJ RQ WKH HITHFW RI FRQWHPSRUDQHRXV OHYHUD
estimates consistent with our hypothesis that higher leverage increases umpire attention. Our
estimate of 38.223 indicates that increasing leverage from 0 to 0.013, the mean leverage in our
sample, increases the probability that the umpires makes the correct call by .0051, a 0.61 percent
increase. This estimate is highly statistically significant, with a 95% confidence interval of
[0.55%,0.67%]. Adding additional lags of past leverage scarcely affects the coefficient on

contemporaneous Ieverage.

18 The sample size changes slightly due to missing or inconsistent gamersitizétidrom PITCHf/x that affects
our ability to calculate leverage.
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Turning to the effect of past leverage, we find evidence consistent with a hypothesis of a
depleted attention budget. As umpires face more leverage earlier in the inning, this decreases
their attention on the current call. The estimate of -3.26 indicates that moving accumulated past
leverage from 0 to 0.064, the mean of past leverage, decreases current call accuracy by 0.209
percentage points, which is a 0.248 percent change. This estimate is also highly statistically
significant with a 95% confidence interval of [-0.289%,-0.207%].

As we include lags of leverage to our specification, two patterns emerge. One, the
estimate on the past leverage of the current inning is unaffected. Two, the effect of past inning
leverage is very small, coming in several orders of magnitude smaller than the current inning,
and statistically insignificant. (These patterns hold true when we include additional lags of
leverage.) These results imply that umpires refocus their attention after a short respite,
suggesting that while our attention is scarce, our budget can replenish quickly.

Next, we focus on future leverage. Our estimates are again in line with our theoretical
prediction: higher future leverage decreases current attention. Our estimate of -3.575 indicates
that changing future leverage from 0 to 0.167, the mean of future levardggE UHDVHYV DQ XPSL
likelihood of a mistake by .060 percentage points, a 0.71 percent change. This estimate is also
insensitive to further controls for lagged leverage and highly statistically significant, with a 95%
confidence interval of [-0.792%,-0.6289].

The inning dummy variables, which at least partially control for physical fatigue over the
course of the game, also indicate an interesting pattern. Except for the last inning, we see fairly
modest changes in umpire performance as the game wears on. Changes in a correct call vary
between 0.05 to .1 percentage points compared to the second inning (the reference category),
though with no clear pattern of physical fatigue throughout the majority of the'§amis.
suggests umpires are fairly consistent in their performance over the course of the game.
However, in the last inning umpire performance drops by 0.39 percentage points. Since we
control for leverage, this drop at the end of the game does not reflect the erosion of the

importance of calls later in games.

17 Estimating this and all other models excluding data from the ninthds does not substantially disturb any of
our results.
8 We omit inning 1 to allow inclusion of a lagged measure of past leverage.
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5.2 Additional Results

In the next table, we explore how the effect of leverage varies within the game by estimating
the effects separately by innikyWe find the same general pattern of results in every inning for
our three measures of leverage, but find some interesting trends within the game. We did not
derive specific hypotheses for these patterns, so we only speculate about potential explanations.

[Table 5 about here]

As the game wears on, the effect of current leverage on umpire attention steadily decreases,
though it always remains positive. By tH&i@ining, the effect of contemporaneous leverage is
nearly 30% the size of the effect in tHéiBning. The difference between these two estimates is
statistically significant; further, the general decrease in the coefficient suggests an important
trend. A possible explanation is that the umpire fatigues as the game goesslessdble to
regain focus for an equally important call later in the game.

In terms of the dynamics of leverage, we consistently find negative and statistically
significant effects for past and future leverage, with the effect size steadily diminishing over
time. While there are some trends across innings, in general the results by inning support our
main results.

5.3 Robustness

In Table 6 we explore whether our results are robust to a range of alternative regression
controls. First, in column 1 we repeat cBUHIHUUHG VSHFLILFDWLRQ 7KH GLIIL
decision may depend on characteristics of the pitch in flight, such as velocity, spin, or trajectory.
One concern is these attributes are a result of what type of pitch a pitcher decides to throw,
which is decided after leverage is determined for a given situation. Thus, pitch attributes are
effectively simultaneously determined with leverage, and cGUKIDOLI\ DV SEDG FRQWURC
(Angrist and Pishke, 2008). Despite this concern, when we add controls for all pitch
characteristic® to our primary specification, shown in columro@r estimates move only

slightly.

19 We estimate leverage effects by inning within a joint regression frarkewer the full sample to constrain the

game fixed effects to be identical across innings.

20 \we use continuous, linear controls for all continuous pitch attributes dicatior variables for all discrete

attributes in the PITCHf/x data. Specifically, the continuous attributes are the positienball when released by

the pitcher (along horizontal, vertical, and distance from hg@DWH D[HVY WKH EDOOYfV GLUHFWLRQ
angle of break and distance of break (measured in both horizonta¢ditdl axes) and the velocity of the ball

when it crosses home plate. The discrete attributes are indicators for thgpstch t
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Our primary specification, by including game fixed effects, identifies the effect of leverage
on decision accuracy from within-game variation. In columns 3 and 4 of Table 5, we allow for
identification across games, while still accounting for potentially confounding heterogeneity, by
replacing game fixed effects with umpire, home team, away team, and date fixed effects (column
3) and umpire, home team, away team, year, month-of-year, and day of week fixed effects
(column 4). Estimated effects of leverage are essentially unchanged in this specification.

Finally, it is possible individual players may be more likely to be included in high-leverage
situationsand D\ WDNH DFWLRQV ZKLFK LQFUHDVH WKH GLIILFXOW
5 we add fixed effects for players in each of the three positions that directly participate in this
component of the game: the pitcher, the batter, and the catcher. Again, the empirical estimates
are very similato those from our primary specification.

