
DISCUSSION PAPER SERIES

IZA DP No. 14187

Yanyan Liu
Shuang Ma
Ren Mu

Uneven Recovery from the COVID-19 
Pandemic: Post-lockdown Human 
Mobility Across Chinese Cities

MARCH 2021



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 14187

Uneven Recovery from the COVID-19 
Pandemic: Post-lockdown Human 
Mobility Across Chinese Cities

MARCH 2021

Yanyan Liu
International Food Policy Research Institute

Shuang Ma
Guangzhou University

Ren Mu
Texas A&M University and IZA



ABSTRACT
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Uneven Recovery from the COVID-19 
Pandemic: Post-lockdown Human 
Mobility Across Chinese Cities*

How quickly can we expect human mobility to resume to pre-pandemic levels after 

lockdowns? Does pandemic severity affect the speed of post-lockdown recovery? Using 

real-time cross-city human mobility data from China and a difference-in-difference-in-

differences framework, we find that mobility in most cities resumed to normal six weeks 

after reopening. In contrast, the epicenter cities, those with the worst outbreaks, were slow 

to recover; twelve weeks after reopening, mobility had not returned to the pre-pandemic 

levels. We provide suggestive evidence that relatively undiminished pandemic concerns 

may have slowed down mobility recovery in the epicenter region. Our findings imply that 

a severe pandemic experience impedes post-lockdown mobility recovery. From a policy 

perspective, this study suggests that it is important to successfully contain the pandemic to 

achieve a faster post-lockdown recovery.
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The world is currently seeking to contain the devastating spread of the COVID-19 virus. In the

absence of effective antiviral treatments and vaccines, people must reduce social interactions to

lower the risk of becoming infected. But individual voluntary prevention efforts are often not enough

to achieve a socially optimal public health outcome (Toxvaerd, 2020). As a result, governments have

employed various types of lockdown measures to reduce human mobility and, in turn, to reduce the

social interactions that spread infection (Ferguson et al., 2006).1 Thus far, the pandemic has followed

an epidemiological curve of disease transmission, with acceleration and deceleration phases (CDC,

2018). While the number of COVID-19 cases and fatalities accelerated sharply in some countries,

other countries exhibited continuing declines. This global transmission pattern was reflected in the

shifting of the pandemic’s epicenter, from Wuhan in China in January and February 2020, to the

Lombardy region in Italy in early March, and to New York City in early April (Zhang et al., 2020).

As the pandemic abated, many countries started to reopen their economies.

In this paper, we take an important early step toward understanding what may affect economic

and mobility recovery from the COVID-19 pandemic. More specifically, We ask two questions:

how quickly can we expect human mobility to resume to pre-pandemic levels? Does pandemic

severity affect the speed of post-lockdown recovery? The answers to these questions will help us

not only gain knowledge about the post-lockdown recovery process but also understand the possible

linkages between the pandemic containing effort and the post-lockdown recovery experience. To

shed light on these questions, we leverage multiple datasets from China, the country first hit by the

pandemic and one of the first to reopen the economy, to examine how much and how soon the human

mobility across cities in China has recovered from the pandemic lockdown, and how different the

recovery process was for cities with acute outbreaks and cities with mild or no pandemic outbreaks.

Human mobility – which we define as the number of people traveling into and out of the 327 cities

throughout the country – serves as a proxy for economic vibrancy and offers a measure of societal

normalcy. Change in the real-time human mobility measure also provides an alternative indicator of

economic recovery other than gross domestic product (GDP) growth numbers.2

In the empirical analysis, we first employ an event study analysis, with two events: the lock-

down and the reopening in the cities, to examine the dynamics of the population flow in the years

of 2019 and 2020 before-, during-, and after- the lockdown period. Then using a difference-in-

differences-in-differences (DDD) framework, we analyze the extent to which mobility has recov-

ered to the pre-pandemic levels and how the recovery has varied across cities while controlling for

1In April 2020, about one-third of the world’s population was under some form of government-mandated lockdown
(Buchholz, April 23, 2020).

2The Chinese economy grew at 4.9 percent in the July-to-September quarter in 2020 compared with the same months
in 2019, according to the National Bureau of Statistics of China (Bradsher, November 19, 2020).
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city fixed effects, weather conditions, holiday fixed effects, and day-of-week effects to disentangle

the pandemic-related effects from confounding factors. We find that in epicenter cities that had

the first, worst outbreaks and also the most delayed responses, mobility had not fully returned to

pre-pandemic levels 12 weeks after reopening; by contrast, the mobility among non-epicenter cities

returned to normal six weeks after reopening. To further understand what may have driven the dif-

ferences in mobility recovery, we investigate how public pandemic concerns evolved over time, and

whether regional patterns of public concerns match regional patterns of mobility recovery. We mea-

sure the public pandemic concerns using the number of pandemic-related online postings and media

mentions as proxies. We show that the post-lockdown public concerns about the pandemic were

much higher in the epicenter regions. This provides suggestive evidence that the relatively undimin-

ished pandemic concerns may have deterred fast mobility recovery post-lockdown in the epicenter

regions.

Our investigation of the dynamics of human mobility around the time of the lockdowns in China

adds to the growing number of studies on the impacts of the lockdown policies implemented by

governments of different countries during this pandemic. Lockdown measures have been largely

effective in inducing social distancing by reducing human interactions and mobility (Painter and

Qiu, 2020; Andersen, 2020; Friedson et al., 2020; Fang et al., 2020). Consequently, these policies

have achieved substantial public health benefits by helping contain virus transmission, avert hospi-

talizations, and lower fatalities (Friedson et al., 2020; Fang et al., 2020; Gatto et al., 2020; Glaeser

et al., 2020a). However, such policy responses, combined with the pandemic outbreak itself, have

tremendously strained countries’ economies, leading to a steep rise in unemployment, a sharp drop

in labor force participation, the closure of many small businesses, and increased indebtedness and

starvation of the poor (Coibion et al., 2020; Fairlie, 2020; Montenovo et al., 2020; Ray and Subra-

manian, 2020). Our analysis confirms that mobility drastically reduced after the implementation of

lockdown measures. Moreover, we detected a surge in mobility right before the announcement of

the first lockdown ever during this pandemic.

