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promising avenues for understanding ability peer effects.
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1 Introduction

Despite an immense literature in economics documenting the importance of peers for academic

achievement, there is still much we do not know about their mechanisms. This remains an

important limitation in our understanding of the theoretical underpinnings of peer effects, and

limits our scope for using class assignment policies as a tool to improve student achievement

and educational outcomes (Carrell, Sacerdote and West, 2013; Sacerdote, 2014; Ushchev and

Zenou, 2020).

One key reason why it is difficult to make headway in understanding the mechanisms behind

peer effects is that this exercise requires large amounts of data from several sources. If we

think of educational achievement as the output of an education production function which com-

prises several simultaneous inputs from students, parents and teachers (e.g. Cunha and Heck-

man, 2007), it is also natural to think that peers can affect educational achievement through any

of these inputs. Datasets that collect information on all, or even many, of these sources are rare.

Because of this limitation, the prevailing approach in the empirical literature on academic peer

effects is to focus on the effect of higher-achieving peers on the few available outcomes and

discuss why these isolated responses may be mechanisms through which academic peer effects

operate. Formal analyses of the share of peer effects we can explain are often futile with so

few mechanisms to look at, leaving the key unanswered question: what drives academic peer

effects?

To answer this question, we need three key elements in the same setting. First, we need to

establish their existence; that there is a causal effect of being exposed to higher-achieving peers

on students’ own academic achievement. Second, we need to observe many potential factors that

affect academic achievement. And third, we need to determine whether better peers improve

academic achievement by shifting those factors. Many studies have gained access to one or two

of these key elements, yet to date there is no study that provides empirical evidence all three of

them jointly. We fill this gap.

In this paper, we first show the existence of academic peer effects, as others have done in dif-

ferent settings (for excellent reviews, see Sacerdote (2011, 2014)). We exploit a mandate to

randomly assign students to classrooms within schools in our setting as a lynch-pin in our iden-

tification strategy, and develop a method to identify and use only schools that adhere to this

mandate in our analyses. We find that a one standard deviation (1 SD) increase in the average

test scores of classroom peers at baseline increases own test scores by 5.2 percent of a standard

deviation two years later.

Using rich data on students, parents, teachers and schools, we then estimate the causal effect

of higher-achieving peers on a large battery of student, parent, teacher and school educational

inputs, which are all potential mechanisms of academic peer effects. Together, our measures

explain 71 percent of test scores two years later which suggest we have a very comprehensive set
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of measures in our data. Higher-achieving academic peers decrease students’ school effort and

increase students’ university aspirations and their expected ability to go to university. Higher-

achieving peers also increase parents’ time investments and strict parenting style. We do not

find effects of high-achieving peers on students’ initiative in class, truancy, exam cheating, or

academic self-efficacy. We also find no effects on parental investments in private tutoring, on

emotional support or harsh parenting, or on parental aspirations for their child to go to university.

Finally, we also find no effects on students’ perceptions of their school environment, or on their

teachers’ engagement with students, reports of how hard to manage is the classroom, and how

tired they feel about teaching. Some of the effects we do find complement existing evidence

in the peer effects literature (Feld and Zölitz (2017) on perceived quality of peer interactions;

Bursztyn and Jensen (2015) and Bursztyn, Egorov and Jensen (2019) on social pressure and

effort provision). Yet most of our estimates explore unstudied mechanisms behind academic

peer effects; in fact, no study before has been able to test as many candidate mechanisms as we

do.

Combining our estimates of high-achieving peers on score and on educational inputs, we then

answer the question: How much of the academic peer effect can be explained by our measured

mechanisms? To do this, we begin by estimating the returns of all our educational inputs on aca-

demic achievement using high-quality cumulative value-added models (Todd and Wolpin, 2007;

Fiorini and Keane, 2014). Our estimates show large returns to many of our explored inputs.

We then use these returns to map the effects of higher-achieving peers on educational inputs

to academic achievement using mediation analyses (Gelbach, 2016). Our estimates show that

our battery of educational inputs mediate a negative share of our academic peer effect—which

means that the effects of high-achieving peers on educational inputs make it harder, not easier,

to explain academic peer effects. This negative mediation is largely driven by the combined

negative effect of high-achieving peers on student effort and its positive value-added returns.

Our other inputs explored have a virtually null contribution to mediation. This is a surprising

and important new insight for our understanding of academic peer effects and should help guide

future research effort understanding their mechanisms.

Finally, we perform an extensive set of sensitivity analyses for our results including: additional

tests for conditional random assignment, alternative estimates with an exhaustive set of con-

trols, calculations of the degree of correlated unobserved heterogeneity needed to explain away

our findings, corrections for measurement error in student ability and for incomplete sampling

of classrooms, inference corrections using randomization inference and multiple hypotheses

testing adjustments, and an extensive exploration of heterogeneity in peer effects, and their me-

diation.

Our paper makes several contributions to better understand the complex nature of academic

peer effects. This is the first paper to provide a thorough test of the many possible mechanisms

underlying academic peer effects, testing 19 of them covering all key agents in educational

production. In one study, we cover the vast majority of achievement peer effect mechanisms—
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hypothesized or tested—in this vast literature (see Table 1). Most previous studies test only

a few potential mechanisms for academic peer effects but never more than three or four at a

time, and never in a formal mediation analysis (though two other studies, Gong, Lu and Song

(2019) and Zölitz and Feld (Forth.), use mediation analyses to investigate mechanisms behind

the effect of classroom peer gender). This is an important limitation since the many inputs in the

education production function imply equally many mechanisms for peer effects to work through,

and the only way to know how well we can explain peer effects is to jointly test all these potential

mechanisms. The fact that after our efforts we still do not know how academic peer effects work

is a testament to their complexity. Our findings rule out a host of mechanisms hypothesized

in this extensive literature. When combined with previous findings, our results point to two

additional mechanisms (direct peer-to-peer learning and endogenous teaching practices) and

one empirical phenomenon (widespread heterogeneity in value-added functions across schools)

as the most promising avenues to explain the surprisingly little mediation of academic peer

effects.

We also make two methodological contributions to the empirical literature on peer effects.

First, we develop an algorithmic approach to conducting balancing tests and identifying non-

compliant schools in quasi-experimental peer effect designs. This is particularly useful in set-

tings with partial compliance to random assignment of students to classrooms and no reliable

way to know where compliance occurs and where it does not. In such settings, researchers often

try and account for systematic violations of random assignment by controlling for additional

characteristics beyond balancing characteristics, which complicates the interpretation of peer

effect estimates and weakens identification strategies. Our approach is a transparent alterna-

tive to improve the validity of quasi-experimental research designs based on conditional ran-

dom assignment without relying on conditioning pre-treatment covariates to account for failed

randomization. Second, we provide a simple algorithm for randomization inference that ob-

serves the data structure of students within schools and within classrooms. Maintaining the data

structure and, in particular, rigorously respecting assigned classroom sizes is crucial for cor-

rectly calculating permutation-based t-randomization p-values (Young, 2019) and for producing

permutation-based tests of random assignment, which are commonly used in the empirical peer

effects literature. We can provide Stata code for these two procedures upon request.

2 Peer Effects in Education

Economists have been interested in peer effects for a long time, and have published over 100

articles in economic journals since 2009 on peer effects in education alone, 28 of them in top 5

journals.1One reason for the widespread interest in peer effects is that they could “be harnessed

to cost-effectively improve public [. . . ] services” (BenYishay and Mobarak, 2019). In other

words, the existence of peer effects implies a social multiplier effect. Inspired by this promise

in peer effects, an immense empirical literature rose to provide evidence on their existence and

size—notable in education but in other fields as well. After two decades of studies, the existence

3



of peer effects in education is a well-established fact.2

Peer effects are notoriously difficult to identify for two main reasons (Manski, 1993): self-

selection into peer groups (i.e., that similar people sort into the same groups) and the reflection

problem (i.e., that estimates capture both my effect on my peers and the effect of my peers on

me). Self-selection introduces bias in peer effects estimates arising from omitted variables. Re-

flection ties together the effects of (endogenous) peer interactions with the effect of (exogenous)

peer characteristics, complicating the interpretation of peer effect estimates.

Empirical studies typically solve the reflection problem by estimating the reduced-form effect

of pre-assignment peer characteristics on student outcomes. Many studies have in addition

convincingly solved the issue of self-selection by exploiting quasi-experimental assignment of

students to peer groups. Two types of identification strategies have mainly been used to that end.

The first strategy leverages (conditional) random assignment to peer groups within an institu-

tion. Examples include roommate assignment in college (Sacerdote, 2001; Stinebrickner and

Stinebrickner, 2001, 2006; Zimmerman, 2003; Foster, 2006; Brunello, De Paola and Scoppa,

2010; Griffith and Rask, 2014; Jain and Kapoor, 2015; Garlick, 2018), classroom/section/dorm

assignment within institutions (Lyle, 2007; Kang et al., 2007; Graham, 2008; Carrell, Fullerton

and West, 2009; De Paola and Scoppa, 2010; Burke and Sass, 2013; Carrell, Sacerdote and West,

2013; Brady, Insler and Rahman, 2017; Feng and Li, 2016; Feld and Zölitz, 2017; Huntington-

Klein and Rose, 2018; Garlick, 2018), and study group assignment within classroom (Lu and

Anderson, 2015; Hong and Lee, 2017). The second identification strategy uses natural variation

in cohort composition. Examples include cross-cohort variation within an institution (Hoxby,

2000; Figlio, 2007); natural shocks or policy-driven changes affecting peer group composition

(Angrist and Lang, 2004; Gould, Lavy and Paserman, 2004; Imberman, Kugler and Sacerdote,

2012; Figlio and Özek, 2019); admission cutoffs for schools or classrooms (Pop-Eleches and

Urquiola, 2013); and experimental assignment to peer groups (Whitmore, 2005; Duflo, Dupas

and Kremer, 2011).3

The main findings of this literature are that i) academic peer effects are positive but generally

small; ii) the size of academic peer effects depends non-linearly on students’ own academic

2For brevity, we focus on studies of peer effects on academic achievement, but many other studies also document
peer effects in e.g. college dropout (Stinebrickner and Stinebrickner, 2001), cheating in school (Carrell, Malmstrom
and West, 2008), job search (Marmaros and Sacerdote, 2002), substance abuse (Argys and Rees, 2008; Kremer and
Levy, 2008; Card and Giuliano, 2013), crime (Deming, 2011), technology adoption (Oster and Thornton, 2012),
consumption (Moretti, 2011), financial decisions (Ahern, Duchin and Shumway, 2014; Bursztyn et al., 2014) and
beliefs (Boisjoly et al., 2006).
3It should be clear by now that there are very many studies of peer effects in education — see Sacerdote (2011,
2014) for two excellent reviews. For studies using cross-cohort variation within an institution see also: Hanushek
et al. (2003); McEwan (2003); Arcidiacono and Nicholson (2005); Hanushek, Kain and Rivkin (2009); Lavy and
Schlosser (2011); Lavy, Paserman and Schlosser (2012); Lavy, Silva and Weinhardt (2012); Kiss (2013); Diette
and Uwaifo Oyelere (2014); Kramarz, Machin and Ouazad (2015); Gibbons and Telhaj (2016). For studies us-
ing natural- or policy-driven shocks see also: Hoekstra (2009); Clark (2010); Vardardottir (2013); Jackson (2013);
Abdulkadiroğlu, Angrist and Pathak (2014); Dobbie and Fryer Jr (2014); Hoekstra, Mouganie and Wang (2018).
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ability; and iii) academic peer effects vary in large and seemingly unpredictable ways across

settings.

Recent empirical studies have argued that academic peer effects could be largely driven by three

types of mechanisms: i) student effort (e.g., Kang et al., 2007; Brunello, De Paola and Scoppa,

2010), ii) group dynamics (e.g., Lavy and Schlosser, 2011; Lavy, Paserman and Schlosser, 2012;

Bursztyn and Jensen, 2015; Brady, Insler and Rahman, 2017; Feld and Zölitz, 2017), and iii)

teacher effort or school resources (e.g., Duflo, Dupas and Kremer, 2011; Chetty et al., 2011;

Hoekstra, Mouganie and Wang, 2018; Todd and Wolpin, 2018). Table 1 lists several of these

studies, classifying them by the type of mechanisms they explore.

A separate literature, yet directly relevant for our study, emphasizes the importance of parents

as drivers of their children’s academic achievement. This literature models academic achieve-

ment through an education production function framework—that is, as an output produced from

students’, parents’ and teachers’ inputs and governed by well-defined production technologies

(such as dynamic or technical complementarities). Recent studies in this literature show, for

example, that the benefits of class size reductions are driven by changes in student effort and

classroom disruption (Lazear, 2001; Finn, Pannozzo and Achilles, 2003), as well as by changes

in teacher behavior (Sapelli and Illanes, 2016) and parental investments (Bonesrønning, 2004;

Jacob and Lefgren, 2007; Datar and Mason, 2008; Fredriksson, Öckert and Oosterbeek, 2016).

Recent studies estimate structural models of education production functions that include school

peers, parents and neighborhoods as inputs (e.g. Agostinelli, 2018; Agostinelli et al., 2020).

In this paper, we estimate the contribution of higher-achieving academic peers to students’ test

scores and to many educational inputs that may also contribute to improving test scores in their

own right. Conceptually, our reduced-form models map the contribution of higher-achieving

peers in a linearized version of education production functions. The downside of this approach

is that we do not use economic structural information to improve identification. The upside is

that our models are transparent in their identifying variation, econometrically tractable, and can

easily be used to quantify the share of academic peer effects explained by educational inputs

via standard mediation analyses. To take full benefit of this approach we exploit the pairing of

Taiwan’s policy of random classroom assignment within schools and the rich data in the Taiwan

Educational Panel Survey, which we describe in detail in Section 3.
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3 Institutional Setting and Data

3.1 Education in Taiwan

Figure 1 shows the basic organization of the Taiwanese educational system. Compulsory educa-

tion in Taiwan starts at primary school, at 6 years old, and ends at the end of junior high school

(middle school), around 15 years of age. In practice, however, 95 percent of students continue

further onto either General or Vocational Senior High School or Junior College.

Figure 1: The Education System in Taiwan

Authors’ figure.

Since the democratization process in Taiwan started in the 1990s, junior high schools have

been managed at the municipal level. Students can attend any school they chose but there is

preferential school access based on catchment areas within each municipality. The educational

curriculum is developed centrally by the Taiwanese Ministry of Education and has no subject

specialization until only after junior high school. This unified curriculum is centered around

sciences and mathematics and its adoption is often cited as the reason why Taiwanese pupils are

consistently placed at the top on international educational rankings (e.g. 4th out of 72 countries

in PISA 2015; Law (2004)).

Critical for our identification strategy, since the 1990s municipalities are also mandated by the

government to ensure the random assignment of students and homeroom teachers to classrooms

within schools. This requirement was formalized by the Implementation Guideline for Class
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Assignment of Junior High School Students, later superseded by Article 12 of the Primary and

Junior High School Act in 2004.4 Classroom assignment plays a persistent role in students’

education since students typically remain with their assigned classroom and homeroom teacher

(or Dao Shi) throughout all three years of junior high school.

Students take the National Basic Competence Test at the end of junior high school, which

results play a key role for admissions to senior high schools and senior vocational schools.

A good placement in these competitive schools, in turn, results in good placements in ter-

tiary education programs, which have high returns in the labor market afterwards. Conse-

quently, students spend time and effort preparing for these exams, and schools regularly orga-

nize practice exams and other forms of preparation. Parents are also engaged in their children’s

preparation, investing in extracurricular tutoring in mathematics, English and sciences largely

through cram schools—private extra-curricular institutions preparing for higher education en-

trance examinations—throughout junior high school or even earlier.

3.2 The Taiwan Education Panel Survey

We use data from the Taiwanese Education Panel Survey (TEPS), a project jointly funded by

the Ministry of Education, the National Science Council, and the Academia Sinica. The TEPS

is a nationally representative longitudinal survey of the education system in junior high school,

senior high school, vocational senior high school, and junior college. The TEPS is a multi-

ple respondent survey, collecting linked information on students, parents, teachers, and school

administrators.

We focus on the junior high school sample of the TEPS because the timing of interviews al-

lows us to use measures of student ability and educational inputs upon random assignment to

classrooms in Grade 7. The TEPS junior high school sample includes information on more than

20,000 students, their parents, their teachers and their school administrators over two waves.

The first wave was collected in early September 2001 at the beginning of students’ first year of

junior high school, right after their assignment to classrooms. The second wave was collected

in 2003, at the beginning of the students’ last year of junior high school.5

Paired with the mandate of random assignment to classrooms in schools, there are three other

key features of TEPS that aid our study. First, its sampling framework allows us to observe

a random sample of classmates in each junior high school classroom included in the survey.

TEPS follows a stratified nested sampling procedure where first 338 randomly selected junior

high schools were sampled (45 percent of all high schools in the country at the time), with

4Additional details can be found at http://edu.law.moe.gov.tw/EngLawContent.aspx.
5In contrast, TEPS conducted the first round of interviews of students in general and vocational senior high school,
and junior college in their second year, one year after assignment to classrooms, barring us from having baseline
measures of ability and educational inputs for these samples.
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different sampling strata for urban and rural areas, public and private schools, and senior high

and vocational schools. In each of these schools an average of three classrooms of first-year

students were then randomly sampled. In each of these classrooms, around 15 students were

then randomly sampled. The mandated maximum class size at the time was 35 students per

class, which implies that observed students in any classroom generally represent a random half

of the classroom.6 This sampling framework is similar to that of the National Longitudinal

Study of Adolescent to Adult Health (Add Health), a panel study of a nationally representative

sample of middle and high school pupils in the United States. Add Health is unique in collecting

friendship ties and in observing multiple cohorts of students in each school, which makes it

particularly appealing for peer effect and network research (e.g. Agostinelli, 2018; Elsner and

Isphording, 2017; Card and Giuliano, 2013; Bifulco, Fletcher and Ross, 2011; Calvó-Armengol,

Patacchini and Zenou, 2009).

Second, and unlike Add Health, students in the TEPS take a standardized test in waves 1 and

2 called the Comprehensive Analytical Ability test. This test measures of students’ cognitive

ability and analytical reasoning, and it was specifically designed to capture gradual learning

over time. There are 75 multiple-choice question in the test, covering general reasoning, math-

ematics, Chinese and English. These questions were taken from an extensive bank of questions

which includes adapted questions from other international standardized tests, as well as ques-

tions provided by education and field experts in Taiwan. The Comprehensive Analytical Ability

test scores, constructed as the sum of all correct answers, provide excellent measures of aca-

demic ability for students and their peers.7

Third, TEPS provides a wealth of questions measuring student behavior, attitudes and beliefs

in and outside the school environment, parent-child interactions and parental investments, as

well as detailed information on teachers and school administrators. Many of these measures

have multiple raters, combining questions asked to students, parents, teachers and school ad-

ministrators. We aggregate all these questions to construct an extensive battery of measures of

student, teacher and parent inputs in students’ educational production function. This large set

of input measures allows us to comprehensively explore potential mechanisms behind academic

peer effects.

Based on previous literature, we identified key inputs of students, parents and teachers in the ed-

ucation production function that are potential mediating factors of ability peer effects. For inputs

with multiple potential measures, we first identify entire blocks of items in the questionnaires

6There are other minor sampling restrictions that are irrelevant for our empirical design, we refer the interested
reader to TEPS technical reports.
7There is some evidence that female students may be disadvantaged compared to male students in multiple-choice
measures of cognitive ability (see e.g. Willingham and Cole, 2013). This is not a concern for our study since cognitive
ability is measured in a consistent manner throughout the TEPS, and our regression analyses always control for ability
at baseline. Nevertheless, we discuss robustness of our results to measurement error in cognitive ability in Section
6.2
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of all respondents—e.g. blocks of items related to study effort reported by students, parents

and teachers. We then eliminate very low correlates to maximize the informational content of

each index and reduce noise. To do this, we compute Spearman correlations between all items

under consideration, assess their Cronbach’s alphas, and perform an exploratory factor analysis.

Once we narrow down the list of items for a scale, we perform an additional confirmatory factor

analysis to validate these items and ensure their item factor loadings have similar magnitudes.

Finally, for each of these potential student, teacher and parent mediating factors and in each

wave, we construct a summative scale that adds up the answers to each item in the scale. See

Appendix A for a detailed explanation and Table A.1 for summary statistics and factor loadings

on all scale questions.

We measure student inputs through five scales of student school effort, initiative in class, mental

health, truancy, and academic self-efficacy, and three additional dummies for whether students

cheat in exams, aspire to go to university, and expect to be able to go to university. We measure

parental inputs through four scales of money investments, time investments, parental strictness

and parental support, and three additional dummies for whether parents have conflicts with their

child, use harsh punishment, and aspire for their child to go to university. Lastly, we measure

school and teacher inputs though two scales of student-perceived quality of the school envi-

ronment and of teacher engagement, and two additional dummy variables for whether teachers

reports that the classroom is hard to manage and whether they feel tired of teaching.