[Table 6 about here]

Our preferred specification assumes a linear relationship between each of our leverage
measures and its impact on the probability of a correct call. To relax this assumption, we
edimate a model that more flexibly controls for past, current, and future leverage. For each of
the leverage measures, we divide the observed values into quintiles of equal size and replace our
linear leverage measures with indicators for these quirtiResults for each leverage measure
are shown irFigure 4 Results from this more flexible specification reveals an approximately
linear relationship with effect sizes that are similar, if not slightly larger in magnitude, to the
parametric specification froMable 42

[Figure 4 about here]
5.4 Heterogeneous Effects

We further explore heterogeneity in how individual umpires allocate effort by estimating
umpire-specific leverage effects. Extending the regression specification from Table 4 Column 1,
we interact each leverage measure with indicators for every umpire in a single regreBsen.
estimated effects for each umpire are shown in Figure 5. Panetécjaghow the effects for

past, current, and future leverage, respectively. In each panel, umpire specific effects are ordered

2! For each leverage measure we treat the first quintile as the omitted category.

22\We observe similar results if we increase or decrease the number tifeguased.

23To improve precision, we exclude umpires who are observed to semeenasplate umpire in fewer than 20
games during our sample. The median umpire served as home plateinr@gbegames during this period. This
restriction removes 14 of the 127 umpires or 132 of the over 26,008sdaom the sample.
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from largest at the top and smallest at the bottom. For nearly all umpires, the estimated treatment
effects are of the same sign as our main results, with a large portion being statistically significant
at the 95% level despite the large increase in model parameters. These results suggest that very
few, if any, umpires deviate from our main findings about dynamic inattention.

Panel (d) of Figure 5 combines the past, current, and future leverage estimates for each
umpire into a single figure. Here, effects for a given umpire are aligned horizontally and ordered
E\ WKH WKDW XPSLUHYV HVW LRDdhpasalblii/Ueddh @WraQeeiddtisD JH H I |
divided byits standard deviation across all umpires. Lines show the moving average of each
leverage effect across the 10 umpires above and below each observation. Umpire-specific effects
for past and future leverage are negatively correlated with the current leveragé* &tene
individuals are highly responsive to high-leverage situations, appearing to expend substantial
effort when decision stakes are high. These same individuals tend to exhibit larger decreases in
accuracy from accumulated past and expected future leverage. This result is broadly consistent
with umpires maintaining a budget for attention; umpires who expend more effort on high-
leverage decisions will need to conserve more effort in other situations to maintain their budget.
6. Conclusions

Conventional economic models embody agents able to make perfect, optimising decisions.
An important strand of recent efforts to increase the behavioral realism of models has been to
acknowledge that attention is not costiesise effort required to attend to decisions and execute
them well can be costly and cognitively tiring---and incorporateithaodels. Models of
Strategic inattentiof) predicated on rational agents adjusting their behavior to account for
attention being either limited and/or costly, are increasingly mainstream (for examples Caplin
and Dean, 2015; Sims, 2003; Falkinger, 2011).

While the idea of costly attention is intuitively appealing, rigorous evidence characterizing its
implications in real settings remains limited and primarily focuses on static effects in cross-
sectional data. This paper adds to and extends this evidence. Studying the quality of decisions
made by a panel of professional decision-makers with strong incentives to get these decisions
right, we show that MLB umpires systematically vary the effort they apply to individual

decisions: applying greater attention to those associated with higher stakes. This is consistent

24The correlations b/ ZHHQ DQ XPSLUHYTV SDVW RU IXWXUH OHMRARWDAM IHHd IHFW DQG
-0.485, respectively. Both correlations are significant at the 1% level.
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with established theoretical models of strategic inattention. Our data-rich setting, in which the
same umpire is called upon to issue a long series of decisions, allows for careful study of the
dynamicsof inattention and delivers our most novel results. First, high effort applied early in a
sequence of decisions reduces effort applied later in the series. Second, umpires act as if they
anticipate high stakes decisions to come later, and conserve cognitive effort. Both results fit
closely to the predictions from a model in which the umpire has a depletable stock of attention.
These dynamics render inter-dependent otherwise separable decision problems. The short and
exogenously mandated break that the umpire receives between half-innings appears sufficient to
replenish his stock of attention, since there is no evidence of inter-dependence across those
breaks. If repeated in other work settings such evidence could point to the utility of short breaks
built into the working day in many cognitively-demanding professions (Gino, 2006

results prove robust to an array of alternative specifications and robustness tests.

Thisis not just a paper about baseball. The richness of the data in a field setting affords a
unique opportunity to explore the much broader issue of strategic inattention in novét ways.
Moreover, although umpires work in the sports industry, our subjects are not professional
athletes, but rather professional decision-maikémpires attend specialized training schools,
acquire 7-10 years of experience prior to achieving MLB status, are highly paid, and their work
highly scrutinized, making their role much closer to a judge than an athlete. As with studies of
any industry or profession, there may be concerns about how generalizable the results are.
Examining whether similar dynamics of attention are seen in other settings aimsortant

next step.

25 Sievertsen et al (2016) found that the performance of Danish childstamitiardized tests declined as the time of

the test became later in the ddg EHFDXVH RYHU WKH FRXUVH RI D UHJXHODD WBPHGVW XG |
(p. 2621). They also found, however, that a twenty-minwtakbfrom mental work restored performance.

26 Concerns over external validity from using sports data are more litvétecthan for some other influential

research that have used sports data, for example testing tournament tiieppyayer choices in professional golf

tournaments (Ehrenberg and Bognanno, 1990).