Our focus on the post-lockdown mobility recovery of cities with different pandemic experiences

provides one of the first evidence about the heterogeneous recovery process amid this pandemic. Al-

though which reopening policies are optimal remains a subject of debate (Baqaee et al., 2020; Favero

et al., 2020), recent studies show that reopening policies are associated with an overall immediate

increase in human mobility, including for both work and non-work-related purposes in the United

States (Nguyen et al., 2020; Cheng et al., 2020; Glaeser et al., 2020b). During the recovery phase

in the United States, Lee et al. (2021) finds that the demographic and socioeconomic groups hit

harder initially by the pandemic have recovered faster. Our study distinguishes from these emerg-
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ing studies by investigating the recovering process in a different country and highlighting a clear

linkage between the severity of the pandemic and the speed of post-lockdown recovery. The related

findings contribute to our understanding of factors that may impede or facilitate mobility recovery

after infection cases decline and lockdown measures are lifted.

Our study also sheds light on the effectiveness of China’s pandemic response in terms of its post-

lockdown mobility recovery. China is known for mishandling the very early stages of the epidemic

in the epicenter region (Murphy, 2020). On December 31, 2019, the World Health Organization

picked up a media statement by the Wuhan Municipal Health Commission from their website on

cases of ‘viral pneumonia’ (WHO, June 29, 2020), but an open and public policy response was not

initiated until January 23, 2020, when Wuhan City was locked down. Since then China has been

vigilant in its domestic pandemic responses. Within one week after the lockdown of Wuhan, all

31 province-level divisions (or provinces for simplicity) in mainland China activated a first-level

public health emergency response.3 By the end of January 2020, all cities and rural areas across the

country were under lockdown (Zhang et al., 2020). In response to the different pandemic phases,

China’s policies shifted from strict containment measures to a gradual easing of those measures

to reopen the economy. As the number of confirmed infection cases decreased in late February, 9

provinces downgraded the level of emergency response and began to reopen their economies.4 As

of March 24, according to one estimate, three-quarters of China’s workforce was back on the job

(Normile, 2020). The final lifting of all lockdowns in Hubei Province on May 2, 2020, signaled

the start of the return of normalcy in the country. Our analysis reveals that the recovery of human

mobility in a region depends on its pandemic experience, which is closely linked to the timeliness

of policy responses. Epicenter cities, where the policy responses were delayed, suffered the most

severe outbreaks and also experienced the slowest mobility recovery. The findings emphasize the

importance of successfully containing the pandemic to achieve a faster restoration of economic and

social activities after the lockdown.

The paper proceeds as follows. Section I describes the data. Section II explains the empirical

methods. Section III presents our results, and Section IV concludes.

I. Data

For the empirical analysis, we use data on daily human mobility across cities, supplemented by

weather data, administrative data on daily COVID-19 cases by city, policy data on lockdown and

3This response involved mobilizing resources for the public health sector and implementing measures to curb mass
gatherings and population mobility.

4The 9 provinces were Shanxi, Jilin, Jiangsu, Anhui, Fujian, Guangdong, Sichuan, Niangxia, and Xinjiang.
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reopening dates by city, and province-level data on social media postings and local news coverage.

Human Mobility Data We collected population flow data from Gaode Map,5 which is the most

popular map app in China.6 This dataset provides information on the daily human mobility index (an

index of 1 representing 152,624 persons) based on real-time location records for every smartphone

using the Gaode Map app in 327 Chinese cities from December 21, 2019, to June 15, 2020. Fig. 1

depicts daily total population flow (including both inflow and outflow) during the study period. As

the lockdown dates coincide with the annual Spring Festival travel rush, the world’s biggest annual

human migration (Wang and Cripps, January 23, 2019), in Fig. 1 we also show the daily population

flow from January 1, 2019, to June 27, 2019, as a reference (depicted by the blue line). The dates in

2019 and 2020 are matched based on the lunar calendar and marked by the number of days relative

to the lockdown date of Wuhan. The average daily cross-city population flow was about 29.3 million

in 2019 and 30.4 million in 2020. Population flows peaked at the times of national holidays, such

as the Qingming Festival, Labor Day, and the Duanwu Festival,7 with the exception of the Spring

Festival of 2020 (January 23, 2020) after the lockdown measures were implemented. Population

flows of the two years diverged widely which occurred during the lockdown period and mobility

dipped significantly in 2020.

Weather Data Weather conditions are an important factor influencing human travel behavior. To

control for these confounding factors, we merged the population flow data with daily temperature

and precipitation data from the European Center for Medium-Range Weather Forecasts (ECMWF)

by linking the centroid of a city with the nearest grid point from the weather data.

Daily Infection Cases Data To capture the severity of the pandemic over time and space, we

collected the daily number of confirmed new COVID-19 cases for each city from the Chinese Cen-

ter for Disease Control and Prevention (China CDC). This data is based on laboratory test results

throughout China. The overall accuracy of these officially reported numbers has been questioned

and it is reasonable to expect that the data is less reliable in cities in Hubei, the epicenter province

than in other provinces, especially during the early stage of the outbreak. This is due to the lack

of medical and test capacity, and the incentives of local governments at that time to downplay the

5For more information on Gaode Map, see https://trp.autonavi.com/migrate/page.do.
6In 2019, Gaode Map was used by 33 percent of e-map users. Baidu Map, used by 32.7 percent of users, was the

second-most popular map app.
7In the figure, the Qingming Festival corresponds to around 60 days after Wuhan lockdown in 2019 and 70 days after

Wuhan lockdown in 2020; Labor Day is around 90 days in 2019 and 100 days in 2020; the Duanwu Festival is around
125 days in 2019 and out of the study period for 2020.
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severity of the outbreak (Fang et al., 2020). According to the data, three cities in Hubei Province —

Wuhan, Xiaogan, and Erzhou — accounted for 69 percent of all confirmed infection cases before

June 2020. These three cities are categorized as epicenter cities in our study.