Table 2 shows a high-level summary of the academic ability and educational input measures

we construct using the TEPS data. For each measure we list the number of items used and the

number of unique values each measure takes. Wave 1 measures include many pre-assignment

characteristics used in Section 4.2 to provide evidence of random assignment of students to

classrooms within schools through a series of tests and methods we explain in the next section.
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Table 2: Description of Academic Achievement and Input Measures in TEPS

Wave 1 Wave 2

Measure Description Nb of Distinct Nb of Distinct
Items Values Items Values

(1) (2) (3) (4)

Student inputs

Test scores Comprehensive Analytical Ability std. test 75 66 75 59
School effort Study effort, homework on time (in English, 7 23 7 25

Chinese & math class)
Initiative in class Initiative to ask and answer questions 3 12 3 12

(in English, Chinese & math class)
Cheating in exams Student ever cheats in exams 1 2 1 2
Mental health Feeling troubled, depressed, suicidal, nervous, 6 19 12 22

unfocused, pressured, irritated, isolated, guilty
Truancy Skipping class, fighting, watching porn, drinking 6 19 4 10

alcohol, stealing, running away from home

Academic self-efficacy Focus, diligence, conscientiousness, initiative, 7 22 10 19
eloquence, organization, cooperation, curiosity

University aspirations Student wants to go to university 1 2 1 2
University expectations Student expects to be able to go to university 1 2 1 2

Parental investments

Money investments Out-of-school tutoring for child: cost, intensity 2 10 3 10
Time investments Going to bookstores, cultural events with child 2 7 2 11
Parent-child conflict Student quarrels with father and mother 1 2 1 2
Parental strictness Father and mother use strict discipline with student 2 7 2 17
Parental support Father and mother discuss future, listen carefully, 8 25 8 7

worry, give advice, accept unconditionally
Harsh parenting Parents use harsh punishment with student 1 2 1 2
University aspirations Parents want student to go to university 1 2 1 2

School atmosphere and Teacher engagement

School environment Student perception: school study ethos, campus 5 16 5 16
safety, school fairness, staff engagement

Classroom management Teacher assessment: classroom is hard to manage 1 2 1 2
Teacher engagement Student perception: teacher knows student names, 6 19 6 36

encourages students who work hard, uses several
different teaching materials, gives homework,
cares about students, reviews questions after exams

Teacher tired Teacher is tired of teaching 1 2 1 2

Note: This table presents our summative scales, and their associated survey items in each wave of TEPS. Col.
(1) and (3) report the number of items used in the construction of each summative scale resp. in Wave 1 and
Wave 2, and Col. (2) and (4) indicates the number of distinct values summing each item. For example, the
summative scale ”School effort” in Wave combines answers to 7 items over 23 distinct values; thus, school
effort ranges from 0 to 23.
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4 Empirical Strategy

4.1 Testing for Random Assignment of Peer Groups

Peer effect studies vary widely in their preferred test of random assignment to peers. In this

section, we briefly review and discuss the type of tests used in the literature.

A growing number of peer effects studies have relied on experimental or quasi-experimental

data in which students are randomly assigned to peer groups. This literature typically uses three

types of test to show that data is consistent with (conditional) random assignment of students

to groups. In the first method, researchers regress student i’s pre-determined characteristics on

the classroom leave-out mean—that is, the classroom mean after excluding student i — of the

key regressor of interest. This key regressor is usually a classroom leave-out mean of ability,

gender or other pre-determined student behavior (see e.g. Carrell, Sacerdote and West, 2013;

Eble and Hu, 2019). A significant coefficient on the classroom leave-out mean indicates that

students “treated” with peers differ in that pre-determined characteristic. Because this test mir-

rors balancing-of-covariates tests in the experimental literature, we refer to them as balancing

tests.

In the second method, researchers regress student i’s pre-determined characteristics on class-

room leave-out mean of that same characteristic (e.g. Sacerdote, 2001). A positive coefficient

on the characteristic classroom leave-out mean indicates that students are sorted into class-

rooms based on the characteristics tested; hence we call these sorting tests. Guryan, Kroft and

Notowidigdo (2009) observe that empirically, even under random assignment, coefficients of

sorting tests present a small negative bias; they show that this small, mechanical negative cor-

relation between own and peer characteristics seems to disappear when controlling for school-

level leave-out-mean of the characteristic. Jochmans (2020) shows that Guryan, Kroft and No-

towidigdo (2009)’s empirical correction results in low power for detecting sorting. He further

derives analytical expressions for this bias in within-school estimators and proposes a bias-

corrected sorting test which solves the power issue of previous sorting tests.

In the third method, researchers run permutation-based (sorting or balancing) tests (e.g. Carrell,

Sacerdote and West, 2013; Lim and Meer, 2017). These tests go as follows. While keeping

the core structure of the data (e.g., assignment to schools), researchers simulate what would

happen under random assignment to treatment (e.g., to classrooms). Based on this new placebo

assignment they then calculate key placebo statistics of interest—sometimes for sorting tests,

sometimes for balancing tests, and sometimes for their main results. They repeat this process,

say 10,000 times, and each time store their key placebo statistics. Finally, they calculate the pro-

portion of times their placebo statistic has a more extreme value than their actual key statistic.

They then calculate the proportion of times the coefficient of the placebo classroom leave-out

mean is more extreme than their coefficient of the classroom leave-out mean as observed. This

proportion of more extreme occurrences under placebo is a simulation-driven empirical p-value
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for a test of random assignment and can be judged by typical standards of statistical signifi-

cance. These empirical p-values could be calculated for many statistics of interest, including for

sorting and balancing tests but also for such tests at the school or even classroom level. When

many of these empirical p-values are calculated, researchers can aggregate them into one over-

arching statistical test using goodness-of-fit tests for the distribution of p-values, which should

be standard uniform under random assignment to treatment.

All three methods above are valid ways to produce evidence of quasi-random assignment, yet

all methods also have their shortcomings. Neither method naturally corrects for multiple testing

when researchers use many pre-determined characteristics in their tests. Using multiple hy-

potheses testing corrections (e.g. Benjamini and Hochberg, 1995; Romano and Wolf, 2005a,b)

can, in turn, severely decrease test power. Another approach is to joint-test the significance

of all pre-determined characteristics in predicting treatment but these joint tests have a ten-

dency to over-reject, especially when using cluster-robust inference methods (Pei, Pischke and

Schwandt, 2019). Permutation tests have the additional problem of being relatively complex

to program since researchers are required to keep most of the data structure identical (e.g.,

assignment to schools, number of classrooms in each school, class size) while still reassigning

treatment at random, then correctly recalculate all treatment measures, and ensure that treatment

variation is correctly accounted for in all estimates – which is harder with discrete measures of

pre-assignment characteristics like gender or race. In addition, goodness-of-fit tests used to ag-

gregate many empirical p-values in permutation tests, such as the Kolmogorov-Smirnoff test,

have known power issues.

Given the volume of peer effect studies out there, it is no surprise that in many of them there is

evidence of some systematic assignment to peer groups (e.g. Krueger, 1999; Krueger and Whit-

more, 2001; Whitmore, 2005; Dee, 2004; Ammermueller and Pischke, 2009; Balsa, Gandelman

and Roldán, 2018). When tests of random assignment reject the null that students are randomly

assignment to peer groups, researchers have used three types of econometric strategies.

A first approach is to adapt the econometric specification and adjust the interpretation of es-

timates accordingly (Krueger (1999), for example, estimates intent-to-treat effects rather than

treatment effects), or to consider the size of the selection bias when interpreting results (e.g. Dee,

2004). This can be appropriate if the evidence on systematic assignment is weak, quantitatively

small, and does not hint at further systematic assignment based on unobservable characteristics

that affect student outcomes. The cost, however, is that estimates might be biased if any of these

conditions fail.

A second approach is to remove treatment clusters where the data are consistent with some form

of systematic assignment to treatment (e.g. Krueger, 1999; Whitmore, 2005; Chetty et al., 2011).

This approach is valid if there are clear reasons to believe that random assignment applies to

some known treatment clusters but not others, which usually requires intimate knowledge of the

institutional background behind the data and the presence of markers of these known clusters.
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In complex institutional settings, removing data clusters suspected of systematic assignment to

treatment quickly becomes unfeasible and can be very costly in terms of statistical power.

A third approach is to control for pre-assignment characteristics that reveal systematic assign-

ment in the preferred specification, thus relying on mean independence of treatment conditional

on these characteristics (e.g. Lavy and Schlosser, 2011; Gong, Lu and Song, 2019). This ap-

proach is not costly in terms of power and does not require intimate knowledge of the institu-

tional background, yet it assumes (often implicitly) that controlling for characteristics related to

systematic assignment fully accounts for related unobserved characteristics that also determine

assignment. Economist are often wary of this assumption. This third approach also comes with

other shortcomings. In particular, it assumes that a single parameter function (e.g., linear) in

the pre-assignment characteristics is sufficient to account for systematic assignment. This as-

sumption is unlikely to hold if there are several such characteristics or several treatment clusters

that differ in their drivers of systematic assignment. Parametrically relaxing this assumption

can quickly become costly in terms of power. Perhaps more importantly, controlling for pre-

assignment characteristics changes the interpretation of the peer effect estimates, often making

them less immediately available for designing better peer group assignment policies. For ex-

ample, unbiased peer effect estimates that control for parental education can only be used to

predict outcomes of reassignment policies that hold parental education constant—a difficult ex-

ercise unless student reassignment to classrooms is done explicitly on parental education, which

is unlikely to happen in practice.

In sum, there are several ways to test for random assignment of students to peer groups and

several ways to deal with an eventual rejection of random assignment. None of the tests are

perfect, nor are the solutions. In the next section, we show our main test for random assignment

in the TEPS and refer the interested reader to Section 6.1 for the additional tests we run. The case

of the TEPS also presents an interesting challenge that combines i) a national mandate of random

assignment of students to classrooms within schools, ii) incentives for parents and schools to

violate this mandate if they believe that higher-achieving peers affect student outcomes, and

iii) unusually rich pre-assignment data to test the outcome of these two clashing institutional

features.

Perhaps more importantly, none of the existing tests are designed to identify specific treatment

clusters where random assignment is unlikely to hold. In Section 4.2.1 we propose such pro-

cedure: a new data-driven method for finding subsamples where quasi-random assignment is

credible, which is particularly useful in complex institutional settings such as ours.

4.2 Random Assignment to Classrooms in TEPS

Our identification strategy exploits random assignment of students to classrooms. If random

assignment holds, we expect our treatment of interest, classroom leave-out-mean of peer ability,

to be as good as randomly assigned to students. Random assignment to treatment is the main
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identification assumption under which our coefficient estimate yields a causal estimate of the

effect of peer ability on subsequent outcomes. Therefore, we first show that our data are gen-

erally consistent with random assignment to classrooms, and then show that our treatment is as

good as randomly assigned to students.

To show that the data are consistent with random assignment to classrooms within schools, we

run sorting tests in the complete TEPS data on standardized test scores and 17 pre-assignment

characteristics. We start from the complete sample, to prevent missing values to lead to over-

rejecting sorting tests of random assignment. In this complete data, we find evidence of sorting

by student ability and by several other student characteristics. We take this as evidence of non-

perfect compliance with the mandate of random assignment of students to classrooms within

schools across the entire TEPS data (see Appendix Table C.1).

There are many reasons why, in defiance of the national mandate of random assignment, we

could find evidence of systematic assignment of students to classrooms. These can range from

school principals occasionally catering to some parents’ preferences for their child to be as-

signed to some classrooms, to institutionally allowed “talent” classrooms that pool high-ability

student together, to a more concerning blatant disregard for the national mandate across schools.

We develop a data-driven procedure that helps us determine the reason behind this seeming vio-

lation of random assignment in the data, and identify a sample where random assignment likely

holds. We describe the key features of this procedure below, and refer the interested reader to a

more complete description in Appendix C.

4.2.1 The Fishing Algorithm

Since the law in Taiwan has an explicit mandate of random assignment of students to class-

rooms, we suspect that rejecting the null of sorting tests is most likely driven by few schools

that systematically sort students. Unfortunately, our data does not allow us to infer directly

which are these schools to exclude them from our analysis.

We therefore designed a sample trimming method, which combines randomization inference,

clearly pre-defined selection rules and latent-class modeling. Our Fishing Algorithm is a data-

driven approach to identify and exclude the few schools that show evidence inconsistent with

conditional random assignment. Since the norm should be random classroom assignment at the

school level and since we are interested in ability peer effects, we focus on trimming schools that

systematically sort students of similar academic ability into classrooms. This allows to exclude

entire treatment clusters (schools) rather than within-cluster treatment cells (e.g., classrooms)

which might leave non-random treatment in the remaining cells (i.e., because they are the com-

plement of non-random treated cells). Our method, however, can be easily adapted to trim

schools that sort on any observed characteristic in the data, and even on multiple characteristics
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at once.8

The key five steps of the Fishing Algorithm are the following. First, we construct for each

school a measure of strength of sorting, indicating how strongly the school sorts students of

similar ability into the same classrooms. This measure is akin to a Herfindahl-Hirschman index

of ability concentration in classrooms within each school, with larger values indicating stronger

ability sorting in classrooms in the school. We call this measure Hs. Second, for each school

we use several permutations of random assignment of students to classrooms within school

without replacement and construct, for each simulated classroom assignment, its corresponding

simulated index Hrandom
s . This procedure recovers the distribution of ability concentration in

classrooms for each school under the null of random assignment. Third, for each school we

compute the share of permutations for which the observed index Hs in the data was larger than

the simulated index Hrandom
s under the null of random assignment, and call this share Ss. Under

perfect compliance with random assignment, we expect the distribution of S over schools to be

uniform over the [0,1] interval; if random assignment violated in some schools, we expect more

values of Ss close to 1. Fourth, we estimate the latent probability that each school is a sorter

(i.e., a school that sorts students into classrooms more strongly than chance would allow). We

do this using latent class modelling—an atheoretical data-driven partitioning method that finds

observations (e.g., school shares Ss) that are likely to be generated by the same stochastic pro-

cess (e.g., ability-sorted classroom assignment). Using school-level data, we fit a finite mixture

model where the outcome is Ss, the regressors are constants for each latent class, and we include

school-level variables that could help identify sorter schools (such as the share of parents who

report pushing to get their children assigned to a better classroom). One or more of the latent

classes in this model correspond to schools with improbably high Ss—the sorter schools—and

the model itself produces school-level posterior probabilities of each school belonging to this

latent sorter class. In the fifth and final step, we flag sorter schools based on whether their pos-

terior probability of belonging to the latent sorter class is larger than the combined probabilities

of belonging to all other classes. As mentioned above, a more complete description of this Fish-

ing Algorithm can be found in Appendix C, and we provide validation of this procedure using

simulated data in Appendix D.9

8Our Fishing Algorithm is also not restricted to finding sorter schools; it can be used to find sorter classes (i.e.,
classes where students are likely to be sorted based on ability). More generally, it can be adapted to find violations
of balancing in any setting with cluster treatment assignment, such as treated villages within countries, or families
within neighborhoods. Note also that, in general, our Fishing Algorithm is not equivalent to controlling for ob-
servable characteristics to achieve conditional balancing. Our approach combines knowledge of the intended level
of treatment assignment (schools) and the nature of the treatment (peers) to non-parametrically identify treatment
clusters that likely defy random assignment. Once non-random assignment is detected, we remove entire treatment
clusters rather than trying to keep them and account for the non-randomness via controls. Only very stringent selec-
tion on observable procedures should be able to capture endogeneity as we do, and even then these would have to
apply flexible control functions at the cost of many degrees of freedom and interpretability of estimates.
9The question on parental pushiness belongs to a block of questions regarding parental investments in their child’s
education, including whether parents have or plan on sending their child to study abroad, have changed jobs to be
more available for their child, or have relocated to a better educational district to aid their child’s education. We
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Most schools in the TEPS data show evidence consistent with random assignment, whereas

some schools present obvious evidence of sorting (Appendix Figure C.1). As illustrated in Fig-

ure 2, our Fishing Algorithm identifies 106 out of the 333 schools in TEPS as sorter schools,

which we exclude from our estimation sample. This leaves us with a trimmed sample of 13,685

students in these schools, allocated to 853 classrooms (68 percent of the TEPS data). Our

trimmed sample is very similar to the overall TEPS data in terms of all key student and par-

ent characteristics in wave 1, and is also similar to our final estimation sample of 11,029 ob-

servations with complete information on student and peer test scores and educational inputs

(Appendix Table C.3).

Figure 2: Schools Identified as Defying Random Assignment Using the Fishing Algorithm

This figure shows the school-level distribution of our measure for whether schools sort students into
classrooms more strongly than chance would allow, given the school size, number and classroom size
and student composition. The probability of being a sorter school is the posterior probability of being in
a latent class classified as sorters by us and calculated based on a finite mixture model of school sorting
using several school averages of parental characteristics as class predictors. See Appendix C for details.

An important concern in applying our Fishing Algorithm is over-trimming; that is, to remove

schools that by chance look like sorters but are not. Our algorithm will unavoidably result in

some schools being over-trimmed, and these schools would have contributed useful variation to

identify peer effects. With severe over-trimming, peer effects could be less precisely estimated

at best, and biased at worst (upwards if e.g., peer effects are strongly driven by positive effects

focus on pushy parents because it is the only one of these items that relates directly to classroom assignment and
thus our treatment of interest, which could affect our within-school estimates.
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of higher-achieving peers on high-achieving students). However, over-trimming is also easily

diagnosed in our algorithm; it is revealed by negative and significant post-trimming sorting t-

statistics. If negative post-trimming sorting t-statistics occurs, researchers should make efforts

to improve the performance of the Fishing Algorithm (by e.g., finding better predictors of sorter

schools or exploring different latent lass structures or models). If no improvement can be made,

it is important to highlight the over-trimming brought on by the algorithm and cautiously inter-

pret findings accordingly. Fortunately, in our application of the Fishing Algorithm to TEPS we

find virtually no evidence of over-trimming.

4.2.2 Sorting and Balancing Tests in our Trimmed Sample

Table 3 presents the results of sorting and balancing tests on the trimmed sample, once we

exclude the schools likely to be non-compliant with the mandate of random assignment.10

Columns (2) and (3) show sorting tests t-statistics, to be compared to standard normal crit-

ical values, whereas columns (4) and (5) show coefficients and standard errors of balancing

regressions of pre-assignment characteristics on peer ability.

The main endogeneity concern in our estimates is ability sorting of students; that is, that high-

ability students are assigned together in the same classroom. This type of sorting is concerning

because, if ability is dynamically self-productive as in e.g., Cunha and Heckman (2007), it

would bias peer effect estimates upwards. The first row of Table 3 shows that this sorting is not

a concern in our trimmed sample.

Another common endogeneity concern is whether students are sorted in productive characteris-

tics other than ability, say parental income. This kind of sorting is tested in the second and third

columns, second row and below, of Table 3. Sorting on parental income can introduce bias in

peer effects estimates if these characteristics are related to student achievement. Note, however,

that if income sorting were related to students’ achievement at baseline, this sorting would have

already been reflected in the baseline achievement sorting. This still leaves the possibility that

parental income has not been productive for student achievement at baseline but might become

productive afterwards. If that is the case, income sorting at baseline can still bias peer effects

upwards over and above achievement sorting.

Table 3 shows that there is no evidence of sorting on other characteristics in our trimmed sample,

especially when using the Jochmans (2020) state-of-the-art test. There is some evidence of

sorting on intellectual curiosity and, perhaps more importantly, sorting for students enrolled in

gifted arts classrooms and students whose parents report making efforts to get them assigned to

10For this discussion, it is useful to keep in mind the omitted variable bias formula for our peer effect estimator β :
E(β |X)−β = γρ , where γ is the conditional effect of any omitted factor on student outcomes and ρ is proportional
to the correlation between the omitted factor and our peer achievement leave-out-mean. Evaluating all endogene-
ity concerns against this formula is an enlightening way to map econometric endogeneity concerns to economic
principles.
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particular classrooms. Several institutional settings, including TEPS, could allow for this type

of sorting to occur over and above achievement sorting.