18



References

$FHPRJOX ' DQG 3 5HVWUHSR 37KH :URQJ .LQG RI $,"
)XWXUH R /D E RBERMBXiGo3aper 25682.

Acharya, S. and S. Wee Rational Inattention in Hiring DecisionsAmerican Economic

Journal: Macroeconomics 12(1): 1-40.

$ODRXL / DQG $ 3HQWD 3(Q G R ReV@R ¥ \EcbHOBW BtuBids 5 H D V R
83(4): 1297-1333.

Allan, J. L., D. Johnston, D. Powell (2019 &OLQLFDO '"HFLVLRQV DQG 7LPH 6L«
$QDO\VLV RI "HFLVLRQ HdaW Psyxhdlogy)38(45:318F2¥. -

$OOFRWW + DQG 1 :R]Q\ 3*DVROLQH 3ULFHV )XHO (F
Review of Economics and Statistics 96(5): 779-95.

Angrist, J. D. and J.-S. Pischke (2008jostly Harmless Econometrics: An Empiricist's

CompanionPrinceton University Press.

$UFKVPLWK - $ +H\HV DQG 6 6DEHULDQ 3$LU 4XDOLW
Performance in a High-Skilled, QualityR FXVVHG 2 F Bou®al \Wf Lt AsSociation of

Environmental and Resource Economists 5(4): 827-63.

Augenblick, N.and6 1LFKROVRQ S8 %DOORW 3RVLWLRQ &KRLFH
Review of Economic Studies 83(2): 460-80.

Baer, D. 2015. "The Scientific Reason why Barack Obama and Mark Zuckerberg wear the same

Outfit Every Day"._Business Insider. (Retrieved 24 October 2018).

%DUWRYV 9 0 %DXHU - &K\WLORYD DQG ) OHWHMND 3
JLHOG ([SHULPHQWYV ZLWK ORQLW R Wn@ritan ELBImi® ReLigQ $F T X
106(6): 1437-75.

Bhattacharya, V. and Howard, G., 2020. Rational Inattention in the Infield. American Economic

Journal: Microeconomics. (Forthcomming)

%UX\QHHO 6 6 'HZLWWH DQG . 9RKV SBHSHDWHG &KEF
$IITHFWLYH 3UR GixérnatiQrialldoindadl éf ReSearch in Marketing 23(2): 215-25.

19



&DSOLQ $ DQG 0 'HDQ S5 HYHDOHG 3UHIHUHQFH 5DWLR
$FT XLV |AvudriBa® Economic Review 105(7): 2183-2203.

Chan, M. Y., H. Cohen and B. Spiegel (2009).HZHU 3RO\SV "HWHFWHG E\ &ROR
'D\ 3URJU gimivaHGastroenterology and Hepatology 7(11): 1217-23.

&KHQ ' 7 ORVNRYLW] DQG . 6RENLQJ XQ@GGHALWLIRI) *DPEOH!
Evidence from Asylum Judges, Loan Officers, and WHE D O O ®Bdsterly Hdurnal of
Economics 131(3): 1181-1242.

&KHWW\ 5 $ /RRQH\ DQG . .URIW S6DOLHQFH DQG 7L
American Economic Review 99(4): 1145-1177.

Correia, S., (2014) "REGHDFE: Stata module to perform linear or instrumental-variable
regression absorbing any number of high-dimensional fixed effects," Statistical Software

Components S457874, Boston College Department of Economics, revised 18 Nov 2019.

'HOOD9LJQD 6 DQG - 3ROOHWW 3 QYHVWRU ,QDWWHQW
Journal of Finance 64(2): 709-49.

'"HPLQJ ' 37KH *URZLQJ ,PSRPODWDQFHR RIWKRALMIERQ 8QS)>
Manuscript, Kennedy School of Public Policy, Harvard University.

'UDJRQH 'DYLGH etting Tire®. FEffort and Fatigue in Intertemporal Decision-
P D N L @odrrial of Economic Psychology 30(4): 552-62.

Drellich, E. (2012). Complex system in place to evaluate umpires. https://www.mlb.com/news
/c-37468304/print.

(KUHQEHUJ 5 * DQG 0 %RJQDQQR 'R 7RXILIPHQWYV A
of Political Economy 98(6): 1307-24.

Erwin, M. 8 5HDVRQV :H ODNH %DG '"HFLVLRQV HxQd#&d:KDW W

Business Review.

J)DONLQJHU -mited Attenfidn as a Scarce Resource in Informatiob+K (FRQRPLHV ~
Economic Journal 118(3): 1596-1620.

20



*DEDL][ ; % HKDYLRUDO ,QDWWHQWLRQ ~ &KDSWHU LQ
Laibson Behavioral Economics: Application and Foundatiofgolume 1), Elsevier: North-
Holland.

*DEDL[ ; ' /DLEVRQ * ORORFKH DQG 6 :HLQEHUJ 3&R
([SHULPHQWDO $QDO\VLV RI D %ARne@enHEednims RevieR Oa¥P OR G H ¢
1043-1068.

Gino, F. (2016) 'R Q fake Itportant Decisions Late in the Day." Harvard Business Review
23.

+LUVKOHLIHU ' $ < /HYL % /RXULH DQG 6 + 7HRK
$QDO\VW )Rdahih& Df FMaNcial Economics 133(1): 83-98.

Kim, J. and B. King (2014) 36 HHLQJ 6WDUV ODWWKHZ (IITHFWV DQG 6WI
%DVHEDOO B&h3deménDScience 60(11): 2381-2617.