Lockdown and Reopening Dates In all provinces except Hubei Province, lockdown and reopen-

ing orders were made at the province level. The lockdown order was signaled by the declaration of

the first and highest level of public health emergency response; the reopening order was declared

by downgrading the emergency response level from the first to the second grade. Hubei Province

implemented lockdown measures to restrict population mobility and later lifted such restrictions city

by city, based on the pandemic severity at the city level. We collected all lockdown and reopening

dates for each city in Hubei Province and each province other than Hubei from news media and

government announcements.8

Fig. 2 presents the daily number of newly confirmed COVID-19 cases, marked with the average

lockdown and reopening dates for epicenter cities and other cities. Lockdown measures began in

epicenter cities first, with Wuhan being the first city locked down on January 23, 2020. Within

a week, similar measures were also imposed on non-epicenter cities, which initially had only a

small number of confirmed cases. Subsequently, after the number of daily new cases per 10,000

dropped close to zero, those non-epicenter cities reopened. The reopening of these cities took place,

on average, 42 days after their lockdowns. By comparison, the lockdown period in epicenter cities

averaged 32 days longer. All cities had a small number of new cases after reopening, with occasional

flareups over our study period (December 21, 2019 – June 15, 2020).9

Social Media Posts and Local News Coverage Data We collected the daily number of online

posts containing keywords related to COVID-19 (including “COVID,” “pneumonia,” “infection,”

“suspected cases,” and “symptoms”) from the East Money Forum (https://guba.eastmoney.com/).

The Forum is one of the largest online forums in China, hosting 62.52 million active users. We also

collected the daily number of relevant media mentions of COVID based on 299 major newspapers

and online media. The online posts and media mentions were traced to source provinces where the

users and media headquarters are located.
8Appendix Figure B.1 presents the distribution of the lockdown and reopening dates of the 327 cities in our sample.
9The near elimination of local virus transmission allowed the reopening of most businesses, the reintroduction of

transport services, and the resumption of some social activities. A general state of emergency was replaced by more tar-
geted interventions: temperature checks at the entrance of shops and workplaces, quick quarantines for anyone showing
symptoms, mandatory mask-wearing in most indoor spaces, required proof of health for entrance to many venues, and
extensive monitoring through contact tracing (Allen and West, 2020).
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II. Methods

Using the mobility data from January 1, 2019, to June 27, 2019, and from December 21, 2019,

to June 15, 2020, we first employ an event study analysis, with two distinct events, the lockdown

and the reopening, to examine the dynamics in population flows across cities. We then apply the

difference-in-differences-in differences (DDD) method to estimate the difference in population mo-

bility between epicenter and non-epicenter cities. In the DDD framework, we compare population

mobility across the two years before-, during-, and after- the lockdown period between epicenter

and other cities.

Event Study We use the 2019 mobility pattern as the baseline and match the 2019 data with

the 2020 data based on the lunar calendar. We then analyze the aggregation of population inflow

and outflow of city i during the event window of 5 weeks before the lockdown and 12 weeks after

the reopening conditional on a rich set of fixed effects, as summarized in the following regression

framework:

ln(Mity) =
3

∑
li=−4

γli · pt(li)+
12

∑
ri=−2

βri · pt(ri)+φ · pt(li > 3,ri ≤−3)

+
3

∑
li=−4

ξli · pt(li) ·1[y = 2020]+
12

∑
ri=−2

λri · pt(ri) ·1[y = 2020]

+ ψ · pt(li > 3,ri ≤−3) ·1[y = 2020]+δi + τty + xity ·α + εity, (1)

where Mity is population flow of city i on day t in year y, and 1[y = 2020] indicates year 2020. The

event week li is relative to when the lockdown of city i occurs (li = −1 is the reference bin, which

indicates the interval from two weeks to one week before the lockdown, li = 0 is the one-week

period before the lockdown, li = 1 is the one-week period after the lockdown, etc.). Event week ri

is relative to when the reopening of city i occurs. We define the (hypothetical) event dates in 2019

according to the corresponding lunar calendar dates in 2020. We choose li = −1 rather than li = 0

(the one-week interval before lockdown) as the base bin because the migration pattern in li = 0 may

have reflected the panic effects. (That is, people rushed out of or refrained from entering epicenter

cities during the week before the lockdown (Fang et al., 2020).) pt(li) indicates that t of city i falls in

the one-week interval, li. pt(ri) indicates that t of city i falls in the one-week interval, ri. We define

a separate time interval between the two events, lockdown and reopening, as the period from three

weeks after the lockdown to three weeks before the reopening. This interval is modeled as one effect

window, indicated by pt(li > 3,ri ≤ −3) for city i. Cross-city human mobility is likely affected by

not only city-specific socioeconomic and weather conditions but also time factors such as holidays
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and weekends. Hence we control for a rich set of fixed effects, denoted by τty, including the lunar-

calendar-week fixed effects, day-of-week effects, holiday fixed effects, and year fixed effects. xity

denotes weather conditions, including daily aggregate precipitation, mean temperature, and their

quadratic terms. εity is the error term.

To allow different patterns of population flows for epicenter and other cities, we include in (1)

the interaction terms between Ti, the indicator of epicenter cities, and the event bins (the first six

terms in (1)).

Difference-in-Difference-in-Differences In the DDD framework, we estimate population mobil-

ity measures while controlling for the same weather variables and fixed effects as in the event study.

Our baseline specification is:

ln(Mity) = β1 ·3DaysWithinit +β2 ·Lockdownit +β3 ·Reopen1it +β4 ·Reopen2it

+ β5Reopen3it + γ1 ·3DaysWithinit ·1[y = 2020]+ γ2 ·Lockdownit ·1[y = 2020]

+ γ3 ·Reopen1it ·1[y = 2020]+ γ4 ·Reopen2it ·1[y = 2020]

+ γ5 ·Reopen3it ·1[y = 2020]+δi + τty +Xity ·α + εity, (2)

where the study period is divided into six city-specific intervals: (i) the days from the start of the

data period until three days before the lockdown of city i, denoted as 3DaysBe f oreit and used as

the reference period; (ii) the two days before and the day when the lockdown is implemented in

city i, denoted by 3DaysWithinit ; (iii) the lockdown period, Lockdownit , referring to the period that

the city is under lockdown; (iv) Reopening Phase 1, Reopen1it , which covers the two-week period

right after the reopening of city i, matching the virus’ incubation period; (v) Reopening Phase 2,

Reopen2it , which captures the period from 15 to 28 days after the reopening of city i; and (vi)

Reopening Phase 3, Reopen3it , which refers to the period from 29 days after reopening until the

end of our study period. The six intervals in 2019 are based on the lunar dates corresponding to the

2020 intervals. The coefficients of the difference-in-difference (DID) terms, γ1 to γ5, capture the

differences in population mobility changes from 2019 to 2020 between the corresponding interval

and the reference interval.