For student sorting on other characteristics to introduce bias in our peer effect estimates, how-

ever, a second necessary condition is for the student characteristic to be related to our peer

achievement leave-out-mean measure. The last two columns of Table 3 show these tests. In

our trimmed sample, the only potentially concerning characteristic which i) could affect student

achievement over and above baseline achievement, ii) students are sorted on at baseline, and

iii) is also related to peer achievement at baseline is whether parents made efforts to get their

child assigned to a particular classroom. Of all the other characteristics that we test, only family

income and family engagement with homework before baseline are related to peer achieve-

ment, and they are negatively related at that. This last finding rather suggests a potential slight

over-trimming in our Fishing Algorithm (since pre-trimming these relationships were, if any-

thing, positive; see Appendix Table C.1). Regardless, in our main specifications we include the

corresponding controls for household income, family engagement with homework, gifted art

classroom assignment, and parents’ pushiness to get child assigned to a particular classroom,

which we jointly refer to as balancing controls. These balancing controls are not crucial for our

empirical design, nor do they affect any of our main results.11

Overall, our Fishing Algorithm is an effective way to identify schools that systematically assign

student to classrooms in our data. In the schools identified by the algorithm as balanced we find

no substantive evidence of systematic assignment, and we will keep this trimmed sample as our

estimation sample throughout our main analyses. In Section 6 we also show the results of a

battery of additional sorting tests, discuss in detail other ways to identify our estimates, explore

the issues of sample selectivity, and compare our trimmed sample with the initial TEPS sample.

11Also, note that due to the power in our data, we detect small differences in balancing tests that would have likely
gone unnoticed in other designs. Our ex-post Minimum Detectable Effects (MDEs) for our balancing tests are as
small as 2.2 percentage points in the chance of being female, and less than 1 percentage point in the likelihood of
having a migrant background. For comparison, the MDEs of balancing tests are 17 percent of a standard deviation in
math test scores in the STAR data (Dee, 2004), and 25 percentage points for being female and 10 percentage points
for migrant in the Add Health data (Bifulco et al., 2014).
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Table 3: Balancing and Sorting Tests on the TEPS Trimmed Sample

Sorting tests (t-statistic) Balancing tests

Treatment Variable: Peer outcome Peer ability
leave-out mean leave-out-mean [std]

Students Guryan et al. Jochmans Coef. Std. err.
(2009) (2020)

(1) (2) (3) (4) (5)

Pre-assignment characteristics:
Student test scores [std] 13,685 -0.2 0.1

Female student 13,685 2.1 -0.2 0.008 (0.011)
Student born before 1989 13,611 -0.8 0.6 −0.005 (0.010)
Household income > NT$100k/mo. 13,454 -0.7 -0.3 −0.019∗∗∗ (0.007)
College-educated parent(s) 13,084 -0.8 0.8 0.001 (0.009)
Parent(s) work in government 13,023 1.4 0.0 0.010 (0.007)
Ethnic minority parent(s) 13,081 2.2 1.4 −0.004 (0.009)
Since primary school:

Student always prioritized studies 13,593 -1.7 0.8 −0.010 (0.009)
Student always reviews lessons 13,583 -0.2 1.7 0.003 (0.008)
Student likes new things 13,554 1.5 2.4 −0.001 (0.011)

During primary school:
Student was truant 13,489 1.6 -0.7 0.000 (0.011)
Student had mental health issues 13,486 -0.7 0.2 −0.004 (0.010)
Student quarreled with parents 13,502 -1.5 -1.2 −0.001 (0.009)

Before junior high school:
Had private tutoring 13,525 0.3 1.4 0.004 (0.012)
Family help with homework 13,013 1.2 0.8 −0.020∗∗ (0.008)

Student enrolled in gifted academic class 13,554 -1.2 1.8 0.013 (0.008)
Student enrolled in arts gifted class 13,554 2.2 2.9 −0.013 (0.015)
Parents made efforts to place student 13,508 2.2 3.2 0.035∗∗∗ (0.010)

in better class
Note: This table presents the results of balancing and sorting tests in our trimmed sample of 232 schools and
850 classrooms. All estimators include school fixed effects. The reference distribution for the Guryan, Kroft and
Notowidigdo (2009) and the Jochmans (2020) sorting statistics is the standard normal. The last column reports
cluster-robust standard errors at the classroom level. ***, ** and * mark estimates statistically different from
zero at the 90, 95 and 99 percent confidence level.
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5 Main Results

5.1 Academic Peer Effects on Test Scores

Now that we have established a sample where conditional random assignment of students to

classrooms holds, we go on to establish the existence of academic peer effects.

Figure 3: The Effect of Higher-Achieving Peers Test Scores on Students’ own Test Scores in Wave 2

This figure reports estimates of regressing standardized student test scores in wave 2 on standardized
average peer test scores in wave 1 in our sample containing 232 schools, 850 classes, and up to 11,029
students. Rows present results of models with different sets of control variables. The Baseline model
includes wave 1 student test scores and school fixed effects. Balancing controls include household in-
come, family engagement with homework, gifted art class assignment, and parents’ efforts to get child
assigned to a particular classroom. W1 inputs include standardized scales of student inputs (school ef-
fort, initiative in class, truancy, academic self-efficacy, and mental health), parent inputs (investment in
private tutoring, time investments, parental strictness and parental support), school and teacher inputs
(school environment and teacher engagement). Horizontal bars show the 99%, 95% and 90% confidence
intervals for each estimate, based on standard errors clustered at the classroom level. Estimates in this
figure are also shown in Appendix Table B.1.

In its most basic form, we test for the existence of academic peer effects in our setting by re-

gressing students’ standardized test scores in wave 2, TestScoresics2, on the standardized class-

room leave-out mean of test scores in wave 1, TestScores−i
ics1, our measure of average peer test

scores. To this simplest specification we add school fixed effects and students’ own test scores

in wave 1. We do not include homeroom teacher fixed effects since these teachers are also ran-

domly assigned to classrooms so they cannot confound our peer effect estimates (see Section

3.1 and Chang, Cobb-Clark and Salamanca (2020)). Moreover we do not observe the same

homeroom teacher across multiple classrooms so our estimates would not be econometrically
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identified in a teacher fixed effect model. We do consider specifications with and without the

additional balancing controls (household income, family engagement with homework, gifted art

classroom assignment, and parents’ pushiness to get child assigned to a particular classroom)

and standardized scales of student inputs (school effort, initiative in class, truancy, academic

self-efficacy, and mental health), parent inputs (investment in private tutoring, time investments,

parental strictness and parental support), school and teacher inputs (school environment and

teacher engagement). We do this to assess the extent to which these covariates could capture

omitted variable bias in our peer effect estimates. We cluster standard errors at the classroom

level.

Figure 3 shows strong positive peer effects in our setting. It further shows that including balanc-

ing controls or wave 1 inputs does not qualitatively change our estimates, though it does slightly

increase precision. This estimate stability is a reassuring result which provides strong evidence

of no omitted variable bias in our estimates, especially given the wide range of controls included

in our educational input measures.

Our preferred specification is on the last row of Figure 3, highlighted in bold. This specification

controls for school fixed effects and student wave 1 test scores, as well as all wave 1 educational

inputs and our four balancing covariates. It therefore identifies academic peer effects within the

Todd and Wolpin (2003) cumulative value-added specifications; holding constant past outputs

and educational inputs. This will prove important in the following sections. Our preferred

estimates can be re-expressed as:

TestScoresics2 = 0.054
(0.017)

TestScores−i
ics1 +0.562

(0.009)
TestScoresics1 + θ̂

′Controlsics1 + µ̂s (1)

where Controlsics1 includes balancing controls and wave 1 educational inputs.

These estimates imply that having one standard deviation higher average peer test scores in wave

1 increase own test scores by 5.2 percent of a standard deviation in wave 2. Comparing effect

sizes in this literature is quite difficult; differences in standardized effect sizes across studies

could capture true differences in responses to peer ability but could also reflect differences

in standard deviations in peer achievement and student outcomes across settings. Assuming

these standard deviations are comparable across studies, our peer effects are also similar (e.g.

Imberman, Kugler and Sacerdote, 2012; Brunello, De Paola and Scoppa, 2010; Booij, Leuven

and Oosterbeek, 2017). Compared to studies where students are randomly assigned to peer

groups, our estimates are around the median of estimate. Yet our estimated effect measures

the impact of two years’ worth of exposure to classroom peers, which represents a strong dose

compare to most comparable studies, thus our effect could also be seen as relatively small.12

12The combination of partial classroom sampling and random assignment of students to classes in TEPS implies
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To give this number more perspective, our estimated effect of a 1SD increase in average peer

scores is about a tenth of the estimated effect of a 1SD increase in students’ own lagged test

scores. Our peer effect estimate is about half the marginal effect of having at least one college-

educated parent, and about a sixth of the unconditional test score gap between children of two-

parent households and single-parent households.

Another way of sizing the impact of higher-achieving peers is through the lens of socioeconomic

inequality. Due largely to school sorting, the peers of poor students (with household monthly

incomes under NT$20,000, corresponding to the poorest 10 percent in the sample) have 68

percent of a standard deviation lower scores than the peers of rich students (with household

monthly incomes over NT$100,000, corresponding to the top 15 percent). The rich-poor test

score gap in wave 2 test scores gap is 1.1 standard deviations. Putting these two numbers

together, our linear peer effects imply that 3.5 percent of the rich-poor gap in standardized test

scores can be explained by the richer students’ access to higher-achieving peers.

5.2 Academic Peer Effects on Educational Inputs

In this section, we estimate the impact of higher-achieving academic peers on nineteen educa-

tional inputs in order to explain how academic peer effects work. We estimate variations of

Equation (1) using our measures of educational inputs in wave 2 as outcomes. Figure 4 shows

the effect of a 1SD increase in average peer test scores on wave 2 educational inputs in our es-

timation sample. Each row shows the effect of peer test scores on a different educational input.

We show the unconditional mean of each outcome in square brackets to give context to these

estimates. Navy blue estimates show effects student inputs, maroon estimates show effects on

parent inputs, and teal estimates show effects on school and teacher inputs.

A 1SD increase in average peer test scores decreases students’ school effort in wave 2 by 5.2

percent of a standard deviation. While these effects are a priori surprising, they are difficult

to benchmark against previous findings. Many studies have hypothesized study effort to be a

key mechanism through which peer effects operate, yet a handful of them provide estimates of

effort responses to high-achieving peers. The few studies that do find mixed evidence (Feld and

Zölitz, 2017; Mehta, Stinebrickner and Stinebrickner, 2019; Fang and Wan, 2020).

The negative effect of higher-achieving peers on student effort might seem surprising. One

possible explanation is that exposure to high achieving peers could constitute a form of relative

performance feedback, which can affect effort decisions (Azmat and Iriberri, 2010). Intuitively,

students start with a prior belief about their ability relative to their peers’, and those exposed to

high-achieving peers update their belief downwards. This has a flow-on effect on effort, which

can be positive if students have competitive or rank-preferences (e.g. Azmat et al., 2019; van

that these and all other peer effect estimates in our main results might be biased downwards (Sojourner, 2013). We
discuss the source of this bias, and present and interpret corrected estimates, in Section 6.2.3.
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Lent and Souverijn, 2020; Clark et al., 2020) or negative if students become discouraged by the

tournament-like stakes in the classroom (Bedard and Fischer, 2019). Our negative effects on

effort in the TEPS data suggests the discouragement effect is the larger of the two.

Figure 4: The Effect of Higher-Achieving Peer Test Scores on Educational Inputs in Wave 2

This figure reports estimates of regressing educational input measures in wave 2 on standardized average
peer test scores in wave 1 in our sample containing 232 schools, 850 classes, and up to 11,029 students.
Rows present results of models with different educational inputs as outcomes. Unconditional means of
each outcome are shown in square brackets, and [std] marks outcomes that have been standardized to
have a mean of zero and a standard deviation of one. All models control for school fixed effects, student
test scores in wave 1, balancing controls, and educational inputs in wave 1. Student, parent, school
and teacher inputs are shown in navy blue, maroon, and teal. Horizontal bars show the 99%, 95% and
90% confidence intervals for each estimate, based on standard errors clustered at the classroom level.
Estimates in this figure are also shown in Appendix Table B.2.

A 1SD increase in average peer test scores also increases students’ aspirations to go to university

by 1.6 percentage points, and their expectations of actually going to university by 2 percentage

points. These seem like small effects, corresponding to around 3-5 percent of their respective

unconditional means, but become more sizeable when compared to the effect of other known

shifters of aspirations. One could compare them, for example, to the 8.5 percent increase in par-

ents’ higher education aspirations for girls from opening access to male-dominated professions

in India (Beaman et al., 2012), the 5.2 percent increase in educational aspirations of cast-priming

in high-casts in India as well (Mukherjee, 2015), or the precisely-estimated null effect of univer-

sity information on educational aspirations of Colombian students (Bonilla-Mejı́a, Bottan and

Ham, 2019).

A 1SD increase in peer test scores also increases parents’ time investment by 8.1 percent of a
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standard deviation. Our time investment measure in TEPS focuses in dinner time spent with

parents, yet our estimated peer effect could be compared to half of the impact of having one

student more in one’s classroom on parents’ likelihood of helping the child with homework in

Fredriksson, Öckert and Oosterbeek (2016), or with a fifth of the effect of a child attending a

marginally worse school in Pop-Eleches and Urquiola (2013). 1SD higher-achieving classroom

peers also increases parental strictness by 3.6 percent of a standard deviation, a small effect that

has no benchmark in the peer effects literature.

Finally, Figure 4 also shows that we cannot detect effects of higher-achieving peers on many

educational inputs that have previously been considered as key potential mechanisms behind

peer effects, such as student initiative in the classroom, classroom disruption and the quality of

peer interactions in the classroom (e.g. Booij, Leuven and Oosterbeek, 2017; Feld and Zölitz,

2017). We estimate null effects on all measures of parental investment or parenting behav-

ior other than parental time investments. This finding is important because while we find no

parental behavioral responses to classroom peer ability, previous studies have shown evidence

of parental behavioral responses to other types of public investments such as school admissions,

classroom size, and teacher qualifications. Lastly, we also find precisely estimated null effects

on mechanisms that others have found potentially relevant including on students’ perception

about their school environment (e.g. Feld and Zölitz, 2017), and on teacher engagement, class-

room management and tiredness (Lazear, 2001; Duflo, Dupas and Kremer, 2011; Golsteyn, Non

and Zölitz, Forth.).

Importantly, our null effects on most of these mechanisms are precisely estimated. Between all

our estimates, the largest standard error for a standardized educational input is 0.026. A standard

ex-post Minimum Detectable Effect (MDEs) size calculation with 95 percent confidence and 80

percent power implies that we could have detected effects as small as 7.3 percent of a standard

deviation for outcomes such as initiative in class or teacher engagement. A 7.3 percent of a

standard deviation in an outcome is a relatively small detectable effect; close to 10 percent of

the gender gap in effort (women pay more effort than men), 18 percent of the difference between

private tutoring investments of top-income parents and the rest, or 9 percent of the difference

between the time investments of two-person and single-parent households.

Overall, we show that higher-achieving peers decrease student effort, increase student aspira-

tions and expectations to attend university, an increase in parental time investments and parental

strictness. We can make sense of the first two, seemingly contradicting, results in the lens of

existing theories of performance under uncertainty; they could be consistent with exposure to

higher achieving peers as a form of relative performance feedback. The sign of these estimates

is in line with the theoretical model and recent field evidence of Azmat et al. (2019). The latter

result on time investments provide new insights on the relatively thin evidence base on par-

ents’ behavioral responses to school inputs. Our effects suggest that parents complement school

inputs (i.e., better school peers) by increasing their own time investment. This collides with evi-

dence that parents tend to treat school inputs and own time investments and parental strictness as
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substitutes (Pop-Eleches and Urquiola, 2013; Fredriksson, Öckert and Oosterbeek, 2016) but is

consistent with other evidence from Taiwan that showing that parents complement teacher qual-

ifications with financial investments of their own (Chang, Cobb-Clark and Salamanca, 2020).

More relevant is that — depending on the productivity of these educational inputs for student

achievement — these input responses could all be legitimate mechanisms for explaining our

5.2 percent of a standard deviation effect of higher-achieving peers on test scores. In the next

section, we calculate how much of our estimated academic peer effect can be explained by these

mechanisms.

5.3 Mediation of Academic Peer Effects

We are now able to formally ask how much of the 5.2 percent effect of higher-achieving peers

on students’ test scores can be explained by their intermediate impact on educational inputs. To

do this we follow the decomposition in Gelbach (2016), which we adapt to our setting in order

to use only within-school variation by modifying the b1x2 Stata package.

This decomposition calculates the total mediated effect (ME) of educational inputs on peer

effects:

ME = ∑
k

MEk = ∑
k

∂Ed.Inputsk
ics2

∂TestScores−i
ics1︸ ︷︷ ︸

(A)

× ∂TestScoreics2

∂Ed.Inputsk
ics2︸ ︷︷ ︸

(B)

(2)

where Ed.Inputsk
ics2 stands for educational input in our set of inputs. The terms (A) are the

causal effects of higher-achieving peers in wave 1 on educational inputs in wave 2 as shown in

Figure 4. The only remaining pieces for the calculation of ME are therefore the terms which

are the partial returns (i.e., holding other inputs constant) to each of the educational inputs on

student scores in wave 2.

There is no ideal experiment for estimating (B), not even by independently and randomly vary-

ing each educational input over a period of two years and then estimating their causal impact

on student test scores. The reason, as expressed by Todd and Wolpin (2003), is that such ex-

periments would identify “policy parameters”—effect identified out of variation not subject to

choices of parents or schools but exogenously induced—rather than “production function” pa-

rameters. Policy parameters are identified by variation in inputs exogenously pressed onto peo-

ple, rather than by naturally-occurring variation through people’s investment decisions across

the population (see e.g. Imai, Tingley and Yamamoto, 2013; Keele, Tingley and Yamamoto,

2015). Thus, policy parameters answer many important questions but they do not recover re-

turns to inputs, so their use is limited in a mediation analysis as described by Equation (2).

Todd and Wolpin (2003) argue for using (cumulative) value-added models to estimate the (B)

term of Equation (2). Todd and Wolpin (2007) and Fiorini and Keane (2014), among others,
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discuss these models in detail and show that they can identify the returns to educational inputs

under relatively weak conditions, and we find ourselves in an ideal scenario for estimating these

models. This is because in our setting we i) always use within-school variation which accounts

for unobserved school-level heterogeneity, ii) can control for standardized test scores in wave

1, iii) can control for a myriad of educational inputs in wave 1, and iv) only need to estimate

returns over a two-year period. For all these reasons, we estimate the terms (B) as the β̂k from

the within-school cumulative value-added model:

TestScoreics2 =
K

∑
k=1

βkEd.Inputsk
ics2 +δCovariatesics1 + γs +νics2 (3)

where Covariatesics1 includes student test scores, average peer test scores, and all other edu-

cational inputs in wave 1. To the extent that our school fixed effects account for school-level

unobserved heterogeneity γs and extensive set of high-quality covariates account for endogene-

ity in observable educational inputs, Equation (3) will identify unbiased estimates of the average

partial return to each of the K educational input in our data.13

Figure 5 presents within-school cumulative value-added estimates of the total and partial average

returns of educational input in wave 2. Total effects are return parameters estimated one input at

the time. Partial effects are the return parameters estimates β̂k obtained from Equation (3) with

the complete set of K inputs include as regressors together. In other words, they are the returns

of each educational input k holding constant all other K− 1 inputs. We rescale test scores and

all continuous inputs in wave 2 so that each value can easily be interpreted as the return of a one

standard deviation increase in standard deviations of scores. The circles show the total returns

of each input, and the bars show the partial effect of each input with their corresponding 95

percent confidence interval.