Kim R. H.,S.Day,D. Small C., Snider, C. Rareshide and M. Patel (203&riations in Influenza
Vaccination by Clinic Appointment Time and an Active Choice Intervention in the Electronic

Health Record to Increase Influenza VaccinatiodAMA Network Open 1(5).

Kwan, J., L. Stein et al (2016f'RHV 'HFLVLRQ )DWLJXH ,PSDFW ODQXVFL
Analysis of Editorial Decisions bW KH $PHULFDQ -R XU Q D OARdri¢ad VowhbR H Q W H L
of Gastroenterology 111(11): 1511-12.

JHYDY - 0 +HLWPDQQ $ +HUUPDQQ DQG 6 ,\HQJDU 3
'"HFLVLRQV (YLGHQFH IURRuUaHDMlitides EConomyHIQ8HBY 274-99.

Linder J. A., J. N. Doctor and A. W. Friedberg (201&Fime of Day and the Decision to Prescribe
Antibiotics”. JAMA Internal Medicine 174(12): 20292031.

2UDVXQX - % 3DUNH 1 .UDIW HW DO of Scheé(h Diangbsvibk Q J W K
$LU 7UDIILF 6HUYLFH $76 3URYLGHUV &RQWUROOHU $OHL
Available at: https://trid.trb.org/view/1364660.

3DUVRQV & - 6XOHPDQ O <DWHV DQG ' +DPHUPHVK
InceQWLYHV D Q G AneboanHasMdnie@eview 101(4): 141#35.

21



Persson, E., K. Barrafrem, A. Menuier and G. Tinghog (20187KH (IIHFW RI '"HFLVLRQ
RQ 6 XUJHRQTV &OLQLF BélthHEEonohhid? @8(0a): N199-1203.

Philpot L, B. A. Khokhar, D. L. Roellinger, P Ramar and J. O. Ebbert (20Li8)e of Day is
Associated with Opioid Prescribing for Low Back Pain in Primary Cagaurnal of General
Internal Medicire 33(11): 1828-1830.

Pignatiello, G., R. Martin and R. Hickman (2026).HFLVLRQ )DWLJXH $ &RQFHSW)
Journal of Health Psychology 25(1).

6LHYHUWVHQ + + ) *LQR DQG 0 3LRYHVDOQ 3gRJIQL!
SHUIRUPDQFH LQ 6W PrQeeddibgs bfl tH&NatidnaMAvademy of Sciences of the
United States of America (PNAS) 113(10): 2621-24.

6LPV & 3, PSOLFDWLRQV Rdurbd 9¥ MEn&X&OEcAD@EINGB)WLRQ”
665-90.
7TLHUQH\ - 3'R <RX 6XIIHU | WNBWRYOHHIMe¢d (Ra@e IDIW LI XH™"’

Wadhwa, T. (2016). A Hedge Fund Wrote a Letter to Investors Explaining why they should Read

a Classic Book about Cognitive Biases Business Insldgy:{/www.businessinsider.com/voss-

capital-investor-letter-on-daniel-kahnemans-thinking-fast-and-slow-2Q). 6-

Zheng, B., E. Kwok, M. aiIMDDU G S'HFLVLRQ )DWLJXH LQ WKH (PHU
American Journal of Emergency Medicine 38(12): 2506-2510.

22


http://www.businessinsider.com/voss-capital-investor-letter-on-daniel-kahnemans-thinking-fast-and-slow-2016-11
http://www.businessinsider.com/voss-capital-investor-letter-on-daniel-kahnemans-thinking-fast-and-slow-2016-11

Tables and Figures

Figure 1 - Example Pitch Location and Umpire Decisions
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2013/08/04 - ARl vs BOS

Visualization of pitch locations and umpire decisions from a typical MLB dagh@een Arizona and Boston on
August 4", 2013. This game was selected because the number of total pitchesparedesror rate are close to the
sample means. Circles denote pitches called balls and triangles denote called stalleshdfiles are incorrect
decisions by the umpire. Pitch locations are normalized so boundémy sifike zone, shown as a rectangle, is
identical for each pitch. Pitches far from the strike zone (all of which tipiremdjudicated correctly) are excluded

from this visualization
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Figure 2 -Current and Expected Future Leverage
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Expected Future Leverage
2
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A scatterplot of the current (horizontal axis) and expected future (vertillexérage for each pitch in MLB
games during the sample period. Random noise uniforntiytaited over 1% of the graph size has been added to
each point for clarity. Data are limited to the"g&ercentile values on each axis to remove infrequent, extreme

values. The orange line is a best-fit regression line based on the full fataga.o
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Figure 3 - Example of Evolution of Leverage Metrics
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An example of the evolution of the leverage metrics through one MLB game on Ma3Qn8! between Atlanta and St.
Louis. The horizontal axis represents each pitch in the game, regardless of wWieetttane plate umpire was required to
make a ball/strike decision. Vertical black lines denote the first pitch of the top (blackjam lfgray) of each inning.
The black line represents leverage of the decision for the current pitch. The orange line regceaenttated leverage
through the course of the current half inning and the blue line denotes the expetttative leverage for the remainder
of the inning. The score advantage/disadvantage of the away team is shown as thgrekadmea.
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Figure 4 +Comparison of Parametric and Nonparametric Effects

Panel (a)+Past Leverage Panel (&Current Leverage
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Panel (c)tFuture Leverage