To compare epicenter cities with the other cities, in (2), we interact Ti, the indicator of epicenter

cities, with the first difference and the DID terms (that is, the first 10 terms).
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III. Results

A. Post-lockdown Mobility Recovery in Epicenter and Other Cities

To assess how human mobility responded to city lockdowns and reopening, we first present in Fig.

3 a visualization of the percentage changes in mobility, separately for the epicenter and other cities,

based on the regression results of the event study outlined in the model section.10

Fig. 3 shows that the pre-lockdown mobility changes over 2019 and 2020 are largely indistin-

guishable between the epicenter and other cities, except in the week before the start of the lockdown

when the mobility measures diverged between the epicenter and other cities. In response to the start

of the lockdown, cross-city mobility exhibits a sharp drop in all cities, with a 90 percent decrease

in epicenter cities and a 70 percent reduction in other cities. Human mobility to and from epicenter

cities almost completely halted for about four weeks. In the non-epicenter cities, cross-city mobility

started to bounce back three weeks into the lockdown.

When evaluating reopening measures, it is important to note that in all cities no abnormal mobil-

ity change occurred around the start date of reopening. Because the reopening started weeks after the

number of newly confirmed cases began to drop (Fig. 2), the timing of the reopening might endoge-

nously reflect an initial mobility recovery that had already occurred following the continued decline

in the infection cases. After reopening, the population flow to and from epicenter cities initially in-

creased quickly, exhibiting a trend similar to those seen in other cities. However, as mobility among

non-epicenter cities continued to recover, reaching pre-pandemic level six weeks after reopening,

mobility recovery in epicenter cities did not. In these epicenter cities, mobility slowed down three

weeks after reopening, and cross-city mobility remained significantly lower for epicenter cities 12

weeks after reopening. At the end of our study period (June 15, 2020), the level of population flows

to and from epicenter cities had still not returned to pre-pandemic levels.

To assess the statistical significance of the mobility trend difference between epicenter cities

and other cities, we apply the DDD model outlined in the Methods section and separately estimate

population inflow and outflow. Fig. 4 presents the estimates of the differences in the mobility

percentage changes between the two types of cities.11

The left panel of Fig. 4 shows the results based on all cities in the total sample. During the three

days before the lockdown, population flows out of epicenter cities (the outflow) increased by more

than 10 percent compared to the flows out of other cities. This likely reflects a panic response to the

official acknowledgement on January 20, 2020, that the disease was transmissible from person to

10The calculation of the percentage changes is explained in the Technical Note of the Appendix. The regression
results of the event study are reported in Appendix Table B.1.

11The regression results of the DDD estimations are reported in Appendix Table B.2.
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person, and to the declaration of the lockdowns of Wuhan (January 23, 2020). At the same time, the

population flows into epicenter cities also increased but by a smaller magnitude and the difference

between epicenter cities and other cities is not statistically significant at the 5 percent level. The

lockdown period was characterized by a further drop in human mobility, with flows into and out

of epicenter cities falling by an additional more than 70 percent. After reopening, the mobility gap

between epicenter cities and other cities narrowed to 20-30 percent in the first phase and 10-20

percent in the next two phases. All mobility gaps remain statistically significant at the 5 percent

level throughout the reopening period, with the exception of the inflow gap during the first phase.

Being hardest hit by the pandemic, epicenter cities had the strictest lockdown measures im-

plemented for the longest period. To make comparisons, we selected 89 non-epicenter cities that

implemented lockdown measures that were of similar strictness to those imposed in epicenter cities.

These non-epicenter cities announced additional lockdown measures that included both neighbor-

hood lockdown and transportation restrictions, as defined in He et al. (2020). With this restricted

comparison sample, the estimated differences between epicenter and non-epicenter cities (the right

panel of Fig. 4) are very similar to the estimated differences based on the full sample. This anal-

ysis suggests that the slower mobility recovery in epicenter cities is unlikely to be driven by their

strict lockdown measures alone. Instead, the longer lockdown period and the more severe pandemic

experience are the more likely causes of the epicenter cities’ lagging mobility recovery.

B. Understanding the Difference between Epicenter and Other Cities

The mobility trends and differences observed in Fig. 3 and Fig. 4 are simultaneously shaped by

two factors: the pandemic itself and the pandemic-induced lockdown policies. The pandemic effect

refers to changes in individual behavior due to concerns about infection risks, leading to fewer social

interactions and reduced human mobility. The pandemic-induced policy impact refers to changes

in mobility caused by lockdown measures and other regulatory interventions that restrict mobility.

The strength of the pandemic effect relates positively to pandemic severity, because the perceived

infection risk is expected to be high under a more severe pandemic condition. Perceived high infec-

tion risk, in turn, often leads to more precautionary behaviors (Brewer et al., 2004). Therefore, the

pandemic impact is expected to be larger in epicenter cities than in other cities.

The strength of the policy impact is determined by both the strictness of lockdown measures

and the duration of the lockdown period. Local officials in China at various levels were mandated

to contain the pandemic. Perceived failure to control the pandemic can lead to public criticism,

and disciplinary actions such as suspension, dismissal, or demotion. Our news search shows that

government officials in 11 provinces were disciplined due to pandemic-related charges. Due to this
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enforceable mandate to contain the spread of the virus, officials in areas with few reported cases also

carried out measures to prevent the spread of the virus to their region. For example, Tibet, then with

zero confirmed cases, declared the first and highest level public health emergency on January 29,

2020. Nevertheless, the details of the resulting lockdown measures were city-specific, tailored to

disease prevalence conditions in each city. The lockdown measures implemented in epicenter cities

were among the strictest (He et al., 2020) and the longest-lasting (Fig. 2). Therefore, the pandemic-

induced policy impact is expected to be bigger in epicenter cities than in other cities. In sum, the

difference in human mobility between epicenter cities and other cities observed in Fig. 3 and Fig. 4

captures a bigger pandemic effect and a bigger pandemic-induced policy effect in epicenter cities.