We obtain precise estimates of the average partial returns to all educational inputs. The first

row in Figure 5, for example, shows that a 1SD increase in school effort between waves 1 and 2

carries an average return of 9.3 percent of a standard deviation in test scores in wave 2. There are

also positive returns to students’ initiative in class, university aspirations and expectations, as

well as parental money investment in the form of private tutoring, parental support and university

aspirations for their child. There is evidence of negative returns to students’ academic self-

efficacy, and parental strictness and harshness. The differences between total and partial average

13School fixed effects are theoretically not necessary for identifying our value-added parameters, yet we include them
to easily map our academic peer effects on inputs onto a mediation analysis using shared modelling assumptions.
Our value-added parameters do not change when we use classroom fixed effects, student fixed effects, or remove
fixed effects altogether. Attenuation due to classical measurement error could also affect our value-added estimates,
yet this would not meaningfully change our conclusions since i) most of our input measures combine several items,
which reduces measurement error substantially, and ii) our measures tend to have excellent inter-item consistency
and high Cronbach alphas, which suggest little measurement error left in them. Back-of-the-envelope models with
reasonable levels of attenuation assumed for our value-added models support these conclusions.
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Figure 5: Returns to Educational Inputs from Cumulative Value-Added Models

This figure reports coefficient estimates of regressing student test scores in wave 2 on educational inputs
in wave 2 in our estimation sample containing 232 schools, 850 classes, and up to 11,029 students.
Rows present coefficients of different regressors; Unconditional means of each input are shown in square
brackets and [std] marks inputs that have been standardized to have a mean of zero and a standard
deviation of one; circles show total effects (one input at the time) and bars represent partial effects (all
inputs jointly). All models control for school fixed effects, student test scores, average peer test scores,
and educational inputs in wave 1. Student, parent, school and teacher inputs are shown in navy blue,
maroon, and teal. Spikes show 95% confidence intervals on partial effects based on standard errors
clustered at the classroom level. These results are also available in Appendix Table B.3.

returns reflect the fact that many of these inputs are correlated.14

Figure 6 puts together the results from Figures 3 to 5 to produce estimates of the mediated effect

of peer effects by our measured educational inputs, as per Equation (2). This figure reports the

mediated effects based on a Gelbach (2016) decomposition of our academic peer effect estimate

using only within-school variation in our complete sample, and allowing errors to be correlated

across the scores and input equations. The bar in green shows that our mechanisms explain

a negative and statistically but not economically significant amount of our estimated peer ef-

fect—which means that the effect of higher-achieving peers on these inputs and their estimated

return jointly make it harder, not easier, to explain the academic peer effects. Jointly, all our ed-

14The R2 in our cumulative value added model is 0.71 which suggests we explain a substantial amount of the variation
in wave 2 test scores with our data. Our measured inputs contribute the vast majority of the explanatory power; the
same model without school fixed effects has only a slightly lower R2 of 0.69. There is also not much scope for within-
classroom variation to contribute additional explanatory power since adding classroom fixed effects only increases
the R2 to 0.74.

29



ucational inputs explain only -0.8 percent of a standard deviation of the 5.2 percent of a standard

deviation academic peer effect. This negative mediation is chiefly driven by the negative effects

of higher-achieving peers on effort combined with the large and positive estimate of the returns

to effort on academic achievement. None of the other inputs we consider has a statistically or

economically significant mediating effect.

Figure 6: Academic Peer Effects Mediated by Educational Inputs

This figure reports the mediated effects based on a Gelbach (2016) decomposition of our academic peer
effect estimate using only within-school variation in our estimation sample containing 232 schools, 850
classrooms, and up to 11,029 students. These estimates are produced using a modified version of the
b1x2 Stata package. Rows present the mediated effect of different educational inputs in wave 2. All
models control for school fixed effects, student test scores, average peer test scores, and educational
inputs in wave 1. The total mediated effect is shown in green, and student, parent, school and teacher
inputs are shown in navy blue, maroon, and teal. p-values shown are based on standard errors clustered
at the classroom level. These results are also available in Appendix Table B.4.

Overall, the results in this section show that, in spite of having precise estimates of i) academic

peer effects and of ii) the effects of higher-achieving peers on educational inputs, which could

potentially act as mechanisms for these peer effects, our potential mechanisms explain prac-

tically nothing of peer effects. These new results show the difficulties of learning about the

mechanisms that drive social interaction effects and suggest that the prevailing microeconomet-

ric approach to exploring these mechanisms can be of limited use. Puzzling results such as

these open a number of questions and can prove to be a knowledge base to build on, as long as

its foundations are solid. Precisely because of this, in the next section we show that our main

results and conclusions are robust to a myriad of specification checks and potential concerns.

In particular, section 6.4 shows that these results on the absence of mediation are not hiding
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heterogeneity in the sense that we find little heterogeneity in the effect of high-achieving peers

on scores and inputs across different subgroups of students.

6 Sensitivity Analyses

In this section, we discuss the sensitivity of our results along four dimensions: i) robustness

to changes in our identification strategy; ii) robustness to the effects of measurement error in

our data; iii) robustness of our inference to different constructions of standard errors; and iv)

robustness of our conclusions on the mediation analyses to the presence of heterogeneous peer

effects.

6.1 Robustness of Identification Strategy

Here, we first provide additional evidence of random assignment of students to classrooms

within schools in our trimmed sample using permutation-based sorting tests, and using non-

parametric sorting tests. Many of these tests have become standard in the empirical peer effects

literature. We then exploit the richness of our data—in particular the fact that we observe many

pre-assignment characteristics of students, parents and teachers—to show that proportional se-

lection on unobservable characteristics is very unlikely to be driving our results.

6.1.1 Permutation-Based Sorting Tests

In the empirical peer effects literature, permutation-based tests of random assignment of stu-

dents to peer groups have become very popular. These tests compared the actual student group

composition in the data to counterfactual compositions simulated under the null of random as-

signment, as described in Section 3.3.2. As an additional check for random assignment in our

data, we estimate permutation-based sorting tests akin to those in e.g., Carrell and West (2010);

Lim and Meer (2017, 2020) in our trimmed sample.

For these tests, we simulate 10,000 classrooms under the null of random assignment of students

to classrooms within schools. We do so by randomly drawing sampled students with replace-

ment and keeping the core structure of the data—respecting students’ assignment to schools,

and number and size of classrooms within each school. We then calculate the mean of our

key pre-treatment characteristics in each of the 10,000 synthetic classrooms. Finally, for each

classroom, we count the times the synthetic classroom mean of each characteristic was more

extreme than the actual classroom mean, relative to the schools mean. The share of times this

happens corresponds to the classroom-level empirical p-value of a test of random assignment of

students to classrooms within schools based on that characteristic. Appendix Table B.5 shows

these permutation-based empirical p-values for each key pre-determined characteristic sepa-

rately. Under random assignment, the shares in the second through fourth column should be

close to the nominal rejection rates of 0.10, 0.05 and 0.01 in most or all rows. The evidence in
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this table strongly supports the idea of random assignment to classrooms within schools in our

trimmed sample.

6.1.2 Non-Parametric Sorting Test

As implemented, balancing tests and sorting tests all have one important shortcoming: their

linearity. Balancing tests, for example, assess whether female students are assigned to higher-

achieving peers. Sorting tests try to capture whether female students end up in classrooms with

other female students. But these tests do not truly test for what random assignment would imply:

whether classrooms systematically differ in these pre-assignment characteristics in any way. In

other words, these tests do not test non-parametrically for systematic assignment of students to

classrooms. A few studies do use this non-parametric sorting test (Ammermueller and Pischke,

2009; Sojourner, 2013; Feld and Zölitz, 2017).

We implement this test in the following steps. First, we estimate school-by-school regressions

of each pre-assignment characteristic on a set of classroom dummies. Second, we jointly test

the statistical significance of these classroom dummies and collect the p-values of these tests.

We end up with a set of 2,790 p-values; one for each of the 227 schools in our sample and

each of our key 18 pre-assignment characteristics. We then note that, under the null of random

assignment of classrooms to schools, these p-values should be uniformly distributed. Therefore,

as a third step, we check whether more than ten, five and one percent of the school-level p-values

fall under the nominal values 0.10, 0.05 and 0.01 for each characteristic.

Appendix Table B.6 shows empirical p-value distributions for each characteristic separately.

Consistent with our tests in Section 4.2, these results also show some evidence of minor sorting

based on intellectual curiosity, gifted arts classroom enrolment, and parents pushing for assign-

ment to particular classrooms. Overall, however, these tests provide yet again evidence in strong

support of random assignment to classrooms within schools in our trimmed sample.

6.1.3 Different thresholds for our Fishing algorithm

An important and somewhat arbitrary decision in implementing our Fishing Algorithm is de-

ciding when to classify any particular school as not compliant with the mandate of random

assignment. Recall from Section 4.2.1 that we do so based on how each school’s probability to

belong to the latent class of sorters—the latent sorter probability, for short. Our intuitive thumb

rule is: a school is a sorter if its latent sorter probability is larger than all other latent class proba-

bilities combined. However, this is not the only way to classify such schools. Another approach

is to pick a fixed probability threshold and consider any school with a latent sorter probability

above that threshold as a sorter.

In Appendix Table B.7 we show how all our main results on academic peer effects change had

we implemented this fixed threshold approach at different levels, ranging from 0.5 (relatively

strict, removing all schools that are “more likely than not” to be sorters) to 1 (very relaxed, effec-
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tively removing only schools for which Ss is equal to 1 too). The bottom of the table shows that

the sorting statistic of Jochmans (2020) grows monotonically with the threshold, as expected,

and starts rejecting the null of no sorting for thresholds of 0.7 and above. For thresholds below

0.7, we find consistent academic peer effects on test scores of around 5 percent of a standard de-

viation, as well as consistent negative effects on student effort and positive effects on students’

university expectations, and time with parents. We find weaker and less consistent evidence of

positive effects on students’ university aspirations, parental support, and teacher engagement,

and negative effects on conflict with parents. In general for thresholds 0.7 and below all coef-

ficients are very stable and compare well to our main effects. For thresholds above 0.7, where

sorting tests fail, we tend to find larger academic peer effects on test scores, smaller effects in

magnitude on student effort and time with parents, and larger effects in magnitude for parental

support, parents’ university aspirations, and class management. Most of these differences are

consistent with stronger ability sorting into classrooms for these schools. Overall, Appendix

Table B.7 shows that our results are not overly sensitive to which threshold we use in our fishing

algorithm as long as the resulting estimation sample passes Jochman’s sorting test.

6.1.4 Proportional Selection on Unobservable to Observable Characteristics

Our trimmed sample is chosen in a data-driven way that ensures that key pre- assignment charac-

teristics are unrelated to average peer test scores. This identification strategy relies on our ability

to find data that reflects a clean quasi-experiment in classroom allocation, yet systematically ex-

cludes entire schools from our sample, which might lead to sample selection issues. Still, we

ask ourselves whether the few observable characteristics that remain correlated to higher-ability

peers could present reasonable concerns about unobserved heterogeneity. This calls for an anal-

ysis of proportional selection on observable characteristics, as discussed in Altonji, Elder and

Taber (2005) and Oster (2019). The two conditions for this analysis to make sense are i) that

our observable characteristics for these analyses are a random sample of all determinants of stu-

dent achievement, and ii) that the number of observed and unobserved determinants of student

achievement are large and neither element is dominating. Along the argument lines of Altonji,

Elder and Taber (2005), we assume that the TEPS fulfils both conditions.

We implement this analysis by calculating the δ statistic from Oster (2019); the share of pro-

portional selection needed to explain away the entire peer effect we estimate. Values of δ > 1

imply that the selection on unobservable characteristics would need to be at least as large as the

selection on observable characteristics to explain away the entire peer effect estimate, which,

given the data and data context, is an unreasonable assumption. A δ < 1 implies that the omit-

ted variable bias from unobservable variables positively correlated with the observable variables

included would bias the peer effects away from zero, not towards, and should therefore not be

concerning as confounders. In this type of analysis, thus, finding values of δ between zero

and one is worrisome, and could indicate a potential concern for unobserved selection affecting

results. The observables we use for these analyses are extensive: they include our balancing con-
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trols (household income, family engagement with homework, gifted art classroom assignment,

and parents’ pushiness to get child assigned to a particular classroom) and our standardized

measures of student, parent, school and teacher educational inputs in wave 1. Assuming that

selection on unobservable characteristics occurs in proportion to the selection on this set of

variables implies, by exclusion, that school fixed effects and students’ own test scores in wave

1 — a priori essential for our identification strategy and standard in the literature — cannot

inform the proportional selection analyses. We also use a hypothetical maximum R-Squared

value of 1.3 times the R-Squared of the unrestricted model, which is the standard choice for

these analyses.

Appendix Table B.8 shows Oster’s δ for all our main estimates estimating using the psacalc

Stata command. For nearly all our estimates, Oster’s δ is negative which implies that pro-

portionally selection on unobserved confounders are unlikely to explain our effects. The one

exception is the δ of 0.10 for the effect of higher-achieving peers on parental investments in

tutoring, which is anyway insignificantly different from zero so none of our conclusions change

following the results of this analysis. Overall, we conclude that proportional selection on unob-

servable variables cannot explain away any of our findings.

6.2 Robustness to Measurement Error and Classroom Sampling

We now turn our focus to the measurement error in our data We show that our main estimates i)

are robust to using different measures of student and peer academic ability, ii) are not attenuated

by measurement error in average peer test scores, and iii) are not biased by the fact that we do

not observe whole classrooms.

6.2.1 Main Results with Alternative Measures of Ability

Our main results use the TEPS scores in the comprehensive ability test. As discussed in Section

3.2, this test was designed by TEPS team and uses 75 multiple-choice question to measure of

students’ cognitive ability and analytical reasoning. However, after a series of factor analyses

and after estimating 3-parameter Item Response Theory (IRT) models, the TEPS team could

also identify two highly correlated but distinct subcomponents measuring analytical ability and

mathematical ability based on disjoint subsets of test questions. The IRT models were also

used to produce the standardized Bayesian posterior means of the three components identifiable

in the test—the general ability component and the analytical ability and mathematical ability

subcomponents.15

Appendix Table B.9 shows that our main results are robust to using the analytical and mathe-

matical subcomponents of the comprehensive ability test scores as measures of student and peer

15See http://www.teps.sinica.edu.tw/description/TestingReport2004-2-10.pdf (in Mandarin) for a description of these
analyses.
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ability (columns (1) and (2)). Our main results are also robust to using the Bayesian posterior

means of these components, arguably a more precise and efficient measure of ability (columns

(3) through (5)).

6.2.2 Correction for Classical Measurement Error in Peer Ability

Even in excellent measures of student and peer ability, such as the well-designed standardized

test scores in TEPS, there will still be some measurement error. Under random assignment and

with classical measurement error (i.e., independent of all covariates and of true ability), this

measurement error will attenuate our peer effect estimates (Sojourner, 2013; Feld and Zölitz,

2017; Angrist, 2014). We can address this attenuation bias in two similar ways. Noting that

the analytical and mathematical subcomponents of test scores are measured with disjoint sets

of questions, we can use average peer test scores using one subcomponent as an instrument

for average peer test scores using the other in an instrumental variable (IV) estimator. See e.g.,

(Salamanca et al., Forth.) for a similar approach to account for measurement error in personality

traits. This approach would eliminate attenuation bias from classical measurement error under

two assumption: i) that both subcomponents have a strong common element of overall ability,

and ii) that measurement error in test questions is uncorrelated across subcomponents. The first

assumption is well supported by our data and by the TEPS team factor and IRT analyses. The

second assumption is stronger; if it does not hold it would result in some attenuation bias left in

the IV estimate.

Appendix Table B.10 shows that, although less precisely estimated due to the usual efficiency

loss from instrumental variable models, the IV point estimates are near-identical to our main

results (columns (1) and (2)). We thus view this as evidence of little attenuation bias due to

classical measurement error in our estimates.

One potential problem with the estimators above is that the IV estimates need to be interpreted

as academic peer effects in analytical and mathematical ability, rather than in comprehensive

ability. We address this problem by constructing a “mixed IV” estimator. In this estimator, we

first construct an ability measure that, for each student, is randomly defined as either the analyt-

ical subcomponent score or the mathematical subcomponent score with equal probability. This

ability measure is therefore an equal-weighted average of the analytical and mathematical sub-

components and can be interpreted as measuring general ability. We call this our ‘mixed ability’

measure. We also construct an ability instrument that is defined by the same random process

to be the subcomponent that was not assigned as ability. For example, if for student ability is

measured as the analytical subcomponent score, then the ability instrument is defined as the

mathematical subcomponent score. We call this our ‘mixed ability instrument’. Under the same

assumptions above, an IV estimate that instruments our mixed ability with our mixed ability in-

strument also corrects for attenuation bias while identifying academic peer effects using general

ability, rather than analytical or mathematical ability. We show that this new estimator produces

very similar results to our main peer effect on test scores (Appendix Table B.10 , column (3)).
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It also produces slightly larger estimated magnitudes of the effect of higher-achieving peers on

study effort and students’ university aspiration and expectations, and similar estimates for the

effect on parental time investments (Appendix Table B.11). Back-of-the-envelope calculations

show that these slightly larger estimates do not change our conclusions on the mediated effects

of higher-achieving peers. We thus conclude that measurement error does not alter any of our

main findings.

6.2.3 Sojourner (2013) Correction for Incomplete Classroom Sampling

Many empirical peer effect studies, including ours, has incomplete classroom data which results

in incomplete sampling of students’ peer group. Sojourner (2013) shows that this issue can

result in bias in peer effect estimates that is similar to classical attenuation bias under random

assignment, and much more difficult to sign and quantify under non-random assignment. He

also proposes a correction for this bias that relies on i) weighting estimates by the share of peers

sampled and ii) controlling for these shares at the school level. Often these last controls are

multicollinear with the weighted peer measures, so he also suggests less restrictive estimators

that control for the share of peers sampled within predetermined school clusters. We implement

both methods in our data to evaluate the extent of this bias in our main results. The left-most

column on the table implements Sojourner’s preferred correction which can lead to substantial

loss of power because it heavily restricts the identifying variation used by the estimator. The

second through sixth columns implement specifications which trade off more power for less bias

reduction, from left to right.

Appendix Table B.12 shows substantially larger effects of higher-achieving peers on student

test scores, ranging from 8.9 to 13.3 percent of a standard deviation which nevertheless remain

within the range of estimates found in previous studies, especially considering that peers here

have had two years to work their effect on student achievement. These corrections also yield pro-

portionally larger effects on students’ university aspirations and expectations and parental time

investments, which is all consistent with Sojourner’s findings and with the data originating from

conditional random assignment to classrooms within schools. The analyses do not reveal other

effects of higher-ability peers. Moreover, since the attenuation in all our estimates is roughly

proportional, our conclusions about mediated peer effects remains unchanged. This suggests

that not observing complete classrooms in our data could lead to understating the importance of

academic peer effects, but does not affect our (in)ability to explain their mechanisms.16

16There are other potential issues with incomplete classroom sampling, especially if our peer effects varied with
classroom or school size, if the classroom sampling rate were correlated with our regressors, or if our Fishing
Algorithm were selecting schools with different average sampling rates. Fortunately, none of these occur in our data.
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6.3 Randomization Inference and Multiple Hypothesis Testing

Having established the robustness of our point estimates of peer effects, in this subsection we

show that our inference on these effects is robust to i) constructing standard errors based on

recent randomization inference techniques and ii) to accounting for multiple hypotheses testing

in our standard error calculations.

We first reassess inference on our main results using the randomization-t procedure from Young

(2019). Our analyses benefit from this procedure because of the potential influence of a few

high-leverage students, classrooms or schools, and we want to ensure that our inference is robust

to this occurrence. We also want to use inference that does not make strong assumption on the

structure of error terms given the complexity of the TEPS sampling design and peer treatment.

Other benefits of randomization inference, such as i) correcting for few treatment clusters or ii)

issues of joint testing are less important for this study, because i) we observe several classrooms

per school, and ii) each regression has one treatment effect of interest.

We construct randomization-t based empirical p-values via a very similar simulation procedure

to the one used for permutation tests. The key difference is that, in each simulation, we capture

the t-statistics of interest—the coefficient of the key variable of interest divided by its cluster-

robust standard error—and construct empirical p-values based the share of occurrences where

simulated t-statistics are more extreme than our actual t-statistic of interest. We use 10,000 simu-

lations of random assignment to classroom within schools to produce randomization-t empirical

p-values for our main results. Appendix Table B.13 shows that when using randomization-t

inference p-values for conducting inference, our main conclusions on the effects of higher-

achieving peers hold at the 5% significance level for student achievement and parental time

investments, and at the 10% significance level for student university aspirations and expecta-

tions.

In a second analysis, we adjust our inference for multiple hypotheses testing: the problem that

the chance of falsely rejecting a correct null hypothesis increases with the number of tests per-

formed. We adjust for this by implementing the Romano-Wolf multiple hypothesis correction

(Romano and Wolf, 2005a,b) using the rwolf Stata command (Clarke, Romano and Wolf,

2019). This procedure ensures that the familywise error rate—the probability of committing

at least one Type I error across a set of hypotheses tested—does not exceed its predetermined

significance. We consider all our main results to be part of the same family of tests. Appendix

Table B.13 shows that our main conclusions on the effect of higher-achieving peers on student

achievement and on parental time investment hold at the 10% significance level, but our ev-

idence on students’ university aspirations and expectations now appear not to be statistically

significant.

Overall, with these different inference methods we still find strong evidence of academic peer

effects in our data but somewhat weaker evidence of significant effects on educational inputs.

This reinforces our conclusions of no mediated effects for academic peer effects.
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6.4 Heterogeneous Peer and Mediated Effects

Finally, we explore the sensitivity of our mediation analyses. Our chief concern here is the

possibility that our lack of meaningful mediation can occur not because educational inputs can-

not explain academic peer effects, but rather as the result of heterogeneity peer effects across

subgroups. Heterogeneity can occur in two forms: firstly, academic peer effects could vary

widely across subgroups—a result found in several studies across ability (Carrell, Fullerton and

West, 2009), gender (Whitmore, 2005; Lavy and Schlosser, 2011), race (Hoxby, 2000; Hoxby

and Weingarth, 2005), but secondly and perhaps most importantly, the drivers of peer effects

for each subgroup could also widely differ, as suggested by (Brady, Insler and Rahman, 2017).