Effect on Probability
of Correct Call
01
|

Future Leverage

Linear ~+————— Nonparametric ‘

Comparison of the estimated total effects of past (Panel A), current (Panel B), and futefr€jRPewverage on the
probability of a correct call from parametric and non-parametric specifications. Parametric estisiegethe
specification from Table 4 Column 1, shown as the blue line with the shaded meggiesenting pointwise 95%
confidence intervals. Nonparametric estimates for quintiles of observed leverage values witimfi8étce intervals
shown as point-and-whiskers. In each case, the first quintile is the omittedrgatego
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Figure 5 tHeterogeneous Effects By Umpire
Panel (a)+Past Leverage Panel (&Current Leverage

T T T T 1 T T T

-2 0 4 - 0 1
Umpire-Spedific Estimated Effect Umpire-Spedific Estimated Effect
of Past Leverage of Current Leverage

Panel (c)xFuture Leverage Panel (dAll Leverage

- 0 2
T Umpire-Specific Standardized Effect

Umpire-Specific Estimated Effeot \ Leverage Past Current Future
of Future Leverage

Individual-specific estimates of past (Panel A), current (Panel B), and future (Panel C) leverag&afiextsingle
regression. Regression controls are otherwise identical to Table 4 Columrhi aadhple is limited to umpires who are
observed calling balls and strikes in at least 20 distinct games. 95% confidence inteeath festimated effect shown

as capped bars. Observations ordered by the estimated effect size. Panel D combines all tiexb eféticts, ordered by
the magnitude of the current leverage effect. For ease of interpretation, effect sizes in Panel Dedrbyditaiel standard
deviation across all umpires. Dots represent the estimated effect and lines are the mowgegfavtra 10 individuals
with larger and 10 individuals with smaller current leverage effects.
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Table 1 - Summary Statistics by Game

1)
Final Home Team Score 4.338
(3.070)
Final Away Team Score 4.299
(3.116)
Game Total Pitches 290.951
(40.012)
Game Total Called Pitches 119.254
(19.629)
Game Total Leverage 1.648
(0.736)
N Games 26,536
First Year 2008
Last Year 2018

Summary statistics for attributes that vary by game. Standard deviations shuavarithesis.
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Table 2 - Summary Statistics by Pitch

Full Sample  Regression Sample 1st Inning 9th Inning

(1) (2) 3) (4)
Correct Call 0.840 0.840 0.842 0.836
(0.367) (0.367) (0.365) (0.371)
Current Leverage 0.014 0.014 0.014 0.016
(0.016) (0.016) (0.012) (0.026)
Running sum leverage current inning 0.117 0.117 0.120 0.104
(0.126) (0.126) (0.099) (0.173)
Expected sum future leverage current innir 0.170 0.171 0.171 0.204
(0.136) (0.138) (0.086) (0.226)
Pitch release poir(iX-axis) -2.130 -2.110 -2.480 -3.302
(10.909) (10.898) (11.056) (10.765)
Pitch release point (Y-axis) 27.007 26.987 27.249 28.216
(4.533) (4.544) (4.351) (4.670)
Pitch release point (Z-axis) -22.254 -22.352 -20.697 -21.432
(8.977) (9.002) (8.312) (9.334)
Pitch spin direction (deg) 180.291 180.075 183.862 182.264
(66.074) (66.447) (59.449) (64.042)
Pitch spin rate (rpm) 1,795.912 1,789.485 1,894.113 1,842.551
(670.399) (672.427) (632.757) (676.447)
Pitch initial velocity (mph) 87.986 87.941 88.562 89.733
(6.018) (6.045) (5.535) (5.840)
Pitch break angle (deg) 5.313 5.268 6.099 8.315
(24.862) (24.787) (26.027) (24.975)
Pitch break length (in) 6.466 6.495 6.028 6.047
(2.946) (2.956) (2.713) (2.834)
Pitch break (Y-axis) 23.803 23.803 23.802 23.796
(0.100) (0.100) (0.101) (0.098)
Pitch final velocity (mph) 81.019 80.979 81.541 82.541
(5.390) (5.412) (4.965) (5.207)
N 3,164,525 2,971,642 200,174 265,885

Summary of attributes that vary across each pitch. Standard deviations showntimgsa&e@olumn 1 summarizes all
pitches in the data for which an umpire makes a ball/strike decision. Column 2 limits the teanlysiervations where all
covariates from our primary regressions are non-missing.
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Table 3 - Examples of Current and Future Leverage by Situation

Examples of the difference in expected future leverage for situatiomsiwitlar current-pitch leverage. Current
leverage situations selected to be at the specified percentile of the observed lasethgeoh in actual MLB
games. The examples provided are the most extreme differencegategixfuture leverage for all situations with
current leverage within 0.00001 of the percentile value. Score Diff. is the adeantage (positive) or deficit
(negative) of the currently batting team. Current Leverage is the absodutgecin the probability the batting team
wins should the umpire call a strike versus a ball. Future Leverageegpbheted sum of leverage on all pitches for
the remainder of the inning.
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Table 4 - Lag Leverage Only Innings 2-9

No 1 Inning 2 Inning
Lag Lags Lags
) 2 3
Current Leverage 38.223 38.101 38.037
(1.866)*** (1.868)*** (1.869)***
Past Leverage (Current Inning) -3.260 -3.246 -3.239
(0.274)*** (0.274)*** (0.275)***
Expected Future Leverage (Current Inning) -3.575 -3.571 -3.573
(0.210)*** (0.210)*** (0.2171)***
Inning 3 0.102 0.098 0.099
(0.086) (0.086) (0.086)
Inning 4 -0.061 -0.061 -0.062
(0.088) (0.088) (0.088)
Inning 5 0.043 0.043 0.042
(0.087) (0.088) (0.088)
Inning 6 0.023 0.023 0.023
(0.088) (0.088) (0.088)
Inning 7 0.016 0.015 0.013
(0.088) (0.088) (0.088)
Inning 8 -0.060 -0.061 -0.066
(0.088) (0.088) (0.089)
Inning 9 -0.391 -0.389 -0.392
(0.097)*** (0.097)*** (0.097)***
Lag Leverage Inning - 1 -0.011 -0.004
(0.197) (0.197)
Lag Leverage Inning - 2 0.035
(0.204)
N 2,712,508 2,710,491 2,708,875
N Clusters 26,535 26,535 26,535
Mean Correct 0.84 0.84 0.84