We further elucidate the estimated differences between the epicenter and other cities by compar-

ing the trends in the number of pandemic-related social media posts and the volume of pandemic-

related local news coverage between Hubei Province and other provinces.12 As shown in Fig. 5,

in late January 2020 the number of pandemic-related online posts and local news coverage surged

drastically in Hubei Province, while other provinces exhibited a relatively modest increase. By the

time non-epicenter cities started to reopen in early March, the numbers of such posts and the extent

of news coverage had declined across all provinces; nevertheless, the volume of pandemic-related

posts and news coverage remained higher in Hubei Province. This difference continued after epi-

center cities reopened, likely reflecting sustained pandemic concerns in the epicenter province. To

rule out that social media users and news media in Hubei Province were somehow more active in

discussing issues related to respiratory diseases, we tabulate the number of per million population

online posts and local news mentions containing keywords related to respiratory diseases (“pnumo-

nia”, “infections”, and “symptoms”) separately for Hubei Province and other provinces during a

pre-pandemic period (October 1, 2019, to January 19, 2020). We find no sign that more posts or

news related to respiratory diseases were Hubei sourced.13 Hence the patterns shown in Fig. 5 are

not driven by higher usage of the online forum for or higher media coverage of issues related to

respiratory disease in Hubei than in other provinces.

As the objective infection risks were higher in the epicenter region, the relatively undimin-

ished pandemic concerns there, observed in Fig. 5, likely reflect higher perceived risks (Weinstein

and Nicolich, 1993). Perceived higher infection risk often induces more precautionary behaviors

(Brewer et al., 2004). In this pandemic context, the precautionary behaviors are partly reflected in

reduced mobility across cities. The evidence presented here is consistent with the finding in Italy that

indicates that people in regions hardest hit by the pandemic tended to have more pandemic-related

12The data used for this analysis are not available at the city level.
13Appendix Table B.3 summarizes those number of online posts and news coverage.
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worries and engaged in more preventive behaviors (Pagnini et al., 2020).

IV. Conclusion

As many countries around the world have relaxed the initial lockdown measures taken to control

the spread of the COVID-19 virus, it is important to understand how fast human mobility recovers

and what factors affect this recovery. This work shows that cross-city human mobility in China

recovered considerably after the reopening, but that the post-lockdown recovery varied significantly

with the pandemic’s severity level. Among non-epicenter cities, cross-city mobility fully recovered

to normal six weeks after the reopening started; by contrast, in epicenter cities, mobility remained

lower than pre-pandemic levels 12 weeks after reopening (Fig. 3, Fig. 4). The slower recovery of

epicenter cities is likely shaped by both their severe pandemic experience and longer lockdown pe-

riods. Citizens in the epicenter exhibited relatively undiminished pandemic concerns, as evidenced

in the larger number of pandemic-related postings in social media and media mentions, which con-

tinued after the lockdown ended (Fig. 5). Continued pandemic concerns in the epicenter regions

may have contributed to their sluggish mobility recovery. Besides the sustained public concerns of

the pandemic, other pandemic-induced problems may contribute to the slower mobility recovery in

the wake of lockdown. For example, if the economic slowdown was particularly acute in epicenter

cities, it also might have contributed to the slower pace of mobility recovery. These factors shall be

examined in future research.

From a policy perspective, the difference in the human mobility recovery identified in this study

suggests that containing the spread of the virus is a precondition for speedy post-lockdown recov-

ery, as exemplified by the experience of non-epicenter cities. Under the nationwide effort to contain

the pandemic after the initial mishandling of the pandemic’s first outbreaks in the epicenter region,

aggressive and comprehensive mitigation measures, including lockdown of all cities, were imple-

mented in China (Zhang et al., 2020). With those measures in place, non-epicenter cities avoided

severe outbreaks. The mild pandemic experiences, in turn, facilitated faster post-lockdown recover-

ies in these cities. The evidence presented in this paper suggests that fast recovery in human mobility

once a pandemic is under control can be considered an economic and social benefit of implementing

swift and effective containment measures during a pandemic outbreak.

11



References
Allen, John R and Darrell M West, “How to Save Lives and Livelihoods,” 2020. The Brookings

Institution.

Andersen, Martin, “Early Evidence on Social Distancing in Response to COVID-19 in the United
States,” 2020. SSRN Scholarly Paper No.3569368.

Baqaee, David, Emmanuel Farhi, Michael J Mina, and James H Stock, “Reopening Scenarios,”
Working Paper 27244, National Bureau of Economic Research May 2020. Series: Working Paper
Series.

Bradsher, Keith, “With Covid-19 Under Control, China’s Economy Surges Ahead,” October
November 19, 2020. The New York Times https://www.nytimes.com/2020/10/18/business/china-
economy-covid.html.

Brewer, Noel T., Neil D. Weinstein, Cara L. Cuite, and James E. Herrington, “Risk perceptions
and their relation to risk behavior,” Annals of Behavioral Medicine, April 2004, 27 (2), 125–130.

Buchholz, K, “What share of the world population is already on COVID-19 Lockdown,” April 23,
2020. Statista, https://www.statista.com/chart/21240/enforced-covid-19-lockdowns-by-people-
affected-per-country/.

CDC, Preparedness and response framework for novel influenza A virus pandemics: CDC intervals
508 | Pandemic Influenza (Flu) 2018.

Cheng, Wei, Patrick Carlin, Joanna Carroll, Sumedha Gupta, Felipe Lozano Rojas, Laura
Montenovo, Thuy D Nguyen, Ian M Schmutte, Olga Scrivner, Kosali I Simon, Coady Wing,
and Bruce Weinberg, “Back to Business and (Re)employing Workers? Labor Market Activ-
ity During State COVID-19 Reopenings,” Working Paper 27419, National Bureau of Economic
Research June 2020. Series: Working Paper Series.

Coibion, Olivier, Yuriy Gorodnichenko, and Michael Weber, “Labor Markets During the
COVID-19 Crisis: A Preliminary View,” Working Paper 27017, National Bureau of Economic
Research April 2020. Series: Working Paper Series.

Fairlie, Robert W, “The Impact of Covid-19 on Small Business Owners: Evidence of Early-Stage
Losses from the April 2020 Current Population Survey,” Working Paper 27309, National Bureau
of Economic Research June 2020. Series: Working Paper Series.

Fang, Hanming, Long Wang, and Yang Yang, “Human Mobility Restrictions and the Spread of the
Novel Coronavirus (2019-nCoV) in China,” Working Paper 26906, National Bureau of Economic
Research March 2020. Series: Working Paper Series.