For example, higher-achieving peers could improve test scores of low-ability students because

they reduce the amount of classroom disruption (see e.g. Lavy, Paserman and Schlosser, 2012)

and improve test scores of high-ability students because they increase effort. Yet we might be

unable to detect enough mediation via truancy and effort on the average academic peer effect.

This form of heterogeneity would wrongly lead us to conclude that truancy and effort cannot

explain at least part of academic peer effects. One way to assess whether this particular type

of heterogeneity is a likely explanation for our findings is to estimate the heterogeneity of peer

effects and their mediation via educational inputs across various subgroups.

There are countless dimensions to explore heterogeneity in academic peer effects in our data.

Based on existing heterogeneous effects in the academic peer literature, and on a broader lit-

erature on the sociodemographic predictors of student test scores, we explore peer effect and

mediation heterogeneity across: student ability, gender, household income, parental education,

public vs private schooling, and teacher experience. Appendix Table B.14 shows that, by and

large, there is little subgroup heterogeneity in our estimated academic peer effects and their me-

diation. Academic peer effects are slightly larger at the top and middle of the student ability

distribution, with highly experienced teachers, and in private schools, yet are the same across

student gender, household income, and parental education. More importantly, our inputs can

still mediate either small or negative parts of these academic peer effect for any one of these

subgroups. Altogether, we show strong evidence of little heterogeneity in academic peer effects

and in mediated effects.

We also consider the possibility that our mediation is affected heterogeneity of the value-added

parameters across the peer ability distribution. This could occur if higher-achieving peers

change e.g., the productivity of some teaching practices (Aucejo et al., 2020). There is evi-

dence of similar heterogeneity in our data: having higher-achieving peers increases returns to

student effort and initiative in class, decreases returns to private tutoring and time spent with

parents, and increases the penalty for being in a hard-to-manage classroom (see Appendix Table

B.15). This heterogeneity is broadly consistent with higher-achieving peers being complements

to some student and teacher investments in class and substitutes to some parental investments

at home in the education production function. However, note that for the two inputs where we

find both significant academic peer effects and significant heterogeneity (school effort and time
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with parents), higher-achieving peers would increase the return to effort and decrease the return

to time with parents. Since academic peer effects are negative for effort and positive for time

with parents, this together adds up to even less mediation when we allow for heterogeneity in

our value-added estimates.

Based on these results we conclude that subgroup heterogeneity is not a likely explanation for

the fact that our many educational inputs do not mediate academic peer effects.

7 Conclusions

We estimate the effect of being randomly assigned to classrooms with higher-achieving peers

on students’ standardized test scores two years later, and on 19 other intermediate outcomes of

students, their parents, and their teachers. We conduct a formal mediation analysis of academic

peer effects to explore several potential mechanisms, one of the first ones of its kind in a field

with over twenty years of research and hundreds of articles. Our study thus gives the most

comprehensive view of how much academic peer effects are explained by changes in educational

investments in a setting with a credible identification strategy.

For producing these results, we use data in a setting with a well-documented country-wide man-

date of random assignment of students to classrooms within schools. The data, however, shows

that this random assignment was likely not upheld everywhere, which is not entirely surprising:

we can think of legal and illegal ways in which sorting can still occur—for example, via allowed

“talent” classrooms in schools, or due to principals sorting students into classrooms in defiance

of the mandate. Similar violations to national mandates are common in similar settings (e.g.

Gong, Lu and Song, 2019; Eble and Hu, 2019). We develop a data-driven procedure to remove

schools likely to be defying the mandate of random assignment from our estimation sample

and show that data in this trimmed sample is strongly consistent with random assignment. This

Fishing Algorithm can be used to improve quasi-experimental designs in settings where ran-

dom assignment to peers is suspected to be violated in some, but not all, assignment groups. It

can more generally be used in any setting where researchers suspect imperfect compliance of

(quasi-)experimental treatment assignment in some clusters.

One might wonder if our results can really tell us something about academic peer effects in other

settings. Yet data from the Trends in International Mathematics and Science Study (TIMSS) in

1999 shows that Taiwan’s educational setting is altogether not that different from many others

across the world (Appendix Table B.16). And while students in Taiwan do spend relatively

more days per year in school, and have lower rates of absenteeism, none of these differences

helps us explain why we still find positive academic peer effects of similar size to many other

studies, yet no evidence of mediation.17 Moreover, Taiwan is comparable to other countries—

17What some of these differences could explain, however, is why we find negative effects of higher-achieving peers
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especially in the Australasia and Pacific region—in most other key dimensions including class

size, student-teacher ratios, daily study hours, dropout rates, or class disruption.

Since our academic peer effects remain largely unexplained, it could be tempting to conclude

that academic peer effects are unexplainable by current methods. Instead, we see at least two

avenues for future research.

The first avenue is to keep on striving to find data on potential mechanisms. It is true that most

potential mechanisms for academic peer effects proposed in previous studies feature in one

way or another in the TEPS (see Appendix Table 1), many of them more carefully measured

than ever before. Two notable exceptions are: direct learning from peers and detailed teaching

practices. Measuring direct peer learning (e.g., discussing tasks and coordinate among group

mates) requires data on peer-to-peer interactions which is difficult to gather, yet could indeed be

the missing explanation for academic peer effects (e.g., Garlick, 2018; Zárate, 2020; Kimbrough,

McGee and Shigeoka, Forth.). Detailed teaching practices (e.g., how teachers pair students for

group work or the amount of material covered in each lesson ) are also hard to measure yet some

of them are strongly related to student achievement gains (e.g., Kane et al., 2011) and one can

easily think of ways in which teachers adapt their teaching style to classroom ability.

The second avenue is to further explore heterogeneity in the value-added of educational in-

puts. Imagine a world in which academic peer effects exist in every school, but they occur via

different channels. In one school higher-achieving peers increase effort while in another they

decrease class disruption, and in yet another they increase parental engagement. Such dramatic

differences in the mechanisms of peer effects become increasingly likely with school segrega-

tion and specialization. In such a world, we would find positive peer effects across schools and

no mediation on average, just as we do. Such cancellation of mechanisms is not unheard of;

it is documented in Bursztyn, Egorov and Jensen (e.g., 2019) where they show that making ef-

fort observable can either increase or decrease student effort depending on the social norm in the

school. One could explore this hypothesis in the academic peer effect context via school-specific

academic peer effects and value-added functions. Unfortunately the data requirements for such

exercise are enormous: we would need rich data on many schools with many classrooms, where

random assignment holds and with a longitudinal dimension to it. We simply do not know of a

dataset with these features, not even the TEPS.

Our results also get us closer to using peer effects to confidently inform and design classroom

assignment policies. A pervasive concern with systematic assignment policies is that their ben-

efits might come with unmeasured cost on, e.g. classroom disruption, increasing stress and

deteriorating mental health for both students and teachers, and higher effort to keep up with

one’s higher-achieving peers. Our study shows that many of these concerns are unfounded. If

on student effort. Taiwanese students might be exerting so much effort already that the demoralizing effect of these
peers takes hold easier.
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anything, higher-achieving peers seem to improve classroom atmosphere, an effect which has

been found in e.g. Feld and Zölitz (2017). In the absence of measurable costs, our results sug-

gest that higher-achieving peers could be an effective way to increase student achievement, even

if we do not quite know how they work yet.
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Appendix A Construction of Standardized Scales in TEPS

We summarize the wealth of data available in TEPS into standardized summary indices using

commonly used data reduction methods. We proceed as following:

1. Compute Spearman correlation of all potential variables in the factor to construct: elimi-

nate very low correlates; Run preliminary PCA on remaining variables

2. Count number of missing values by individual across variables

3. Standardize each variable, construct preliminary index as row-mean across standardized

variables

4. Cut preliminary index into deciles: construct bins of similar input

5. For each variable, construct median within index decile among people used for imputa-

tion. If missing item and less than 1/3 missing, replace missing value by median within

index decile.

6. Re-run PCA now using variables with imputed values, to check visually that factor with

and without imputed values have same distribution

In the long table below, we report for each index we use:

• the items used, and the corresponding respondent (Teacher, Student or Parents),

• the initial number of observations for each of these items separately,

• PCA factor loadings before and after imputation,

• the number of observations for the factor before and after imputation,

• the eigenvalue of the first and second factors before and after imputation,

Factor for which no imputation has been performed are indicated by blanks for factor loadings

after imputation, observations after imputation and eigenvalue of first factor after imputation.
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Table A.1: Construction of Standardized Scales of Educational Inputs in TEPS

Scale and Survey items used in scale Factor loadings
Obs. Resp. Original Imputed
(1) (2) (3) (4)

Effort wave 1

Chinese teacher’s assessment of student effort in class 18,508 T 0.75 0.76
English teacher’s assessment of student effort in class 17,961 T 0.73 0.75
Math teacher’s assessment of student effort in class 18,126 T 0.71 0.72
Dao Shi report student always completes homework on time 18,571 T 0.62 0.63
Chinese teacher’s report always completes homework on time 18,627 T 0.70 0.71
English teacher’s report always completes homework on time 18,233 T 0.67 0.68
Math teacher’s report always completes homework on time 18,394 T 0.65 0.66
Factor observations 16,004 19,231
First factor eigenvalue 3.35 3.46
Second factor eigenvalue 0.16 0.14

Effort wave 2

Chinese teacher’s assessment of student effort in class 17,120 T 0.78 0.79
English teacher’s assessment of student effort in class 16,509 T 0.76 0.77
Math teacher’s assessment of student effort in class 16,612 T 0.74 0.76
Dao Shi report student always completes homework on time 17,161 T 0.71 0.72
Chinese teacher’s report always completes homework on time 17,107 T 0.68 0.69
English teacher’s report always completes homework on time 16,657 T 0.63 0.65
Math teacher’s report always completes homework on time 16,698 T 0.62 0.64
Factor observations 14,251 17,950
First factor eigenvalue 3.48 3.62
Second factor eigenvalue 0.13 0.11

Mental health wave 1

How often feeling down or frustrated 19,781 S 0.74 0.74
How often feeling troubled, worried 19,877 S 0.74 0.73
How often want to scream or smash something 19,854 S 0.64 0.64
How often feeling body shaking, unable to focus 19,839 S 0.68 0.68
How often feeling lonely 19,793 S 0.76 0.76
How often hopeless 19,856 S 0.75 0.75
Factor observations 19,493 19,934
First factor eigenvalue 3.09 3.09
Second factor eigenvalue 0.33 0.32

Mental health wave 2

How often feeling down or frustrated 18,716 S 0.71 0.71
How often want to scream or smash something 18,712 S 0.67 0.67
How often feeling body shaking, unable to focus 18,695 S 0.62 0.62
How often feeling lonely 18,676 S 0.64 0.64
How often feeling that you have bad fortune 18,658 S 0.59 0.59
How often feeling easily irritated by others 18,682 S 0.62 0.62
How often guilty, regret over some things 18,654 S 0.58 0.58
Factor observations 18,355 18,782
First factor eigenvalue 2.82 2.83
Second factor eigenvalue 0.24 0.24
Note: This table presents detailed factor loadings and number of observations used in the construction of our
summative scales as imputation procedure. Col. (1) reports the initial number of complete observations available,
Col. (2) indicates whether teachers (T), parents (P) or students (S) respond to each item, Cols. (3) and (4) report
factor loadings on the first factor respectively before and after imputation. See Appendix Appendix A for details
about our imputation procedure.
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Table A.1: Construction of standardized scales of educational inputs in the TEPS data (continued)

Scale and Survey items used in scale Factor loadings

Obs. Resp. Original Imputed
(1) (2) (3) (4)

Truancy wave 1

How often cutting or skipping classes 19,846 S 0.70 0.70
How often physical fights or quarrels with teachers 19,790 S 0.61 0.6
How often watching porn 19,867 S 0.65 0.64
How often substance abuse (tobacco, alcohol, drugs) 19,865 S 0.74 0.73
How often running away from home 19,880 S 0.73 0.73
How often stealing or destroying others’ property 19,862 S 0.68 0.67
Factor observations 19,614 19,929
First factor eigenvalue 2.83 2.77
Second factor eigenvalue -0.002 -0.01

Truancy wave 2

How often cutting or skipping classes 18,718 S 0.51 0.52
How often physical fights or quarrels with teachers 18,737 S 0.59 0.59
How often watching porn 18,729 S 0.42 0.42
Factor observations 18,611 18,799
First factor eigenvalue 0.78 0.79
Second factor eigenvalue -0.07 -0.07

Self-efficacy wave 1

I am good at presentations or expressing my points of view 19,749 S 0.65 0.65
I am good at coordinating with other people in a group 19,800 S 0.68 0.68
I can plan things well no matter how trivial they are 19,810 S 0.74 0.73
I cooperate with everyone very well 19,798 S 0.62 0.62
I always come up with solutions to problems 19,758 S 0.57 0.57
I have always reviewed what I learn since elementary school 19,847 S 0.59 0.59
I always try to figure out answers whenever have questions 19,808 S 0.59 0.59
Factor observations 19,346 19,909
First factor eigenvalue 2.83 2.83
Second factor eigenvalue 0.17 0.16

Self-efficacy wave 2

I am good at presentations or expressing my points of view 18,686 S 0.54 0.53
I am good at coordinating with other people in a group 18,744 S 0.58 0.58
I can plan things well no matter how trivial they are 18,731 S 0.65 0.64
I cooperate with everyone very well 18,709 S 0.55 0.54
I always come up with solutions to problems 18,708 S 0.62 0.62
My friends think of me as a person who always has lots of ideas 18,606 S 0.54 0.54
Factor observations 18,384 18,795
First factor eigenvalue 2.02 2.01
Second factor eigenvalue 0.05 0.05
Note: This table presents detailed factor loadings and number of observations used in the construction of our
summative scales as imputation procedure. Col. (1) reports the initial number of complete observations available,
Col. (2) indicates whether teachers (T), parents (P) or students (S) respond to each item, Cols. (3) and (4) report
factor loadings on the first factor respectively before and after imputation. See Appendix Appendix A for details
about our imputation procedure.
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Table A.1: Construction of standardized scales of educational inputs in the TEPS data (continued)

Scale and Survey items used in scale Factor loadings

Obs. Resp. Original Imputed
(1) (2) (3) (4)

Initiative in class wave 1

Chinese teacher report student initiative to participate in class 18,635 T 0.52 0.53
English teacher report student initiative to participate in class 18,307 T 0.52 0.54
Math teacher report student initiative to participate in class 18,367 T 0.52 0.54
Factor observations 17112 19219
First factor eigenvalue 0.81 0.86
Second factor eigenvalue -0.16 -0.16

Initiative in class wave 2

Chinese teacher report student initiative to participate in class 17,161 T 0.58 0.61
English teacher report student initiative to participate in class 16,787 T 0.61 0.64
Math teacher report student initiative to participate in class 16,698 T 0.59 0.62
Factor observations 15,426 17,791
First factor eigenvalue 1.06 1.16
Second factor eigenvalue -0.16 -0.16

Money wave 1

Hours per week spent on tutoring in/outside school 19,851 P 0.60 0.60
Amount paid for this child’s tutoring classes 19,710 P 0.60 0.60
Factor observations 19,573 19,988
First factor eigenvalue 0.71 0.73
Second factor eigenvalue -0.25 -0.25

Money wave 2

Hours per week spent on tutoring outside school 18,747 P 0.78 0.78
Monthly expenditures this semester for this child’s tutoring 18,755 P 0.78 0.78
Factor observations 18,586 18,916
First factor eigenvalue 1.21 1.22
Second factor eigenvalue -0.21 -0.20

Time wave 1

How often parents go to bookstores or expos with child 19,750 P 0.53 0.53
How often parents go to concerts or performances with child 19,750 P 0.53 0.53
Factor observations 19,743 19,757
First factor eigenvalue 0.55 0.55
Second factor eigenvalue -0.24 -0.24

Time wave 2

Weekly number of dinners with the child 18,783 P 0.44 0.45
Spouse: Weekly number of dinners with the child 18,493 P 0.44 0.45
Factor observations 18,457 18,819
First factor eigenvalue 0.39 0.41
Second factor eigenvalue -0.21 -0.21
Note: This table presents detailed factor loadings and number of observations used in the construction of our
summative scales as imputation procedure. Col. (1) reports the initial number of complete observations available,
Col. (2) indicates whether teachers (T), parents (P) or students (S) respond to each item, Cols. (3) and (4) report
factor loadings on the first factor respectively before and after imputation. See Appendix Appendix A for details
about our imputation procedure.
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Table A.1: Construction of standardized scales of educational inputs in the TEPS data (continued)

Scale and Survey items used in scale Factor loadings

Obs. Resp. Original Imputed
(1) (2) (3) (4)

Parent strictness wave 1

My father is strict 19,851 S 0.51 0.51
My mother is strict 19,842 S 0.51 0.51
Factor observations 19,739 19,928
First factor eigenvalue 0.52 0.53
Second factor eigenvalue -0.23 -0.24

Parent strictness wave 2

How many of your parents set strict rules for your daily routine? 18,828 S 0.61 0.61
How many of your parents set strict rules about spending money? 18,819 S 0.54 0.54
How many of your parents set strict rules about demeanor? 18,806 S 0.63 0.63
How many of your parents set strict rules about health habits? 18,731 S 0.60 0.60
How many of your parents set strict rules about making friends? 18,821 S 0.57 0.57
How many of your parents uses guilt and emotional blackmail? 18,821 S 0.51 0.51
How many of your parents does not allow you to argue with them? 18,816 S 0.50 0.50
How many of your parents discipline you very strictly? 18,809 S 0.53 0.53
Factor observations 18,648 18,831
First factor eigenvalue 2.54 2.55
Second factor eigenvalue 0.15 0.15

Parent emotional support wave 1

My father discusses student’s future study and career 19,854 S 0.46 0.46
My father discusses my feelings and thoughts 19,764 S 0.59 0.58
My mother discusses student’s future study and career 19,822 S 0.49 0.50
My mother discusses my feelings and thoughts 19,816 S 0.64 0.64
My father accepts me as I am 18,993 S 0.49 0.51
My mother accepts me as I am 19,370 S 0.49 0.49
My family provides strong emotional support 19,652 S 0.53 0.54
In my family, we discuss together important decisions 19,528 S 0.56 0.57
Factor observations 17,729 19,973
First factor eigenvalue 2.28 2.33
Second factor eigenvalue 0.56 0.52

Parent emotional support wave 2

My parents pay attention to my ideas and thoughts 18,816 S 0.66 0.66
I seek my parents’ help when I encounter difficulties 18,811 S 0.67 0.67
My parents accept me as I am 18,799 S 0.62 0.62
Factor observations 18,769 18,827
First factor eigenvalue 1.27 1.27
Second factor eigenvalue -0.15 -0.15
Note: This table presents detailed factor loadings and number of observations used in the construction of our
summative scales as imputation procedure. Col. (1) reports the initial number of complete observations available,
Col. (2) indicates whether teachers (T), parents (P) or students (S) respond to each item, Cols. (3) and (4) report
factor loadings on the first factor respectively before and after imputation. See Appendix Appendix A for details
about our imputation procedure.
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Table A.1: Construction of standardized scales of educational inputs in the TEPS data (continued)

Scale and Survey items used in scale Factor loadings
Obs. Resp. Original Imputed
(1) (2) (3) (4)

School environment wave 1

My school is an interesting place 19,513 S 0.47 0.48
My school is fair in terms of rewards and grading 19,557 S 0.54 0.55
The campus of my school is safe 19,567 S 0.63 0.63
My school cares about their students 19,481 S 0.71 0.71
My school has a great atmosphere for learning 19,456 S 0.64 0.65
Factor observations 18,701 19,903
First factor eigenvalue 1.83 1.86
Second factor eigenvalue -0.006 -0.013

School environment wave 2

My school’s requirements on students are quite reasonable 18,614 S 0.39 0.39
My school is fair in terms of rewards and grading 18,741 S 0.46 0.46
The campus of my school is safe 18,709 S 0.56 0.56
My school cares about their students 18,340 S 0.62 0.62
My school has a great atmosphere for learning 18,690 S 0.52 0.52
Factor observations 18,053 18,814
First factor eigenvalue 1.33 1.34
Second factor eigenvalue 0.015 0.013

Teacher engagement in class wave 1

How many of my teachers know the name of every student 19,865 S 0.38 0.39
How many teachers encourage student when they study hard 19,780 S 0.48 0.48
How many teachers use different teaching methods/materials 19,846 S 0.55 0.55
How many teachers give homework to increase students’ 19,836 S 0.48 0.49

chance to practice
How many teachers ask reasons when students fail homework 19,812 S 0.46 0.48
How many teachers give a review after every exam 19,604 S 0.48 0.49
Factor observations 19,210 19,953
First factor eigenvalue 1.35 1.4
Second factor eigenvalue 0.11 0.11