Estimates from linear probability model that the umpire makes the correfircalyiven pitch. Standard errors
clustered at the game level shown in parenthesis. All coefficients and stamdesdredtiplied by 100 for legibility.
Past leverage is the total of current leverage in the current inning. Lag levetageaverage of the leverage
measure for all ball/strike decisions by the umpire during a previoirsg. Regressions include game fixed effects
and inning fixed effects. Estimates limited to inning3.2-
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Table 5 - Leverage Effects by Inning

Inning 2 Inning 3 Inning 4 Inning 5 Inning 6 Inning 7 Inning 8 Inning 9
(€] &) (©) 4 ®) 6 ™ ®
Current Leverage 40.444 53.013 53.426 40.206 45.724 44.275 35.871 16.037
(6.048)*** (6.088)*** (5.917)%** (5.844)*** (5.449)*** (4.987)*** (4.453)*** (4.283)***
Past Leverage (Current Inning) -4.117 -5.463 -6.425 -3.942 -2.129 -2.986 -2.140 -2.072
(0.874)** (0.934)*** (0.902)*** (0.880)*** (0.755)*** (0.729)*** (0.667)*** (0.628)***
Expected Future Leverage (Current Inning) -4.738 -5.013 -5.593 -3.893 -3.456 -3.661 -3.442 -2.011
(0.776)*** (0.762)** (0.713)*** (0.666)*** (0.595)*** (0.535)*** (0.476)*** (0.436)***
Inning Effect 0.000 0.061 0.045 -0.110 -0.383 -0.284 -0.339 -0.652
(0.000) (0.203) (0.196) (0.189) (0.181)* (0.176) (0.172)* (0.178)***
N 2,712,508 2,712,508 2,712,508 2,712,508 2,712,508 2,712,508 2,712,508 2,712,508
N Clusters 26,535 26,535 26,535 26,535 26,535 26,535 26,535 26,535
Mean Correct 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

Estimates from linear probability model that the umpire makes the correfdrcalgiven pitch. Standard errors
clustered at the game level shown in parenthesis. All coefficients and standesdredtiplied by 100 for legibility.
Past leverage is the total of current leverage in the current inning. Lag lesethgeaverage of the leverage
measure for all ball/strike decisions by the umpire during a previoirsg. Regressions include game fixed effects.
Estimates limited to innings 2-

Table 6 - Alternative Regression Controls

Pref. Pitch Alternative Coarse Player
Spec Controls FEs FEs FEs
1) 2) 3) 4) )
Current Leverage 38.223 37.454 37.842 37.702 39.809
(1.866)*** (1.869)*** (1.853)*** (1.853)*** (1.873)***
Past Leverage -3.260 -3.590 -3.089 -3.075 -3.258
(Current Inning) (0.274)*** (0.275)*** (0.266)*** (0.266)*** (0.274)***
Expected Future Leverage -3.575 -3.256 -3.444 -3.443 -3.486
(Current Inning) (0.210)*** (0.2171)*** (0.202)*** (0.202)*** (0.213)***
N 2,712,508 2,712,508 2,712,508 2,712,508 2,712,419
N Clusters 26,535 26,535 26,535 26,535 26,535
Mean Correct 0.84 0.84 0.84 0.84 0.84
Controls Game FE Game FE Umpire, Date Umpire, Yr, Game FE
MOY,DOW
Pitch Attribs Team FEs Team FEs Player FEs

Estimates from linear probability model that the umpire makes the correfircalyiven pitch. Standard errors
clustered at the game level shown in parenthesis. All coefficients and stamdesdredtiplied by 100 for legibility.
Past leverage is the total of current leverage in the current inning prior taithet @itch. Expected future leverage

is the expected sum of leverages for all future pitches this inning. Céi)mepeats the primary specification.

Column (2) adds controls for the attributes of the pitch, includahgcity, break, starting position, spin rate, and
pitch type. Column (3) removes game fixed effects and replacesitierampire, home team, away team, and date
fixed effects. Column (4) further replaces game date fixed efféttigyear, monthef-year, and dayf-week fixed

effects. Column (5) adds fixed effects for the identity of theermpitcher and batter to the primary specification.

32



Appendix 1 Robustness

Al.1: Results Excluding the Ninth Inning

The leverage measure employed in our analyses is the effect an individual decision will
have on the likelihood of a given team winning a game. By construction, this leverage measure
will tend to be larger toward the end of games, where there are fewer decisions remaining for the
umpire and a single decision can be pivotal to the outcome of a game. As test of robustness, we
re-estimate our primary model, limiting our sample to the eighth inning and earlier. Results are

shown in the tables below. Estimated parameters are not substantially different from models
where we include the ninth inning.