Favero, Carlo A, Andrea Ichino, and Aldo Rustichini, “Restarting the economy while saving
lives under Covid-19,” 2020. Publisher: CEPR Discussion Paper No. DP14664.

Ferguson, Neil M, Derek AT Cummings, Christophe Fraser, James C Cajka, Philip C Coo-
ley, and Donald S Burke, “Strategies for mitigating an influenza pandemic,” Nature, 2006, 442
(7101), 448–452. Publisher: Nature Publishing Group.

12



Friedson, Andrew I, Drew McNichols, Joseph J Sabia, and Dhaval Dave, “Did California’s
Shelter-in-Place Order Work? Early Coronavirus-Related Public Health Effects,” Working Paper
26992, National Bureau of Economic Research April 2020. Series: Working Paper Series.

Gatto, Marino, Enrico Bertuzzo, Lorenzo Mari, Stefano Miccoli, Luca Carraro, Renato
Casagrandi, and Andrea Rinaldo, “Spread and dynamics of the COVID-19 epidemic in Italy:
Effects of emergency containment measures,” Proceedings of the National Academy of Sciences,
2020, 117 (19), 10484–10491. Publisher: National Acad Sciences.

Glaeser, Edward L, Caitlin S Gorback, and Stephen J Redding, “How Much does COVID-19
Increase with Mobility? Evidence from New York and Four Other U.S. Cities,” Working Paper
27519, National Bureau of Economic Research July 2020. Series: Working Paper Series.

, Ginger Zhe Jin, Benjamin T Leyden, and Michael Luca, “Learning from Deregulation: The
Asymmetric Impact of Lockdown and Reopening on Risky Behavior During COVID-19,” Work-
ing Paper 27650, National Bureau of Economic Research August 2020. Series: Working Paper
Series.

He, Guojun, Yuhang Pan, and Takanao Tanaka, “The short-term impacts of COVID-19 lockdown
on urban air pollution in China,” Nature Sustainability, 2020, July 7.

Lee, Sang Yoon (Tim), Minsung Park, and Yongseok Shin, “Hit Harder, Recover Slower? Un-
equal Employment Effects of the Covid-19 Shock,” Technical Report w28354, National Bureau
of Economic Research, Cambridge, MA January 2021.

Montenovo, Laura, Xuan Jiang, Felipe Lozano Rojas, Ian M Schmutte, Kosali I Simon,
Bruce A Weinberg, and Coady Wing, “Determinants of Disparities in Covid-19 Job Losses,”
Working Paper 27132, National Bureau of Economic Research May 2020. Series: Working Paper
Series.

Murphy, Flynn, “Inside China’s response to COVID,” Nature, December 2020, 588 (7836), S49–
S51. Number: 7836 Publisher: Nature Publishing Group.

Nguyen, Thuy D, Sumedha Gupta, Martin Andersen, Ana Bento, Kosali I Simon, and Coady
Wing, “Impacts of State Reopening Policy on Human Mobility,” Working Paper 27235, National
Bureau of Economic Research May 2020. Series: Working Paper Series.

Normile, Dennis, “As normalcy returns, can China keep COVID-19 at bay?,” Science, 2020, 368,
18–19. Publisher: American Association for the Advancement of Science.

Pagnini, Francesco, Andrea Bonanomi, Semira Tagliabue, Michela Balconi, Mauro Bertolotti,
Emanuela Confalonieri, Cinzia Di Dio, Gabriella Gilli, Guendalina Graffigna, Camillo Re-
galia, Emanuela Saita, and Daniela Villani, “Knowledge, Concerns, and Behaviors of Individ-
uals During the First Week of the Coronavirus Disease 2019 Pandemic in Italy,” JAMA Network
Open, July 2020, 3 (7), e2015821–e2015821. Publisher: American Medical Association.

Painter, Marcus and Tian Qiu, “Political beliefs affect compliance with covid-19 social distancing
orders,” 2020. SSRN Scholarly Paper No. 3569098.

13



Ray, Debraj and S. Subramanian, “India’s Lockdown: An Interim Report,” Working Paper 27282,
National Bureau of Economic Research May 2020. Series: Working Paper Series.

Toxvaerd, FMO, “Equilibrium social distancing,” 2020. Publisher: Faculty of Economics, Univer-
sity of Cambridge.

Wang, Erenitie and Karla Cripps, “World’s largest annual human migration now underway in
China,” January 23, 2019. CNN https://www.cnn.com/travel/article/lunar-new-year-travel-rush-
2019/index.html.

Weinstein, Neil D. and Mark Nicolich, “Correct and incorrect interpretations of correlations be-
tween risk perceptions and risk behaviors,” Health Psychology, May 1993, 12 (3), 235–245. Pub-
lisher: American Psychological Association.

WHO, “Listings of WHO’s response to COVID-19,” June 29, 2020. WHO Statement:
https://www.who.int/news/item/29-06-2020-covidtimeline.

Zhang, Renyi, Yixin Li, Annie L. Zhang, Yuan Wang, and Mario J. Molina, “Identifying air-
borne transmission as the dominant route for the spread of COVID-19,” Proceedings of the Na-
tional Academy of Sciences, 2020, 117 (26), 14857–14863. Publisher: National Academy of
Sciences.

14



Lockdown: Wuhan City
Lockdown: Non-epicenter Cities

Spring Festival

Reopening: Non-epicenter Cities

Reopening: Wuhan City

0

2000

4000

6000

8000

To
ta

l p
op

ul
at

io
n 

flo
w 

ac
ro

ss
 c

itie
s 

(1
0 

Th
ou

sa
nd

)

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100110120130140150
Days relative to Wuhan Lockdown

2020 2019

Figure 1: Daily cross-city population flow in 2020 and 2019

Note: This figure plots the total daily cross-city population flows among 327 cities in China. The
2019 (blue curve) and the 2020 (red curve) population flows are plotted for the same dates based
on the lunar calendar. We mark the five critical dates: Spring Festival (the Chinese New Year),
the lockdown date of Wuhan (Day 0), the lockdown date of non-epicenter cities, the reopening
date of non-epicenter cities, and the reopening date of Wuhan. The lockdown (reopening) date of
non-epicenter cities is the average of the lockdown (reopening) dates of these cities relative to the
lockdown (reopening) date of Wuhan.
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Figure 2: The number of confirmed new COVID-19 infection cases