Teacher engagement in class wave 2

How many teachers talk about people skills in class 18,795 S 0.70 0.70
How many teachers often discuss life goals, do career advice 18,784 S 0.73 0.73
How many teachers often recommend books, encourage reading 18,783 S 0.62 0.62
How many teachers often use real life and practical examples 18,772 S 0.62 0.62
How many teachers take free time to help students 18,795 S 0.53 0.53

with personal issues
How many teachers often use guilt or emotional blackmail 18,784 S 0.45 0.45
How many teachers praise me when I study hard 18,744 S 0.53 0.53
Factor observations 18,590 18,820
First factor eigenvalue 2.56 2.56
Second factor eigenvalue 0.17 0.17
Note: This table presents detailed factor loadings and number of observations used in the construction of our
summative scales as imputation procedure. Col. (1) reports the initial number of complete observations available,
Col. (2) indicates whether teachers (T), parents (P) or students (S) respond to each item, Cols. (3) and (4) report
factor loadings on the first factor respectively before and after imputation. See Appendix Appendix A for details
about our imputation procedure.
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Appendix B Additional Tables

Table B.1: The Effect of Peer Test Scores on Students’ Own Test Scores in Wave 2

Outcome: Student test scores in wave 2 [std]
(1) (2) (3) (4)

Peer test scores [std] 0.041∗∗∗ 0.047∗∗∗ 0.052∗∗∗ 0.052∗∗∗
(0.016) (0.016) (0.016) (0.016)

Own test scores [std] 0.737∗∗∗ 0.733∗∗∗ 0.589∗∗∗ 0.585∗∗∗
(0.007) (0.007) (0.009) (0.009)

R2 0.65 0.64 0.68 0.68
School FE Y Y Y Y
Balancing controls Y Y
W1 inputs Y Y
Schools 232 232 232 232
Classes 872 872 850 850
Students 13,086 12,173 11,702 11,029
Note: This table reports estimates of regressing standardized student test scores in wave 2 on standard-
ized average peer test scores in wave 1 in our sample containing 232 schools, 850 classrooms, and up
to 11,029 students. Balancing controls include household income, family engagement with homework,
gifted art classroom assignment, and parents’ efforts to get child assigned to a particular classroom. W1
inputs include standardized scales of student inputs (school effort, initiative in class, truancy, academic
self-efficacy, and mental health), parent inputs (investment in private tutoring, time investments, parental
strictness and parental support), school and teacher inputs (school environment and teacher engage-
ment). Standard errors clustered at the classroom level in parentheses. Estimates in this figure are also
shown in Figure 3.
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Table B.2: The Effect of Peer Test Scores on Educational Inputs in Wave 2

Treatment variable: Peer test scores [std]

Coef. Std. err. R2 Classrooms Students
(1) (2) (3) (4) (5)

Outcomes: educational inputs
School effort [std] −0.052∗∗ (0.024) 0.56 849 10659
Initiative in class [std] −0.015 (0.024) 0.46 849 10558
Truancy [std] 0.009 (0.021) 0.18 850 11113
Cheated on exams [.48] 0.015 (0.013) 0.12 850 11078
Academic self-efficacy [std] −0.017 (0.021) 0.15 850 11113
Mental health [std] −0.030 (0.019) 0.16 850 11103
University aspirations [.57] 0.016∗ (0.009) 0.28 850 11115
University expectations [.44] 0.020∗∗ (0.009) 0.29 850 11105
Private tutoring [std] −0.002 (0.019) 0.37 850 11164
Time with parents [std] 0.081∗∗∗ (0.023) 0.08 850 11111
Conflict with parents [.31] −0.017 (0.010) 0.06 850 11086
Parental strictness [std] 0.036∗ (0.020) 0.16 850 11133
Parental support [std] 0.029 (0.020) 0.2 850 11133
Harsh parenting [.33] 0.015 (0.009) 0.08 850 11133
Parent uni. aspirations [.51] 0.001 (0.010) 0.33 850 11022
School environment [std] −0.029 (0.024) 0.17 850 11126
Classroom hard to manage [.33] −0.040 (0.033) 0.35 836 10534
Teacher engagement [std] 0.022 (0.023) 0.11 850 11129
Teacher tired of teaching [.49] −0.042 (0.031) 0.31 836 10527
Note: This table reports estimates of regressing educational input measures in wave 2 on standardized average
peer test scores in wave 1 in our sample containing 232 schools, 850 classrooms, and up to 11,164 students. Rows
present results of models with different educational inputs as outcomes. Unconditional means of each outcome
are shown in square brackets, and [std] marks outcomes that have been standardized to have a mean of zero and
a standard deviation of one. All models control for school fixed effects, student test scores in wave 1, balancing
controls, and educational inputs in wave 1. Standard errors clustered at the classroom level in parentheses.
Estimates in this table are also shown in Figure 4.
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Table B.3: Returns to Educational Inputs from Cumulative Value-Added Models

Outcome: Student test scores in wave 2 [std]

Total effect Partial effect

Coef. Std. err. Coef. Std. err.
(1) (2) (3) (4)

Treatments:
School effort [std] 0.166∗∗∗ (0.009) 0.098∗∗∗ (0.010)
Initiative in class [std] 0.161∗∗∗ (0.008) 0.109∗∗∗ (0.009)
Truancy [std] −0.039∗∗∗ (0.007) −0.008 (0.007)
Cheated on exams [.48] −0.053∗∗∗ (0.011) −0.015 (0.012)
Academic self-efficacy [std] −0.009 (0.006) −0.024∗∗∗ (0.006)
Mental health [std] 0.009 (0.007) −0.002 (0.007)
University aspirations [.57] 0.151∗∗∗ (0.013) 0.046∗∗∗ (0.014)
University expectations [.44] 0.209∗∗∗ (0.014) 0.131∗∗∗ (0.015)
Private tutoring [std] 0.040∗∗∗ (0.007) 0.025∗∗∗ (0.007)
Time with parents [std] −0.003 (0.006) −0.004 (0.006)
Conflict with parents [.31] 0.070∗∗∗ (0.012) 0.037∗∗∗ (0.013)
Parental strictness [std] −0.028∗∗∗ (0.006) −0.039∗∗∗ (0.006)
Parental support [std] 0.029∗∗∗ (0.006) 0.019∗∗∗ (0.007)
Harsh parenting [.33] −0.056∗∗∗ (0.011) −0.020∗ (0.012)
Parent uni. aspirations [.51] 0.141∗∗∗ (0.013) 0.076∗∗∗ (0.013)
School environment [std] 0.026∗∗∗ (0.006) 0.006 (0.006)
Class hard to manage [.33] −0.016 (0.017) −0.01 (0.016)
Teacher engagement [std] 0.016∗∗ (0.006) 0.006 (0.006)
Teacher tired of teaching [.49] 0.024 (0.016) 0.023 (0.016)
R2 0.71
Schools 232
Classes 850
Students 10,490
Note: This table reports coefficient estimates of regressing student test scores in wave 2 on educational
inputs in wave 2 in our estimation sample containing 232 schools, up to 850 classrooms, and up to
11,029 students. Rows present coefficients of different regressors. Unconditional means of each input
are shown in square brackets and [std] marks inputs that have been standardized to have a mean of
zero and a standard deviation of one. Total effects are estimated one input at the time, whereas partial
effects are estimates of all inputs jointly. All models control for school fixed effects, student test scores,
average peer test scores, and educational inputs in wave 1. Standard errors clustered at the classroom
level in parentheses. These results are also available in Figure 5.
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Table B.4: Academic Peer Effect Mediated by Educational Inputs

Student test scores in wave 2 [std]

Coef. Est. Std. err.
(1) (2)

Total mediated effect −0.008 (0.005)

Mediated effect by:
School effort −0.006∗∗∗ (0.002)
Initiative in class −0.001 (0.003)
Truancy −0.000 (0.000)
Cheated on exams −0.000 (0.000)
Academic self-efficacy 0.001 (0.001)
Mental health 0.000 (0.000)
University aspirations 0.000 (0.000)
University expectations 0.001 (0.001)
Private tutoring 0.000 (0.000)
Time with parents −0.000 (0.000)
Conflict with parents −0.000 (0.000)
Parental strictness −0.001 (0.001)
Parental support 0.000 (0.000)
Harsh parenting −0.000 (0.000)
Parent uni. Aspirations −0.000 (0.001)
School environment −0.000 (0.000)
Classroom hard to manage 0.000 (0.001)
Teacher engagement 0.000 (0.000)
Teacher tired of teaching −0.001 (0.001)
Note: This table reports the mediated effects based on Gelbach’s (2016) decom-
position of our academic peer effect estimate using only within-school variation
in our estimation sample containing 232 schools, up to 850 classrooms, and up
to 11,029 students. These estimates are produced using a modified version of the
b1x2 Stata package. Rows present the mediated effect of different educational
inputs in wave 2. All models control for school fixed effects, student test scores,
average peer test scores, and educational inputs in wave 1. Standard errors clus-
tered at the classroom level in parentheses. These results are also available in
Figure 6.

61



Table B.5: Permutation-Based Classroom-Level Sorting Tests in Estimation Sample

Share of classes
with empirical
p-val. under Avg.

Classrooms 0.10 0.05 0.01 p-value
(1) (2) (3) (4) (5)

Pre-assignment characteristics:
Student test scores 853 0.10 0.06 0.02 0.486
Female student 853 0.06 0.04 0.02 0.562
Student born before 1989 853 0.10 0.05 0.01 0.490
Monthly household income > NT$100,000 853 0.09 0.04 0.01 0.491
College-educated parent(s) 853 0.09 0.06 0.02 0.485
Parent(s) work in government 853 0.08 0.04 0.01 0.487
Ethnic minority parent(s) 853 0.08 0.04 0.01 0.494
Since primary school:

Student always prioritized studies 853 0.12 0.06 0.01 0.491
Student always reviews lessons 853 0.12 0.06 0.01 0.478
Student likes new things 853 0.13 0.07 0.02 0.465

During primary school:
Student was truant 853 0.08 0.04 0.01 0.498
Student had mental health issues 853 0.10 0.06 0.02 0.495
Student quarreled with parents 853 0.10 0.05 0.01 0.503

Before junior high school:
Student had private tutoring 853 0.11 0.06 0.01 0.479
Family help with homework 853 0.09 0.05 0.01 0.496

Student enrolled in gifted academic class 853 0.09 0.05 0.02 0.466
Student enrolled in arts gifted class 853 0.12 0.08 0.03 0.447
Parents made efforts to place student 853 0.13 0.07 0.02 0.465

in better class
Note: This table shows the results of permutation-based class-level sorting tests, in our estimation sample containing
227 schools, 853 classrooms, and 12,816 students. For these tests, we simulate 10,000 classrooms under the null
of random assignment of students to classrooms within schools, calculate the mean of pre-treatment characteris-
tics in synthetic classroom, and construct class-level empirical p-values as the share of times synthetic classroom
means were more extreme than actual classroom means relative to the schools mean. Each row presents class-level
empirical p-values for a different pre-assignment characteristic. The last column shows the average p-value for all
classrooms.
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Table B.6: Non-Parametric Sorting Test in Estimation Sample

Share of class-dummy
joint significance
test p-val. under:

School-level
regressions 0.10 0.05 0.01

(1) (2) (3) (4)

Pre-assignment characteristics:
Student test scores 227 0.06 0.04 0.03
Female student 216 0.05 0.02 0.02
Student born before 1989 227 0.12 0.03 0.01
Monthly household income > NT$100,000 208 0.09 0.04 0.00
College-educated parent(s) 204 0.13 0.07 0.02
Parent(s) work in government 205 0.06 0.02 0.01
Ethnic minority parent(s) 179 0.06 0.02 0.01
Since primary school:

Student always prioritized studies 227 0.12 0.06 0.01
Student always reviews lessons 227 0.10 0.06 0.02
Student likes new things 227 0.14 0.10 0.02

During primary school:
Student was truant 227 0.10 0.03 0.01
Student had mental health issues 227 0.12 0.07 0.01
Student quarreled with parents 227 0.10 0.04 0.00

Before junior high school:
Had private tutoring 227 0.13 0.08 0.02
Family help with homework 226 0.08 0.06 0.02

Student enrolled in gifted academic class 206 0.11 0.05 0.02
Student enrolled in arts gifted class 186 0.15 0.09 0.07
Parents made efforts to place student 225 0.14 0.10 0.04

in better class
Note: This table shows the results of non-parametric school-level sorting tests in our estimation sample containing
227 schools, 853 classrooms, and 12,816 students. School-by-school, we regress each pre-treatment characteristics
on a set of class dummies, F-test them for joint significance, and calculate the share of times the F-tests p-values fall
under typical significance thresholds. Each row presents class-level empirical p-values for a different pre-assignment
characteristic. We use cluster-robust covariance matrices at the classroom level for each test.
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Table B.7: Sensitivity of Estimates to Latent Class Threshold in Posterior Probability in the Fishing
Algorithm

Effect of peer test scores [std] with different posterior probability
thresholds for being classified as a defier school in our fishing algorithm

(1) (2) (3) (4) (5) (6)

Outcome:
Test scores [std] 0.052∗∗∗ 0.047∗∗∗ 0.056∗∗∗ 0.066∗∗∗ 0.080∗∗∗ 0.098∗∗∗

(0.016) (0.016) (0.015) (0.014) (0.012) (0.011)
School effort [std] −0.052∗∗ −0.050∗∗ −0.039∗ −0.025 −0.026∗ −0.018

(0.024) (0.022) (0.021) (0.018) (0.015) (0.014)
Initiative in class [std] −0.015 −0.001 −0.016 −0.008 −0.015 −0.008

(0.024) (0.023) (0.022) (0.018) (0.017) (0.015)
Truancy [std] 0.009 0.007 −0.007 −0.015 −0.011 −0.017

(0.021) (0.021) (0.020) (0.016) (0.014) (0.013)
Cheated on exams [.48] 0.015 0.027∗∗ 0.012 0.013 0.015∗ 0.007

(0.013) (0.013) (0.013) (0.010) (0.009) (0.008)
Academic self-efficacy [std] −0.017 −0.004 −0.005 0.005 0.002 0.008

(0.021) (0.019) (0.018) (0.016) (0.014) (0.013)
Mental health [std] −0.030 −0.020 −0.016 −0.013 −0.014 −0.009

(0.019) (0.018) (0.017) (0.015) (0.013) (0.012)
University aspirations [.57] 0.016∗ 0.013 0.012 0.008 0.011∗ 0.014∗∗∗

(0.009) (0.008) (0.008) (0.007) (0.006) (0.005)
University expectations [.44] 0.020∗∗ 0.015∗ 0.017∗∗ 0.015∗ 0.012∗ 0.016∗∗∗

(0.009) (0.009) (0.008) (0.008) (0.007) (0.006)
Private tutoring [std] −0.002 0.024 0.020 0.015 0.012 0.001

(0.019) (0.018) (0.017) (0.014) (0.012) (0.011)
Time with parents [std] 0.081∗∗∗ 0.063∗∗∗ 0.061∗∗∗ 0.048∗∗∗ 0.043∗∗∗ 0.046∗∗∗

(0.023) (0.022) (0.022) (0.017) (0.017) (0.014)
Conflict with parents [.31] −0.017 −0.017∗ −0.019∗∗ −0.014∗∗ −0.008 −0.003

(0.010) (0.009) (0.008) (0.007) (0.006) (0.006)
Parental strictness [std] 0.036∗ 0.029 0.024 0.011 0.011 −0.000

(0.020) (0.018) (0.017) (0.015) (0.014) (0.012)
Parental support [std] 0.029 0.031∗ 0.031∗ 0.031∗∗ 0.034∗∗∗ 0.038∗∗∗

(0.020) (0.018) (0.017) (0.014) (0.012) (0.011)
Harsh parenting [.33] 0.015 0.010 0.010 0.004 0.004 −0.004

(0.009) (0.009) (0.009) (0.007) (0.006) (0.006)
Parent uni. aspirations [.51] 0.001 0.006 0.005 0.007 0.009 0.018∗∗∗

(0.010) (0.009) (0.009) (0.007) (0.006) (0.006)
School environment [std] −0.029 −0.029 −0.022 −0.006 0.005 0.018

(0.024) (0.023) (0.022) (0.019) (0.016) (0.014)
Classroom hard to manage [.33] −0.040 −0.037 −0.052∗ −0.051∗∗ −0.052∗∗∗ −0.058∗∗∗

(0.033) (0.030) (0.028) (0.024) (0.020) (0.017)
Teacher engagement [std] 0.022 0.052∗∗ 0.041∗ 0.021 0.020 0.022

(0.023) (0.022) (0.021) (0.019) (0.016) (0.014)
Teacher tired of teaching [.49] −0.042 −0.016 −0.027 −0.026 −0.012 0.009

(0.031) (0.029) (0.028) (0.024) (0.022) (0.020)

Excluded school if prob. of defier < 0.5 0.6 0.7 0.8 0.9 1.0
Jochmans (2020) sorting t-statistic -0.5 0.9 1.9 4.2 5.3 6.6
Schools 232 247 257 283 306 328
Classes 850 911 951 1,046 1,129 1,206
Students 11,029 11,800 12,302 13,526 14,665 15,687
This table reports coefficient estimates of regressing student outcomes in wave 2 on standardized average peer
ability in wave 1 in samples defined by taking different thresholds in the school-level posterior probability
of being a defier school, as defined by our fishing algorithm. All models include school fixed effects, and
students’ own ability and educational inputs in wave 1. At the bottom we report Jochmans (2020)’s sorting
t-statistic, noting that its reference distribution is the standard normal. T-statistics larger than critical values
for a two-sided test are shown in italics for 95% confidence and in bold for 99% confidence. Standard errors
are clustered at the classroom level. *, ** and *** denote significance levels at the 10%, 5% and 1%.
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Table B.8: Oster (2019) Proportional Selection on Unobservable
Characteristics in Initial Sample

Degree of selection required
to explain effect of peer
test scores on outcomes

(1) (2)

Outcomes:
Test scores 0 −0.20
School effort 0 −0.10
Initiative in class 0 −3.00
Truancy −0.1 2.40
Cheated on exams 0 −0.50
Academic self-efficacy 0 −5.70
Mental health 0 −0.70
University aspirations 0 −1.00
University expectations 0 −1.10
Private tutoring −0.1 0.10
Time with parents 0.1 −0.40
Conflict with parents −0.1 −3.40
Parental strictness −0.1 −1.60
Parental support −0.1 −0.50
Harsh parenting 0 −4.80
Parent uni. Aspirations −0.1 0.00
School environment 0 −0.70
Classroom hard to manage 0.1 −0.10
Teacher engagement 0 −0.90
Teacher tired of teaching 0 0.00

Selection proportional to:
Balancing controls Y Y
W1 inputs Y
This table reports Oster’s (2019) δ , the share of proportional selection
needed to explain away each estimate in our initial sample 332 schools,
1,241 classrooms and 14,383 students. Values of δ between zero and one
imply that, under reasonable assumption, the effect can be explained by
correlated unobservable characteristics. Each cell is an estimate from
a separate analysis. All estimates are calculated using Oster (2019)’s
psacalc Stata package, and assume a theoretical maximum R-square of
one. All models control for school fixed effects and student test scores in
wave 1. Pre-assignment characteristics are listed in Section 4.2. Educa-
tional inputs in wave 1 are listed in Section 5.1.
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Table B.9: The Effect of Peer Ability on Students’ Own Ability, Using Alternative Measures of Ability

Outcome: Student ability in wave 2 [std]

Measure of Ability used:

IRT Bayesian posterior mean of:

Analytical Math General Analytical Math
(1) (2) (3) (4) (5)

Peer ability [std] 0.042∗∗ 0.046∗∗∗ 0.048∗∗∗ 0.043∗∗ 0.047∗∗∗
(0.018) (0.016) (0.017) (0.019) (0.017)

Own ability [std] 0.389∗∗∗ 0.542∗∗∗ 0.606∗∗∗ 0.396∗∗∗ 0.558∗∗∗
(0.010) (0.009) (0.009) (0.010) (0.009)

R2 0.46 0.61 0.70 0.49 0.64
Note: This table reports coefficient estimates of regressing student’s own ability in wave 2 on standardized average
peer ability and own ability in wave 1 in our estimation sample containing 232 schools, 850 classrooms, and 11,029
students. The columns vary the measure of ability used for the analysis. The identification of analytical and math-
ematical subcomponents of ability and the Bayesian posterior mean calculation based on Item Response Theory
(IRT) models, the TEPS team could also identify two highly correlated but distinct subcomponents measuring ana-
lytical ability and mathematical ability based on disjoint subsets of test questions. The IRT models were also used
to produce the standardized Bayesian posterior means of the three components identifiable in the test—the general
ability component and the analytical ability and mathematical ability subcomponents. All models include school
fixed effects and educational inputs in wave 1. Standard errors are clustered at the classroom level. *, ** and ***
denote significance levels at the 10%, 5% and 1%.