Table 7 - Robustness: Omit 9th Inning

Incl. Lag Incl. Lag Incl. Lag
0 innings 1 innings 2 innings
1) 2) 3
Current Leverage 43.990 43.942 43.881
(2.068)** (2.070)*** (2.071)***
Past Leverage (Current Inning) -3.506 -3.494 -3.488
(0.305)** (0.305)** (0.306)**
Expected Future Leverage (Current Innin -3.946 -3.944 -3.949
(0.239)** (0.239)** (0.240)***
Lag Leverage Inning - 1 0.065 0.072
(0.219) (0.219)
Lag Leverage Inning - 2 0.051
(0.228)
N 2,446,325 2,444,606 2,443,182
N Clusters 26,534 26,534 26,534
Mean Correct 0.84 0.84 0.84

Estimates from linear probability model that the umpire makes the correct call for a giveStaitatard errors clustered

at the game level shown in parenthesis. All coefficients and standard errors mulgplied for legibility. Past leverage

is the total of current leverage in the current inning. Lag leverage is the average oétagdewneasure for all ball/strike

decisions by the umpire during a previous inning. Regressions include gameffeas. Estimates limited to innings 3-
9.
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Table 8 - Robustness: Omit 9th Inning, Inning Level Effects

Inning 2 Inning 3 Inning 4 Inning 5 Inning 6 Inning 7 Inning 8
(1) (2 (3) (4) (5) (6) (7)
Current 40.609 53.023 53.165 40.464 45,555 44.167 35.652
Leverage
(6.047)*** (6.089)*** (5.924)*** (5.846)*** (5.442)*** (4.990)*** (4.455)***
Past -4.136 -5.397 -6.386 -3.975 -2.175 -3.027 -2.086
Leverage
(0.874)*** (0.938)*** (0.905)*** (0.883)*** (0.756)*** (0.733)*** (0.667)***
Expected -4.738 -4.949 -5.608 -3.894 -3.426 -3.634 -3.396
Future
Leverage
(0.777)*** (0.764)*** (0.714)*** (0.667)*** (0.596)*** (0.537)*** (0.477)***
Inning 0.000 0.045 0.050 -0.110 -0.386 -0.282 -0.344
Effect
(0.000) (0.203) (0.196) (0.190) (0.181)** (0.176) (0.172)**
N 2,446,325 2,446,325 2,446,325 2,446,325 2,446,325 2,446,325 2,446,325
N Clusters 26,534 26,534 26,534 26,534 26,534 26,534 26,534
Mean 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Correct

Estimates from linear probability model that the umpire makes the correct call for a giveStaitatard errors clustered

at the game level shown in parenthesis. All coefficients and standard errors muldlied for legibility. Past leverage

is the total of current leverage in the current inning. Lag leverage is the average oétagdaeweasure for all ball/strike

decisions by the umpire during a previous inning. Regressions include gameffeatd. Estimates limited to innings 3-
9.

Al.2: Results Using Actual Instead of Simulated Leverage

Our measure of the leverage at each pitch requires that we compute two probabilities in
each game situation: the probability a given team wins in the event of a called ball and the
probability they win if there is a called strike. Although we use simulated data, it is possible to
empirically calculate these probabilities using observed outcomes in MLB games. However,
while we have a wealth of data on which to base these estimates (over three million pitches in
over 26,500 games), the space of possible situations is also large, and using actual game data to
compute leverage could lead to substantial measurementefforaddress this concern, the
leverage measure used as the basis of our primary specifications is derived from simulations of 5

million MLB games.

27 Accounting for all possible combinations of balls, strikes, dagserunner positions, inning and inning part, and
score differences between a 10-run advantage and a 10-run disadythreegyare 108,864 possible states. Some
states occur very frequently, e.g., every game starts in an identical stagepandtates are not observed at all. A
given state is observed, on average, around 30 times over the doauseata. If the probability of a team winning
were 0.50, the estimated probability based on 30 observations woel@ lstandard error of approximately 0.09.
The standard error in leverage estimated this way would be even larget Enbe difference of two such
probabilities measured with error. Computing the standard ertevefage requires knowledge of the covariance in
the two estimated win probabilities. Applying the Cauchy-Schwarz inequatitgan bound the standard error of a
leverage measure based on two outcomes observed thirty times eacB86,[D1296].
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A test of the robustness of using this simulated leverage metric would be to re-estimate
our primary specifications using leverage computed using a leverage measure based on game
data-only (GDO), with the understanding that it is poorly measured. Assuming classical
measurement error, we would expect the parameter on leverage to be biased toward zero in these
estimateg?

As a prerequisite, we first compute the degree of attenuation bias that can be expected
given the measurement error in the game data-only leverage measure. Assuming the simulated
OHYHUDJH PHDVXUH LV WKH 3WUXH” PHDVXUH RI OHYHUDJH R
of the variance of the true measure divided by the sum of the variance of the true measure and
the variance of the error in the noisy measure. Using estimates of these variances from our
observed data, we can then compute the expected ratio of parameters from our preferred
specification to those from a specification using the GDO leverage measure.

Measurement error in the game data-only measure is driven by sampling variance.
Therefore, values of the leverage metric based on game states that are observed more often
should be more precise. A natural approach to reducing measurement error would be to limit the
sample to situations that are observed more frequently, with lower sampling variance. Table 9
UHFRPSXWHV WKH YDULDQFH LQ WKH WUXH OHYHUDJH PHDVX

SQRLVH" OLPLWLQJ WKH VDPSOH W-BnlREeastite SRMNpRQY ZKHUH

using at least 1, 100, 250, 750, 1000, and 2500 observations. Then, using these variances, we
FRPSXWH WKH UDWLR EHWZHHQ WKH 3WUXH" SDUDPHWHU DQC
corresponding independent variable is measured with error.

The results of this table demonstrate the large impact measurement error might have on
the estimated model parameters. Using the full sample, the true effect of leverage would be over
8 times value of the parameter one would expect to observe given the magnitude of measurement
error in the GDO leverage measure. This bias decreases steadily as we limit the sample to
situations observed more frequently, but is still over 3 times the value when considering

situations occurring over 250 times in our sanfple.