Note: This figure graphs the daily number of new cases per ten thousand people from Day 2 to Day
144 since the lockdown date of Wuhan City (Day 0), for epicenter cities in red columns and the
other 324 cities in blue columns. We mark the four critical dates: the lockdown date of Wuhan (Day
0), the lockdown date of non-epicenter cities, the reopening date of non-epicenter cities, and the
reopening date of Wuhan. The lockdown (reopening) date of non-epicenter cities is the average of
the lockdown (reopening) dates of these cities relative to the lockdown (reopening) date of Wuhan.
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Figure 3: Event study: The change in cross-city mobility 2019-2020

Note: This figure depicts the percentage changes of the total daily cross-city population flows for
epicenter cities (the blue curve) and other cities (the red curve), based on the regression results of
the event study outlined in the model section. The regression results, reported in Appendix Table
B.1, are based on a sample of 327 cities (three epicenter cities and 324 non-epicenter cities) for 356
days (December 21, 2019 - June 15, 2020, and January 1, 2019 - June 27, 2019). The calculation of
the percentage changes is explained in the Technical Note of the Appendix.
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Figure 4: The difference-in-difference-in-differences (DDD) estimation: Differences between epi-
center and other cities

Note: The figure reports the estimates of the differences in the mobility percentage changes between
the epicenter cities and other cities, based on the DDD model described in the model section. The
blue curves represent population outflows and the red curves represent population inflows. The left
panel is based on the results from all of the 327 cities in the total sample (three epicenter cities and
324 non-epicenter cities) and the right panel is based on the results from the restricted sample of 92
cities, including three epicenter cities and 89 non-epicenter cities which were under strict lockdown
measures. The regression results of the DDD model, on which this figure is based, are reported in
Appendix Table B.2. The calculation of the percentage changes is explained in the Technical Note
of the Appendix.

18



Reopening: Other Cities

Reopening: Epicenter Cities

0
.0

1
.0

2
.0

3
.0

4
.0

5
Nu

m
be

r o
f O

nl
in

e 
Po

st
in

gs

Jan01 Mar01 May01 Jul01

Reopening: Other Cities

Reopening: Epicenter Cities

0
.0

5
.1

.1
5

.2
Nu

m
be

r o
f M

ed
ia

 M
en

tio
ns

Jan01 Mar01 May01 Jul01

Hubei Province Other Provinces

Figure 5: Number of pandemic-related online postings and media mentions

Note: The left panel plots the daily number of pandemic-related social media postings per 10,000
people in Hubei Province (blue curve) and other provinces (red curve) from January 1, 2020, to July
1, 2020. The right panel plots the daily number of pandemic-related media mentions per 10,000
people in Hubei Province (blue curve) and other provinces (red curve) from January 1, 2020, to
July 1, 2020. The online postings are from the East Money Forum (https://guba.eastmoney.com/).
The media mentions are based on news reports from 299 major newspapers and online media. The
online postings and media mentions are traced to the provinces where the authors and the media
organizations were located.
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Appendix

Uneven Recovery from the COVID-19 Pandemic: Post-lockdown

Human Mobility Across Chinese Cities

Yanyan Liu Shuang Ma Ren Mu

A Technical Note on Calculations of Percentage Changes

To facilitate interpretation, Figures 3 and 4 plot the percentage changes calculated based on the

regression results of the event study and the Difference-in-Difference-in-Differences (DDD) estima-

tions, reported in Tables B.1 and B.2 respectively.

In the event study, for the non-epicenter cities, we calculate the percentage change in population

flow for each event bin following the formula proposed by Kennedy (1981):

p̂ = 100
{

exp
[
ĉ−0.5V̂ (ĉ)

]
−1

}
, (A.1)

where ĉ is the corresponding coefficient estimate reported in Column (1) of Table B.1. V̂ (ĉ) is the

estimated variance of ĉ. For the epicenter cities, ĉ is the summation of the corresponding coefficient

estimates reported in Columns (1) and (2) of Table B.1. In calculating the percentage changes in

the DDD regressions, ĉ is the coefficient estimate corresponding to each of the five intervals (Three-

DaysWithin, Lockdown, Reopen1, Reopen2, and Reopen3) reported in Table B.2.

We follow van Garderen and Shah (2002) to calculate the variance of p̂ using the delta method:

V̂ (p̂) = 1002 exp(2ĉ)
{

exp
[
−V̂ (ĉ)

]
− exp

[
−2V̂ (ĉ)

]}
(A.2)
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Figure B.1: The lockdown and reopening dates of the 327 cities

Note: On the left side of the vertical red dashed line, the graph shows the frequency of the lockdown
dates of the 327 cities. On the right side of the line, the graph shows the frequency of the reopening
dates of these cities.
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Table B.1: Event study estimations: epicenter cities versus non-epicenter cities

Dependent variable: log population flow (1) (2)

Lockdown Event Week -4 × 2020 0.0528*** Lockdown Event Week -4 × 2020 × Epicenter -0.0634***
(0.0102) (0.0172)

Lockdown Event Week -3 × 2020 0.000757 Lockdown Event Week -3 × 2020 × Epicenter 0.0402**
(0.00903) (0.0184)

Lockdown Event Week -2 × 2020 -0.0797*** Lockdown Event Week -2 × 2020 × Epicenter 0.00237
(0.00911) (0.0220)

Lockdown Event Week 0 × 2020 0.0351*** Lockdown Event Week 0 × 2020 × Epicenter -0.0909***
(0.00706) (0.0117)

Lockdown Event Week 1 × 2020 -1.198*** Lockdown Event Week 1 × 2020 × Epicenter -0.829***
(0.0233) (0.0600)

Lockdown Event Week 2 × 2020 -1.925*** Lockdown Event Week 2 × 2020 × Epicenter -1.680***
(0.0282) (0.146)

Lockdown Event Week 3 × 2020 -1.995*** Lockdown Event Week 3 × 2020 × Epicenter -1.355***
(0.0315) (0.121)

Interval bin × 2020 -1.034*** Interval bin × 2000 × Epicenter -1.814***
(0.0945) (0.165)

Reopening Event Week -2 × 2020 -0.891*** Reopening Event Week -2 × 2020 × Epicenter -1.678***
(0.0659) (0.334)