Table B.10: The Effect of Better Peer Ability on Students’ Own Ability, Using Instrumen-
tal Variable Estimators to Account for Measurement Error in Ability

Outcome: Student ability in wave 2 [std]

Measure of Ability used:

Analytical Mathematical Mixed
(1) (2) (3)

Peer ability [std] 0.054∗ 0.042∗ 0.068∗
(0.029) (0.025) (0.029)

Instrument Mathematical Analytical Alt. mixed
t-statistic of first-stage coefficient 30.53 28.25 27.01
Note: This table reports coefficient estimates of instrumental variable regressions of student’s test
scores in wave 2 on standardized average peer ability in wave 1 in our estimation sample containing
232 schools, 850 classrooms, and 11,744 students. The measures of ability and the instrument vary
across columns, as described in Section 6.2. All models include school fixed effects, and students’
own test scores and educational inputs in wave 1. Standard errors are clustered at the classroom
level. *, ** and *** denote significance levels at the 10%, 5% and 1%.
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Table B.11: The Effect of Peer Ability on Educational Inputs, Using a Mixed Ability
IV Approach

Mixed IV effect of peer ability [std]

Coef. Est. Std. err.
(1) (2)

Outcome: Educational inputs
School effort [std] −0.072∗∗ (0.034)
Initiative in class [std] 0.002 (0.038)
Truancy [std] 0.019 (0.034)
Cheated on exams [.48] 0.013 (0.022)
Academic self-efficacy [std] −0.014 (0.034)
Mental health [std] −0.052 (0.034)
University aspirations [.57] 0.022 (0.014)
University expectations [.44] 0.021 (0.016)
Private tutoring [std] −0.006 (0.031)
Time with parents [std] 0.113∗∗∗ (0.038)
Conflict with parents [.31] −0.016 (0.017)
Parental strictness [std] 0.057∗ (0.031)
Parental support [std] 0.037 (0.031)
Harsh parenting [.33] 0.025∗ (0.014)
Parent uni. aspirations [.51] 0.011 (0.017)
School environment [std] −0.008 (0.037)
Classroom hard to manage −0.026 (0.050)
Teacher engagement [std] 0.022 (0.035)
Teacher tired of teaching −0.066 (0.048)
This table reports coefficient estimates of instrumental variable regressions of student’s ed-
ucational inputs in wave 2 on standardized average peer ability in wave 1 in our estimation
sample containing 232 schools, 850 classrooms, and 11,744 students. Peer ability and its in-
strument are constructed using the ”mixed IV” approach described in Section 6.2. All models
include school fixed effects, and students’ own ability and educational inputs in wave 1. Stan-
dard errors are clustered at the classroom level. *, ** and *** denote significance levels at
the 10%, 5% and 1%.
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Table B.12: Effects of Peer Ability Using Sojourner (2013) Correction for Incomplete Classroom Sam-
pling

Effect of peer test scores [std] with Sojourner (2013)
correction for peer test scores missing not at random

(1) (2) (3) (4) (5) (6)

Outcome:
Test scores [std] 0.133∗∗∗ 0.090∗∗ 0.089∗∗ 0.092∗∗ 0.095∗∗∗ 0.098∗∗∗

(0.039) (0.037) (0.037) (0.036) (0.035) (0.035)
School effort [std] −0.020 −0.028 −0.030 −0.038 −0.046 −0.042

(0.055) (0.051) (0.051) (0.051) (0.050) (0.049)
Initiative in class [std] −0.064 −0.057 −0.057 −0.067 −0.074 −0.069

(0.062) (0.055) (0.055) (0.054) (0.053) (0.053)
Truancy [std] −0.028 0.001 0.004 0.006 0.005 0.004

(0.053) (0.051) (0.050) (0.052) (0.051) (0.050)
Cheated on exams [.48] 0.050 0.026 0.032 0.043 0.040 0.042

(0.034) (0.029) (0.028) (0.029) (0.029) (0.028)
Academic self-efficacy [std] −0.026 −0.019 −0.014 −0.006 0.000 0.006

(0.054) (0.047) (0.046) (0.046) (0.045) (0.045)
Mental health [std] −0.036 −0.037 −0.035 −0.033 −0.025 −0.018

(0.050) (0.044) (0.045) (0.045) (0.044) (0.044)
University aspirations [.57] 0.050∗∗ 0.038∗ 0.039∗ 0.037∗ 0.035∗ 0.035∗

(0.024) (0.021) (0.021) (0.021) (0.020) (0.020)
University expectations [.44] 0.050∗∗ 0.033 0.032 0.028 0.033∗ 0.036∗

(0.023) (0.021) (0.020) (0.020) (0.020) (0.020)
Private tutoring [std] −0.001 0.006 −0.006 0.008 0.028 0.023

(0.048) (0.042) (0.042) (0.042) (0.041) (0.041)
Time with parents [std] 0.098∗ 0.153∗∗∗ 0.151∗∗∗ 0.132∗∗∗ 0.166∗∗∗ 0.168∗∗∗

(0.056) (0.047) (0.047) (0.046) (0.047) (0.047)
Conflict with parents [.31] 0.004 −0.011 −0.010 −0.012 −0.017 −0.015

(0.025) (0.022) (0.022) (0.021) (0.021) (0.020)
Parental strictness [std] 0.030 0.046 0.060 0.053 0.057 0.058

(0.052) (0.045) (0.045) (0.044) (0.043) (0.043)
Parental support [std] 0.035 0.032 0.045 0.042 0.049 0.054

(0.049) (0.044) (0.044) (0.044) (0.043) (0.043)
Harsh parenting [.33] 0.016 0.010 0.015 0.021 0.016 0.011

(0.023) (0.021) (0.021) (0.020) (0.020) (0.020)
Parent uni. aspirations [.51] 0.022 0.003 0.003 −0.000 0.002 0.004

(0.027) (0.022) (0.022) (0.022) (0.022) (0.021)
School environment [std] 0.004 −0.049 −0.045 −0.044 −0.059 −0.050

(0.066) (0.057) (0.056) (0.056) (0.054) (0.054)
Classroom hard to manage [.33] −0.153∗ −0.113 −0.117 −0.132∗ −0.124∗ −0.124∗

(0.079) (0.073) (0.072) (0.076) (0.073) (0.073)
Teacher engagement [std] 0.080 0.026 0.025 0.008 0.021 0.024

(0.058) (0.052) (0.053) (0.052) (0.051) (0.051)
Teacher tired of teaching [.49] −0.166∗∗ −0.098 −0.091 −0.127∗ −0.130∗ −0.114

(0.082) (0.074) (0.074) (0.076) (0.073) (0.073)

Share peers observed:
× School FE Y
× School K-cile FE 25 20 15 10 5

This table reports coefficient estimates of regressing student outcomes in wave 2 on standardized average peer abil-
ity in wave 1 in our estimation sample containing 232 schools, 850 classrooms, and 11,029 students. These esti-
mates correct for peer test scores missing not at random following Sojourner (2013) and implemented using Correia
(2018)’s reghdfe Stata package. All models include school fixed effects, and students’ own ability and educational
inputs in wave 1. Standard errors are clustered at the classroom level. *, ** and *** denote significance levels at the
10%, 5% and 1%.
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Table B.13: Corrected P-values for the Effect of Peer Ability using Young (2019)’s Randomiza-
tion Inference, and Romano and Wolf (2005b)’s Step-Down Familywise Error Rate Adjustment
Procedures

Corrected p-values for the
effect of peer test scores [std] using:

Young (2019) Romano and Wolf (2005b)
Randomization-t inference Step-down procedure

(1) (2)

Outcomes:
Test scores 0.008 0.036
School effort 0.058 0.382
Initiative in class 0.589 0.948
Truancy 0.673 0.956
Cheated on exams 0.287 0.860
Academic self-efficacy 0.487 0.914
Mental health 0.176 0.774
University aspirations 0.122 0.680
University expectations 0.078 0.394
Private tutoring 0.928 0.982
Time with parents 0.000 0.014
Conflict with parents 0.146 0.742
Parental strictness 0.136 0.670
Parental support 0.220 0.800
Harsh parenting 0.192 0.774
Parent uni. Aspirations 0.916 0.982
School environment 0.305 0.860
Classroom hard to manage 0.248 0.858
Teacher engagement 0.421 0.890
Teacher tired of teaching 0.216 0.838
This table corrected p-values for our main results using i) Young (2019)’s randomization-t inference
procedure to account for high-leverage, finite sample properties of the model error term, and the complex
sampling structure of our data (Col. (1) based on 499 permutations), and ii) Romano and Wolf (2005b)’s
step-down procedure for controlling for familywise error rate in multiple hypotheses testing implemented
using Clarke, Romano and Wolf (2019) rwolf Stata package (Col. (2), based on 499 replications).
p-values smaller than 0.10 are shown in italics and smaller than 0.05 in bold.
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Table B.14: Heterogeneous and Mediated Effects of Peer Ability

Mediated effect

Academic by Student by Parent by School
Peer effect Total inputs inputs inputs

(1) (2) (3) (4) (5)

by monthly household income:
Less than NT$20,000 0.052∗ −0.030∗∗ −0.019 −0.011 −0.000

(0.027) (0.015) (0.012) (0.007) (0.005)
NT$20,000 to NT$50,000 0.051∗∗∗ 0.001 0.002 0.001 −0.002

(0.018) (0.008) (0.006) (0.002) (0.003)
NT$50,000 to NT$100,000 0.049∗∗∗ −0.008 −0.007 −0.001 −0.000

(0.018) (0.008) (0.007) (0.003) (0.002)
More than NT$100,000 0.052∗∗ −0.020 −0.016 −0.004 0.000

(0.023) (0.014) (0.012) (0.007) (0.003)
by parent(s) education:
No college degree 0.049∗∗∗ −0.007 −0.004 −0.002 −0.001

(0.017) (0.005) (0.004) (0.002) (0.001)
College degree 0.038 −0.009 −0.008 −0.005 0.004

(0.024) (0.016) (0.013) (0.006) (0.005)
by student test scores:
Bottom tertile 0.035∗∗ −0.005 −0.004 −0.001 −0.000

(0.017) (0.007) (0.006) (0.003) (0.001)
Middle tertile 0.070∗∗∗ −0.004 −0.001 −0.004 0.001

(0.018) (0.009) (0.007) (0.003) (0.002)
Top tertile 0.045∗∗ −0.016∗ −0.010 −0.003 −0.002

(0.019) (0.008) (0.007) (0.003) (0.003)
by student gender:
Male 0.054∗∗∗ −0.012∗ −0.008 −0.004∗ −0.000

(0.018) (0.007) (0.006) (0.002) (0.002)
Female 0.055∗∗∗ −0.007 −0.006 0.001 −0.002

(0.017) (0.007) (0.006) (0.002) (0.002)
by school type:
Public 0.045∗∗∗ −0.009∗ −0.005 −0.002∗ −0.001

(0.017) (0.005) (0.005) (0.002) (0.001)
Private 0.100∗∗∗ 0.006 −0.002 −0.002 0.010∗

(0.034) (0.013) (0.011) (0.004) (0.006)
by Dao Shi experience:
10 years or less 0.063∗∗∗ −0.017∗ −0.019∗∗ −0.000 0.002

(0.021) (0.009) (0.008) (0.002) (0.002)
More than 10 years 0.042∗∗ −0.003 0.001 −0.003 −0.001

(0.017) (0.006) (0.005) (0.002) (0.002)
This table reports peer and mediated effects based on Gelbach (2016)’s decomposition using only within-school
variation in our estimation sample containing 232 schools, 850 classrooms, and 11,029 students. These esti-
mates are produced using a modified version of the b1x2 Stata package. Rows present the peer and mediated
effects for different subgroups defined based on wave 1 variables. All models control for school fixed effects,
student test scores, average peer test scores, and educational inputs in wave 1. Standard errors are clustered at
the classroom level. *, ** and *** denote significance levels at the 10%, 5% and 1%.
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Table B.15: Heterogeneous Value-Added

Outcome: Student test scores in Wave 2 [std]

Coef. Est. Std. err.
(1) (2)

Value-added coef. interaction:
peer test scores [std] with:

School effort [std] 0.019∗∗ (0.008)
Initiative in class [std] 0.029∗∗∗ (0.007)
Truancy [std] −0.007 (0.007)
Cheated on exams [.48] 0.011 (0.011)
Academic self-efficacy [std] −0.003 (0.006)
Mental health [std] −0.003 (0.006)
University aspirations [.57] 0.013 (0.015)
University expectations [.44] −0.012 (0.015)
Private tutoring [std] −0.019∗∗∗ (0.007)
Time with parents [std] −0.013∗∗ (0.005)
Conflict with parents [.31] −0.008 (0.012)
Parental strictness [std] −0.004 (0.006)
Parental support [std] −0.016∗∗ (0.006)
Harsh parenting [.33] −0.006 (0.012)
Parent uni. aspirations [.51] 0.013 (0.013)
School environment [std] 0.008 (0.006)
Class hard to manage [.33] −0.045∗∗∗ (0.016)
Teacher engagement [std] −0.001 (0.006)
Teacher tired of teaching [.49] −0.004 (0.015)

R2 0.71
Schools 232
Classes 833
Students 10,490
This table reports coefficient estimates of regressing student test scores in wave 2 on
educational inputs in wave 2, all interacted with peer test scores in wave 1, in our
estimation sample containing 232 schools, 833 classes, and up to 10,490 students.
Rows present coefficients of different regressors interacted with peer test scores. Un-
conditional means of each input are shown in square brackets and [std] marks inputs
that have been standardized to have a mean of zero and a standard deviation of one.
All models control for main effects of wave 2 inputs, school fixed effects, student test
scores, average peer test scores, and educational inputs in wave 1. Standard errors
clustered at the classroom level in parentheses.
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Table B.16: 35 Education Systems in Comparative Perspective in TIMSS 1999

Average Student- School- Study Percentage of:

class to-teacher days hours Math in absent school parents 5+ y. exp. weekly+
size ratio yearly daily groups daily dropout monitoring teachers class disr.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Australasia and Pacific
Taiwan 39 18 221 2.0 12.5 1.3 1.7 33.4 67.7 30.1
Japan 36 20 223 1.7 12.5 3.0 0.3 4.0 32.3 4.5
South Korea 42 24 225 1.6 18.5 0.5 0.8 9.2 20.6 43.0
Hong Kong 39 20 176 1.6 6.9 1.4 1.9 6.9 64.7 36.2
Singapore 37 20 180 3.5 32.5 1.6 1.0 1.8 49.1 32.2
Indonesia 42 23 251 3.0 27.5 2.7 1.9 74.6 75.6 20.5
Malaysia 38 19 198 3.8 38.2 3.8 3.9 28.5 42.4 25.6
Philippines 51 35 204 3.3 53.0 5.1 8.5 28.0 65.0 27.4
Thailand 39 31 202 2.9 51.1 3.7 3.1 57.0 64.7 12.6
New Zealand 26 16 188 2.0 43.5 6.9 7.9 0.8 55.7 68.1
Australia 26 16 196 2.0 27.8 7.6 6.0 0.1 57.7 73.1

Europe and Central Asia
Netherlands 25 17 191 2.2 27.8 3.0 2.0 1.0 77.5 76.1
Belgium 19 10 175 3.0 7.3 3.0 2.2 3.6 74.1 40.4
Italy 20 13 210 3.6 27.7 6.3 1.5 20.7 63.7 46.6
Cyprus 29 14 160 2.8 16.8 3.1 2.2 4.3 23.1 54.5
Finland 20 12 186 1.8 18.5 5.2 1.4 1.5 70.7 50.0
Latvia 22 13 176 3.0 11.3 5.2 2.0 17.1 71.4 37.5
Moldova 26 17 205 3.3 31.2 4.5 2.7 34.8 78.0 29.1
Czech 24 19 197 1.9 8.5 7.7 1.8 4.8 66.1 62.9
Hungary 32 12 185 2.8 7.3 4.7 2.2 3.8 71.6 41.2
Bulgaria 21 15 172 3.0 27.9 6.9 2.5 8.6 71.2 22.0
Romania 24 19 159 3.4 23.9 3.5 1.9 12.3 65.9 17.0
Slovak 25 18 194 2.3 15.9 7.0 1.7 3.1 66.8 59.8
Slovenia 22 14 175 2.5 10.3 3.0 1.2 12.0 75.3 61.1
Macedonia 27 21 176 3.5 41.8 1.9 1.5 15.5 78.7 13.1
Russia 24 15 195 3.2 15.6 4.2 2.5 32.8 73.6 13.4
Turkey 39 63 181 3.6 22.2 3.2 4.9 32.2 52.0 14.5

North America
Canada 27 20 188 2.2 40.1 5.4 5.5 4.6 58.2 60.3
United States 26 18 180 2.1 44.9 5.6 9.0 7.7 60.9 69.3

Central and Latin America
Chile 34 37 193 2.4 57.6 6.4 5.1 2.5 67.1 45.9

Middle East and Africa
Iran 32 27 209 4.1 38.6 2.4 2.3 27.5 26.7 21.4
Israel 34 14 199 2.7 39.8 5.1 1.6 3.5 61.5 60.8
Jordan 35 23 191 3.8 50.6 2.9 3.4 21.3 55.2 27.6
Morocco 28 24 207 3.3 44.5 4.0 7.6 11.0 70.7 31.5
South Africa 48 37 194 3.1 53.3 8.3 8.3 40.0 68.0 38.6
Tunisia 34 23 205 3.7 24.3 2.4 2.3 61.1 26.2 54.0
Note: This table presents some key features of junior high school in 35 countries participating in TIMSS 1999.
TIMSS 1999 data is publicly available through the TIMSS 1999 International Database. This table presents means
using sampling weights and Jackknife repeated replications, following the TIMSS 1999 User Guide. All features
presented here are reported by school principals, except daily study hours and Math taught in small groups (cols.
(4) and (5)), which is reported by students. Means for Taiwan are presented in the first row.
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Appendix C The Fishing Algorithm

In this Appendix, we explain the steps of our Fishing Algorithm introduced in Section 4.2

in detail. We illustrate its use in the TEPS data. We also provide simulation evidence of its

performance in Appendix D.

C.1 Sorting of students into classrooms within schools in TEPS

As discussed in Section 3, Taiwan has an explicit mandate of random assignment of students to

classrooms within schools. We first test whether the TEPS data is consistent with this mandate

without imposing any sample restrictions and refer to this as our “initial sample”. This initial

sample includes a total of 20,055 students assigned to 1,244 classrooms across 333 schools in

wave 1, for whom we have data from either students, parents, teachers or school administra-

tors’ questionnaires. Most students can be matched across questionnaires—we lose fewer than

1,000 observations due to questionnaire non-match—yet we estimate our initial tests on this

unrestricted sample to limit the influence of selective questionnaire attrition.

We first run sorting tests on student wave 1 standardized test scores, as well as on each char-

acteristic that we can unambiguously treat as pre-assignment; that is, variables capturing either

fixed traits or events prior to entering junior high school.

Standardized test scores are not strictly measured pre-assignment; they were taken by students

during the first weeks of the first junior high school academic year, shortly after assignment

to classrooms. However, it is highly doubtful that only a few weeks’ worth of exposure to

peers could generate considerable peer effects already. Moreover, these test scores were never

revealed to students, parents, teachers or school administrators so there is no chance of re-sorting

of classrooms after initial assignment based on the results of these exams. However, finding

sorting on standardized test scores would still be consistent with students being assigned to

classrooms based on other ability or academic performance measures that are either known to

the parents, teachers, or school administrators. In this spirit, we analyze standardized test scores

in this paper.

To run sorting tests loosely follow the within-school equation:

Yics1 = βȲ−i
ics1 +µs + εics1, (C.1)

where Yics1 is the characteristic of student i in class c in school s in wave 1, which is pre-

determined at the time of assignment, Ȳ−i
ics1 is the class leave-out mean of the same variable Y at

wave 1 (the classroom peer mean of characteristic ), µs is school-invariant unobserved hetero-

geneity which we account for using school fixed effects, and εics1 is a conditionally uncorrelated

model error term.