28 If measurement error in the game data-only measure arises @amlgdimpling variation in the estimated win
probability in each state, then the measurement error is orthogaaral tither unobserved variables in our
regression and meets the criteria of classical measurement error.

29 As the minimum number of games increases over 750, the bias facezsiesr This results from the fact that
while increasing the number of games threshold reduces samplingceafieise), it also reduces variance in the
true leverage measure (signal) as the set of game situations in the samgasetec
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Table 9 - Estimated Bias from Measurement Error in Game Data Leverage

Minimum Variance Variance Slgn_alto Bias
Num Signal Noise Noise Factor
Games 9 Ratio b/ B

1 0.0001764 0.0012982 0.1196263 835.90%
100 0.0001532 0.0004344 0.2607022 383.60%
250 0.0001390 0.0003351 0.2931118 341.20%
750 0.0001170 0.0002416 0.3262512 306.50%
1000 0.0000960 0.0002323 0.2924336 342.00%

2500 0.0000816 0.0002147 0.2753444 363.20%
Estimates of the magnitude of attenuation bias due to measurement ernmgtactisal game, as opposed to
simulated, outcomes to compute leverage. Assumes simulated leveragénsehmeasure of leverage. The
Signal’is this true valuex). Noise” is the difference between the GDO leverage measure and the simulated
measure for a given pitch)( Under classical measurement error, attenuation bias is proportional to the@ignal-

noise ratio@%Ain the probability limit. The Bias Factor is the ratio of the toyabsent attenuation bias) and the

a a
estimated when using the GDO leverage measure assuming classical measuremehtigimarm number of
games denotes the minimum number of games on whidBEH@leverage measure is based.

We follow by estimating the impact of leverage on the umpire making a correct call using
the GDO leverage measure. That is, for each pitch in each of these games, we define the situation
as the score differentfd) current inning', inning part, number and position of baserunners,
number of outs, number of balls, and number of strikes. The estimated probability of the home
team winning conditional on that situation is the proportion of games where that situation
occurred to games where that situation occurred and the home teathMethen compute the
leverage in some situatidq as the difference in win probability for the situat@rincremented
by a ball and the situatiol incremented by a strike. This method of computing leverage
requires minimal assumptions, only that events in a baseball game follow a Markov process with
a state defined by the game situation variables. However, in spite of our large dataset consisting
of over 26,000 individual games, the large state space leaves some relevant states unobserved or

so infrequently observed that the win probabilities for these states are poorly estimated.

30 We limit to cases where the score difference between teams is 10 or less.

31 MLB games that are tied after nine innings continue one inning at a timehertiié is broken at the end of the
inning. Consistent with our assumption that states evolve as a Marke®sprove treat any inning after the 9th
inning as the 9th for the purposes of computing the state.

32 |f a given situation occurs multiple times in a gamehich frequently occurs when a batter hits a foul ball with
two strikes it is only counted once for the purposes of this calculation.

33 The state space consists of 21 possible run differences, ninesintwiegnning parts, three outs, eight possible
arrangements of runners on the bases, three strike states, abdlffgtates. This is a total of 108,864 possible
states. A typical game will pass through around 300 unique states. Giventataaae more likely to occur than
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To further investigate the role of measurement error, we again limit the sample to cases
where the GDO measure is computed using data from at least 1, 100, 250, 750, 1000, and 2500
unique occurrences in MLB games. For comparison, we also estimate the leverage effect using
the same sample of observations and our leverage measure derived from simulated games.
Finally, we compute the bias factor dividing the coefficient on the simulated measure to the
coefficient on the GDO measure. The results are shown in Table 10.

These estimates demonstrate two key advantages to using the simulated measure. First,
the discrepancy between results using the simulated and GDO measure are broadly consistent
with the magnitudes estimated in Table 9, declining to approximately 300% when limiting to
cases where the GDO measure is based on at least 2500 observations. Second, limiting the
sample to cases where the GDO measure is based on more observations increases the magnitude
of the estimated coefficient in the simulated leverage regressions. Situations with few or many
underlying observations on which to base the calculation of the GDO leverage measure are not
randomly assigned and limiting the sample in this way can bias the estimated coefficients. Using
the simulated leverage measure avoids both issues. While this table reveals discrepancies
between estimates, the qualitative results still hold.

Table 10 - Comparison of Estimated Leverage Effects from Different Measures
Leverage Effect

Minimum GDO Bias Factor
Num Games Simulated b/ B

1 -0.381 15.149 -3979.20%

100 1.577 19.804 1255.40%

250 4,133 23.668 572.60%

750 10.250 47.772 466.10%

1000 7.558 43.940 581.30%

2500 15.384 44.675 290.40%

Estimates from linear probability models that the umpire makes the toateof a given pitch36 LP XODWH G

/HYHUDJH” HVWLPDWHY FRPSXWHG XVLQJ RPAD S UROQHWVIURDGD D WHKEU @/ 34 JIDHPDH

(Game Data Only) estimates computed using a leverage measured derivedrordgtiial game data. Standard

errors clustered at the game level shown in parenthesis. Attenuatioshiatie the ratio of the estimated

coefficients from each model. All coefficients and standard errors multipyiddO for legibility. Regressions

include only contemporaneous leverage, game, and inning fixed effaetéirst column uses all non-missing
observations. Each subsequent column limits to observations whé&®Méverage measure is computed using a

minimum of the number of games shown in the column header.

others (e.g., the state in the top of the first inning, tied gamepaserunners, balls, and strikes occurs in every
game) there is incomplete coverage of the state space.
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