Reopening Event Week -1 × 2020 -1.092*** Reopening Event Week -1 × 2020 × Epicenter -0.848**
(0.0474) (0.337)

Reopening Event Week 0 × 2020 -0.717*** Reopening Event Week 0 × 2020 × Epicenter -0.480***
(0.0357) (0.137)

Reopening Event Week 1 × 2020 -0.378*** Reopening Event Week 1 × 2020 × Epicenter -0.187
(0.0299) (0.164)

Reopening Event Week 2 × 2020 -0.287*** Reopening Event Week 2 × 2020 × Epicenter -0.403***
(0.0225) (0.0969)

Reopening Event Week 3 × 2020 -0.120*** Reopening Event Week 3 × 2020 × Epicenter -0.0657
(0.0153) (0.0571)

Reopening Event Week 4 × 2020 -0.0650*** Reopening Event Week 4 × 2020 × Epicenter -0.213***
(0.0147) (0.0191)

Reopening Event Week 5 × 2020 -0.0725*** Reopening Event Week 5 × 2020 × Epicenter -0.0934*
(0.0156) (0.0475)

Reopening Event Week 6 × 2020 0.0372*** Reopening Event Week 6 × 2020 × Epicenter -0.288***
(0.0133) (0.0465)

Reopening Event Week 7 × 2020 0.0396*** Reopening Event Week 7 × 2020 × Epicenter -0.273***
(0.0143) (0.0513)

Reopening Event Week 8 × 2020 -0.0160 Reopening Event Week 8 × 2020 × Epicenter -0.115***
(0.0123) (0.0332)

Reopening Event Week 9 × 2020 -0.00528 Reopening Event Week 9 × 2020 × Epicenter -0.173***
(0.0161) (0.0317)

Reopening Event Week 10 × 2020 0.0348*** Reopening Event Week 10 × 2020 × Epicenter -0.139***
(0.0126) (0.0296)

Reopening Event Week 11 × 2020 -0.0799*** Reopening Event Week 11 × 2020 × Epicenter 0.0513**
(0.00959) (0.0250)

Reopening Event Week 12 × 2020 -0.0223** Reopening Event Week 12 × 2020 × Epicenter -0.0453***
(0.0103) (0.0144)

Note: The unit of analysis is city-day. The sample includes 327 cities (three epicenter cities and 324 non-epicenter cities)
for 356 days (December 21, 2019 - June 15, 2020 and January 1, 2019 - June 27, 2019). Other explanatory variables
include the event bins (the lockdown event weeks from -4 to 3, the interval bin, the reopening event weeks from -2 to
12), Year 2020, the interactions between the epicenter indicator and the event bins, the lunar-calendar-week fixed effects,
the day-of-week fixed effects, the holiday fixed effects, the precipitation mean and its quadratic term, the temperature
mean and its quadratic term. Robust standard errors clustered at the city level are in the parentheses. *Significant at
10%; **Significant at 5%; ***Significant at 1%.
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Table B.2: DDD estimates: Comparing epicenter cities with non-epicenter cities

(1) (2) (3) (4)
Inflow Outflow Inflow Outflow

ThreeDaysWithin× Epicenter× 2020 0.0928* 0.133*** 0.0541 0.0902***
(0.0488) (0.0306) (0.0483) (0.0306)

Lockdown × Epicenter × 2020 -1.247*** -1.301*** -1.326*** -1.401***
(0.251) (0.0882) (0.258) (0.0976)

Reopen1× Epicenter × 2020 -0.208 -0.311** -0.275* -0.355**
(0.140) (0.144) (0.142) (0.143)

Reopen2 × Epicenter × 2020 –0.123*** -0.103*** -0.107*** -0.0913**
(0.0361) (0.0360) (0.0395) (0.0414)

Reopen3 × Epicenter × 2020 -0.100*** -0.113*** -0.0972*** -0.120***
(0.0258) (0.0245) (0.0279) (0.0278)

Observations 116,409 116,407 32,752 32,752
R2 0.631 0.597 0.648 0.658

Note: The unit of analysis is city-day. In Columns (1) and (3), the dependent variable is log popula-
tion inflow. in Columns (2) and (4), the dependent variable is log population outflow. In Columns (1)
and (2), the sample includes 327 cities (three epicenter cities and 324 non-epicenter cities) for 356
days (December 21, 2019 - June 15, 2020 and January 1, 2019 - June 27, 2019). Three observations
are missing in the regression reported in column (1) and five observations are missing in Column
(2), due to missing values in the dependent variable. In Columns (3) and (4), the sample includes 92
cities (three epicenter cities and 89 non-epicenter cities which were under strict lockdown measures).
Other explanatory variables include indicators of the six time intervals (ThreeDayBefore, ThreeDay-
Within, Lockdown, Reopen1, Reopen2, Reopen3), Year 2020, the interactions between the epicenter
indicator and the time intervals, the lunar-calendar-week fixed effects, the day-of-week fixed effects,
the holiday fixed effects, the precipitation mean and its quadratic term, the temperature mean and its
quadratic term. Robust standard errors clustered at the city level are in the parentheses. *Significant
at 10%; **Significant at 5%; ***Significant at 1%.
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Table B.3: Pre-pandemic number of online posts and media mentions per million people for Hubei
Province (Epicenter) and other provinces (Non-Epicenter)

Online posts Media mentions
Non-Epicenter Epicenter Non-Epicenter Epicenter

(1) (2) (3) (4)

Infection 48.19 9.36 191.56 80.53
Vaccine 94.17 24.35 398.87 202.26
Pneumonia 13.80 14.98 63.09 26.22
Corona virus 0.76 0.00 10.33 11.24
Fever 2.12 1.87 18.38 7.49
Cough 3.81 1.87 14.40 11.24

Note: The table reports the total numbers of online posts and media mentions as per million
population containing keywords related to respiratory diseases from October 1, 2019 to Jan-
uary 19, 2020 (a pre-pandemic period). The online posts are from the East Money Forum
(https://guba.eastmoney.com/). The media mentions are based on 299 major newspaper and on-
line media. The online posts and media mentions are traced to the provinces where the senders and
media were located. Columns (2) and (4) are for Hubei Province (Epicenter). Columns (1) and (3)
are for other provinces (Non-epicenter).
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