The sorting statistic of interest is closely related to with the standard normal as a reference dis-
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tribution in large samples. A positive over critical values in the distribution indicates positive

sorting of students into classrooms based on the tested pre-determined characteristic. However,

Guryan, Kroft and Notowidigdo (2009) observe that, under random assignment, β̂ presents

a small negative bias which seems to disappear when controlling for school-level leave-out-

mean of the characteristic in sorting tests. Jochmans (2020) shows that Guryan, Kroft and

Notowidigdo (2009)’s empirical correction results in low power for detecting sorting, derives

analytical expressions for this bias in within-school estimators and proposes a bias-corrected

that solves this power issue. In our sorting tests, we present t̂ using the more commonly found

Guryan, Kroft and Notowidigdo (2009) method and the very recent Jochmans (2020) improve-

ment.

The second and third columns of Table C.1 show the sorting test statistics for all pre-determined

characteristics we consider. There is plenty of evidence suggesting that students are sorted into

classrooms with similar peers in the initial sample – certainly for test scores, but also for family

income and parental education, intellectual curiosity during primary school, private tutoring

before entering junior high school, gifted academic and art class assignment, and on parents’

efforts to influence the student’s classroom assignment. Sorting on test scores in this sample is

already reason enough for thinking that estimates of higher-ability peer effects might be biased.

Yet further balancing tests on higher-ability peers—which regress Yics1 on TestScoresics1 —

also show that higher-ability peers are also related to several pre-determined characteristics at

baseline. These balancing test results are shown in the last two columns of Table C.1.18

Our next step is to characterize the deviations from random assignment in this initial sample in

order to hopefully correct them. In Taiwan, class assignment is tasked to schools themselves, as

opposed to being done at the regional or school district level. Because of this, we suspect that

deviations from random assignment in our data could come directly from having (hopefully few)

non-compliant schools, and direct our efforts towards finding these schools. All results in Table

C.1 suggest that, in these sorter schools, students assigned to higher-ability peers are also higher

ability themselves and are also generally more advantaged in other respects. These schools

might have sorted students into classrooms directly based on academic ability/performance,

perhaps by assignment them to “gifted” classrooms together, and perhaps also as a response

of parental pressure on the school. All these are informative insights in the next steps of our

Fishing Algorithm.

18Note that, due to the large number of pre-treatment characteristics we test and the many students and classes in
TEPS, we are more likely to find imbalances than many previous academic peer effect studies. The size of our
detected imbalances is relatively small generally (very) small. In fact, simple back-of-the-envelope calculations
suggest that in other datasets commonly used to estimate peer effects, such as the Project STAR data, imbalances of
this size would have gone undetected.
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C.2 The Fishing Algorithm

The Fishing Algorithm is a data-driven method we developed to detect schools that are likely

not compliant with Taiwan’s national mandate to randomly assign students to classrooms. The

algorithm combines permutation-based measures of the degree of sorting in the data with latent-

class modeling techniques. Despite seeming complex, the intuition behind the procedure is

simple and its implementation is fast. Its steps are described in Box C.1.

Algorithm C.1 The Fishing Algorithm
1: Identify sorted/imbalanced pre-assignment characteristics. Identify your key measure of

interest and, if sorted/imbalanced, continue to step 2.
2: Construct a school-level measure of sorting in your key measure of interest for each school

s = 1 . . .S. We propose a modified Herfindahl-Hirschman index for concentration of the key
student characteristic into classrooms in each school. Call this measure Hs.

3: For each school, simulate the counterfactual Hs under random assignment of students to
classrooms, while keeping school size, class size, number of classrooms and student com-
positions constant. Call this counterfactual assignment Hrandom

s . Use B permuted random
assignments of students to classrooms to derive the school-level distributions of Hs for each
school s. Using these distributions, construct the school-level share of permutations for
which Hs is larger than Hrandom

s and call it Ss ∈ [0,1]. Ss measures the degree of sorting of
students to classrooms in each school over and above what chance would predict.

4: Use latent class models to predict Ss. Since Ss is censored below at 0 and above at 1, we
propose fitting finite mixture tobit regressions. Select the number of latent classes in the
model using a pre-determined goodness-of-fit measure (e.g., AIC, BIC). (If available, use
school-level predictors for sorter schools informed by your knowledge of the data. You
can use likelihood ratio tests to decide whether these class predictors are worth including
in the model.) Identify the latent class(es) associated with high Ss (close to 1); these are
likely to identify sorter schools. Using model estimates, construct the school-level posterior
probability of belonging to a latent sorter class. Call this measure Ps.

5: Construct a sorter flag for each school based on whether Ps exceeds a pre-determined thresh-
old. We suggest using a “most likely sorter” rule: flag schools which are most likely to
belong to a latent sorter class than to any other latent class as sorter schools. Remove
flagged schools from your estimation sample, call this the trimmed sample. Re-estimate
your balancing and sorting tests in this sample.

In the first step, we identify whether there is evidence of sorting and/or imbalance in the data.

Table C.1 describes the results of these tests for the TEPS initial sample. Since our study focuses

on estimating the effect of higher-ability classroom peers, we identify student test scores as our

key pre-assignment characteristic for the remaining steps.

In the second step, we construct our school-level measure of sorting of students into classrooms

based on standardized test scores. We base our measure on the Herfindahl-Hirschman index,

the most prominent measure of market concentration in economics. In school s with classrooms
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c = 1 . . .C, we define our measure as:

Hs =
C

∑
c=1

(
TestScorescs

∑
C
c=1 TestScorescs

)2

(C.2)

Where TestScorescs is the average standardized test score in classroom c of school s.19Hs is

a measure of the concentration (or sorting) of student test scores into classrooms within each

school, and it will range between 1/C (if TestScorescs is identical in all classrooms) to 1 (if all

students with positive test scores are together in one classroom—which is ridiculous with test

scores but more easy to think of when measuring sorting by e.g., race or gender). At this point

our constructed Hs includes test score sorting data for each of the 333 schools in TEPS.20

In the third step, we construct counterfactual distributions of Hs for each of the 333 schools

in TEPS that reflect random assignment of students to classrooms within schools. To do this,

we construct B = 400 permutations of random assignment of students to classroom within each

school maintaining each schools’ data structure; that is, maintaining the student number and

composition in each school, and the exact number and size of classrooms in each school. En-

suring the data structure is maintained is crucial for computing randomization-based statistics

(Young, 2019). For each permutation b = 1 . . .B we thus end up with a measure Hrandom
s that

reflects one way that school sorting could have looked like if classrooms were randomly as-

signed within schools. Since we do this B = 400 times, we end up with a distribution of this

school concentration index based on 400 counterfactual classroom assignments for each school.

We then construct Ss for each school: the share of the 400 permutations for which the actual

school concentration Hs strictly exceeds the simulated concentration under random assignment

Hrandom
s . For example, in a school where the actual score concentration was larger than 350 out

of 400 simulated concentrations, Ss would take the value of 350/400 = 0.875.

At this point, it is important to highlight why Ss is a superior measure of classroom sorting than

Hs, especially to capture sorting on characteristics that are relatively rare. To do this, imagine

trying to measure sorting based on race in a school with three classrooms and one racial minority

student. Even if this school fully complies with random assignment, the measure Hs will equal

1, implying full sorting. This is because, in any classroom configuration“all” minority students

will be in the same classroom. The measure Ss, however, will equal 0 — implying perfect

sorting — because in no permutation will Hs strictly exceed Hrandom
s . Generalizing based on

this example, the key lesson is that Ss naturally normalizes classroom concentration to reflect

20It is important to note that by standardized test scores we mean “scores from a standardized test” rather than “test
scores that have been standardized to have a mean of zero and a standard deviation of one”. Steps 3 through 5 of
the Fishing Algorithm work much better if Hs is constructed from test scores (or any other measure) that is weakly
positive (i.e., with support in [0;∞) ).
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Figure C.1: The School-Level Concentration of Classrooms Based on Test Scores, With B = 400 Class-
room Assignment Permutations

Note: This figure shows the school-level distribution of our measure for whether schools
sort students into classrooms more strongly than chance would allow, given the school size,
number and classroom size and student composition. The probability of being a sorter school
is the posterior probability of being in a latent class classified as sorters by us and calculated
based on a finite mixture model of school sorting using several school averages of parental
characteristics as class predictors.

the rarity of the characteristic of interest at the school level, a very useful property.21

Figure C.1 shows the distribution of our school-level measure of classroom concentration based

on test scores, Ss, for all 333 schools in the TEPS data. If all schools in TEPS would have

perfectly complied with random assignment of students to classrooms, we would expect this to

closely resemble a standardized uniform distribution. The figure suggests that most schools are

likely complying with the random assignment mandate, yet a small but non-negligible share of

schools show very high degree of sorting that is inconsistent with random assignment. With a

quick graphical analysis of the distribution, one could conclude that schools in the rightmost

part of the distribution—with Ss > 0.9 which adds up to roughly 80 schools—are much more

likely be defying the mandate of random assignment.

At this stage just dropping these 80 schools from our data would be rather crude. Under

random assignment, we should still expect that some schools, by chance, ended up group-

21A second, perhaps subtler, lesson is that we can only interpret as evidence of strong classroom non-sorting when
the characteristic of interest is prevalent in the school (i.e., when the number of students with that characteristic
exceed the number of classes in the school).
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ing students with similar test scores. Blindly trimming these schools could therefore lead to

“over-trimming”: removing schools that have high sorting by chance. One problem with over-

trimming is that it can lead to negative sorting tests in the trimmed sample. Another, perhaps

more serious, problem is that it would remove legitimate variation from the estimation sample

that could be crucial for identifying peer effect. These worst-case scenarios could result in a loss

of power for identifying peer effects in the trimmed sample and, if peer effects are extremely

non-linear, over-trimming could bias peer effect estimates downwards. In the fourth and key

innovative step of our Fishing Algorithm, we try to disentangle schools that have strong sorting

by chance from schools that are defying the mandate of random assignment using latent class

models of Ss. Our preferred method is to fit a finite mixture model (FMM) of Ss to recover

a predicted probability of being a school defying the mandate of random assignment to class-

rooms for each school.22 One good reason for using FMM is that, based on its estimates, we

can construct the posterior probability of belonging to each latent class modeled and. Once we

have identified which class is likely to capture sorter schools, this gives us a direct estimate of

school-level probability to be a sorter, which we then use to construct our likely sorter school

flag.

For this step, there are four key choices to make: i) the correct model given the distribution of Ss,

ii) the number of latent classes, iii) the class-level predictors (if any), and iv) the classification

rule that flags a school as sorter. We discuss these choices and our approach to making them in

turn:

1. For modelling the distribution of Ss, we opted for fitting a FMM tobit to account for the

censoring of Ss at 1. For other characteristics or in other datasets where Ss shows less

censoring, one can always fit beta or linear regression FMMs instead. In the TEPS data

all these alternatives yield similar results.

2. We chose the number of latent classes that minimizes the Bayesian Information Crite-

rion. In the TEPS data this was a 3-class model. Of these three classes, only one had

a conspicuously large predicted mean for Ss, which was very close to 1. We identified

this as the latent class of sorter schools. The other two classes had much lower predicted

means for Ss, both close to 0.5. Using the Akaike Information Criterion we would have

chosen a 2-class model instead; a sorter latent class with a predicted very close to 1 and

a non-sorter latent class with predicted close to 0.5. Both models would have classified

schools near-identically. Models with more than 3 latent classes did not improve fit much

but did increase optimization complexity and often had issues converging.

22We have also worked on procedures that detect sorter schools based on several Ps indices — to detect, for example,
one type of sorter school that sorts students to classrooms based on test scores, and a second type that sorts students
based on their history of truancy—using unsupervised machine learning techniques such as hierarchical cluster
analysis.
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3. We chose school-level class predictors that were significantly related to Ss. In the TEPS

data these are schools means for: children who report being in academically gifted class-

rooms, parents who push for their children to be assigned to particular classrooms, ethnic

minority students, private tutoring lessons before joining junior high school, and two mea-

sures of baseline student effort. All these measures were positive predictors of belonging

to the sorter latent class, most of the statistically significant at conventional levels. These

predictors meaningfully improved the model performance and, since models with and

without class predictors are nested, one can make the choice to include these in the final

model specification based on a likelihood ratio test.

4. For flagging schools as sorters we constructed for each school the probability of belong-

ing to the sorter latent class Ps—the class with predicted Ss close to 1—based on the FMM

estimates with class predictors. We then opted for classifying sorter schools as schools

which were most likely to belong to the sorter latent class than to any other class. Dif-

ferent thresholds can of course be justified, but this is a reasonable one with a clear a

priori justification. Our model results are not sensitive to other reasonable classification

thresholds such as Ps being larger than the sum of all other predicted class probabilities.

Table C.2 shows the results of the Finite Mixture Model estimation in the TEPS data. The latent

class marginal means and variances suggest that the third latent class clearly identifies sorter

schools, and the posterior latent class probability for this class suggests that 24.6 percent of

schools might be sorters. The latent class predictor coefficients are also consistent with the third

latent class identifying sorter schools, and most of these predictors are statistically significant.

Figure 2 in Section 4.2.1 shows the schools eventually flagged as sorters by our Fishing Algo-

rithm across the distribution of Ss. We overlay the probability of being a sorter school Ps (on the

right y-axis) in a scatterplot, with 0.5 as a dashed horizontal reference line. Our Fishing Algo-

rithm flags 106 schools where Ps is largest as sorters. As expected, most flagged schools have

Ss > 0.9, though a few schools with lower values of Ss are also flagged. In the TEPS data, the

algorithm failed to identify non-sorter schools with very high Ss. It is possible, of course, that all

these schools with high Ss are in fact sorters, yet it is more likely that the FMM class predictors

are just not strong enough to discern the non-sorters among this group. As discussed above and

in Section 4.2.1, this could lead to over-trimming and in fact we do see some evidence of this

in Table 2, which shows sorting and balancing tests in our sample trimmed of the 106 schools

flagged as sorters. Yet evidence of over-trimming is not strong enough to be concerning.

As a final point in this appendix, we show that out applying our Fishing Algorithm in the TEPS

data does not introduce any evident selectivity in our estimation samples. Table C.3 shows

that our initial sample including all the TEPS data remains very similar to our trimmed sam-

ple—which includes all information from schools not flagged as sorters by our Fishing Algo-

rithm, and also remains similar to the our most restricted estimation sample—which includes

only students for which we observe test scores, educational inputs and other key characteris-
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tics in both TEPS waves. The only difference is that the more restrictive samples have slightly

larger schools, which can easily happen if smaller schools are more likely to systematically sort

students into classrooms (because e.g., they are more likely to be special schools with exeptions

to the national mandate, or have lower invigilance).
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Table C.1: Balancing and Sorting Tests on the TEPS Initial Sample

Sorting tests (t-statistic) Balancing tests

Treatment Variable: Peer outcome Peer ability
leave-out mean leave-out-mean [std]

Students Guryan et al. Jochmans Coef. Std. err.
(2009) (2020)

(1) (2) (3) (4) (5)

Pre-assignment characteristics:
Student test scores [std] 19,957 3.0 6.6

Female student 19,957 2.2 -0.9 0.012 (0.007)
Student born before 1989 19,866 -0.4 1.4 −0.011∗∗ (0.005)
Household income > NT$100k/mo. 19,629 0.9 2.2 0.014∗∗∗ (0.004)
College-educated parent(s) 19,073 1.1 3.5 0.036∗∗∗ (0.005)
Parent(s) work in government 18,979 1.3 2.2 0.024∗∗∗ (0.004)
Ethnic minority parent(s) 19,070 1.5 1.9 −0.011∗∗∗ (0.004)
Since primary school:

Student always prioritized studies 19,830 -2.1 1.5 −0.006 (0.005)
Student always reviews lessons 19,813 0.0 2.6 −0.002 (0.004)
Student likes new things 19,771 1.0 2.9 0.005 (0.006)

During primary school:
Was truant in primary school 19,674 1.3 0.4 −0.022∗∗∗ (0.005)
Student had mental health issues 19,670 0.0 0.3 0.001 (0.006)
Student quarreled with parents 19,691 -0.5 -1.0 −0.006 (0.006)

Before junior high school:
Had private tutoring 19,720 1.5 2.5 0.024∗∗∗ (0.006)
Family help with homework 18,976 1.3 1.2 0.006 (0.004)

Student enrolled in gifted academic class 19,779 2.3 4.3 0.074∗∗∗ (0.009)
Student enrolled in arts gifted class 19,779 4.8 5.5 0.033∗∗∗ (0.010)
Parents made efforts to place student 19,698 5.8 4.8 0.050∗∗∗ (0.006)

in better class
Note: Estimates in our trimmed sample of 333 schools and 1,257 classrooms. All estimators include school fixed
effects. The reference distribution for the Guryan, Kroft and Notowidigdo (2009) and the Jochmans (2020) sorting
statistics is the standard normal. t-statistics larger than critical values for a two-sided test are shown in italics
for 95% confidence and in bold for 99% confidence. The last column reports cluster-robust standard errors at
the classroom level. ***, ** and * mark estimates statistically different from zero at the 90, 95 and 99 percent
confidence level.
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Table C.2: The Fishing Algorithm: Finite-Mixture Model Estimates

Model latent class:

1 2 3

Latent class marginal mean 0.106 0.616 0.989
(0.017) (0.032) (0.010)

Latent class variance 0.007 0.057 0.003
(0.002) (0.011) (0.001)

Posterior latent class probabilities 0.139 0.615 0.246
(0.020) (0.044) (0.039)

Class predictor coefficients (base: Class 1):
Student enrolled in gifted academic class 3.658 10.093∗∗

(4.245) (4.334)
Parents made efforts to place student in better class −0.155 4.350∗

(2.399) (2.418)
Ethnic minority parent(s) −3.013 −4.027∗

(1.867) (2.112)
Had private tutoring before junior high 1.310 −2.604

(2.611) (2.891)
Reviews lessons since primary school 12.728∗∗ 10.587∗∗

(5.022) (5.254)
Likes new things since primary school −3.250 −0.502

(3.251) (3.511)
Constant −0.078 −0.391

(1.756) (1.936)

LR test for class predictors [p-value] < 0.001
Schools 333
Note: Finite Mixture Model (FMM) estimates in the complete TEPS sample of 333 schools using school-level data.
The dependent variable is modeled via a Tobit, and class posterior predicted probabilities of an FMM model without
class covariates are used as initial values to improve model convergence. ***, ** and * mark estimates statistically
different from zero at the 90%, 95% and 99% confidence level.
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Table C.3: Summary Statistics of Key Variables in TEPS Across Samples

Mean of characteristics in sample:

TEPS Trimmed Estimation
(1) (2) (3)

Characteristics:
Student test scores (unstandardized) 40.85 40.59 41.05
Female student 0.50 0.50 0.48
Student year of birth 1988.59 1988.59 1988.60
No. of siblings of student 1.77 1.77 1.75
Responding parent is female 0.64 0.64 0.63
Ethnic minority father 0.05 0.05 0.04
Two-parent household 0.86 0.86 0.87
Father’s birth year 1958.61 1958.67 1958.63
Father has post-secondary education 0.12 0.12 0.12
Unemployed father 0.11 0.11 0.10
Household monthly income is

NT$20,000 or less 0.11 0.11 0.10
NT$20,000-NT$50,000 0.41 0.41 0.41
NT$50,000-NT$100,000 0.35 0.35 0.36
More than NT$100,000 0.14 0.14 0.14

Classroom size 35.88 36.41 36.51
Male-to-female students ratio 0.52 0.52 0.52
Number of sampled students in school 67.03 67.66 65.60
School size 4,122 5,040 5,220
School sampling rate 0.19 0.18 0.17

No. of students (approx.) 20,055 14,044 11,029
Note: This table presents summary statistics of student and parent demographic characteristics in
the initial TEPS sample, the sample trimmed using our Fishing Algorithm, and the final estimation
sample.
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Appendix D Fishing Algorithm in Simulated Data

In this appendix, we use simulated data to validate our fishing algorithm and investigate its per-

formance. Ideally, we would want to provide evidence from Monte-Carlo simulations of the

performance of the algorithm in detecting schools that systematically sort students into class-

rooms. Unfortunately, we cannot provide Monte-Carlo evidence over many simulations—say,

over 10,000 realizations of the same data generating process—since i) Steps 4 and 5 of the algo-

rithm require making some decisions that cannot be automatized (see Box C.1 in Appendix C)

and ii) the finite mixture models in Step 4 often have convergence issues that demand making

additional decisions, such as trying out different optimization procedures, grid search across

different parameter values, or try out various initial latent class probabilities. Nevertheless, we

provide as extensive evidence of the performance of our fishing algorithm as our setting allows,

and highlight lessons learned along the way. These lessons will prove useful to researchers in-

tending to implement our fishing algorithm in their data. In addition, we have coded flexible

simulation programs in Stata which will be available with the published version of this paper.

D.1 The Data Generating Process (DGP) for our Simulations

We simulate data that closely follows our empirical setting in Taiwan: students are divided into

schools and, within schools, assigned to classrooms. The only characteristic that varies across

students is their ability. Classrooms are simple groupings of students within schools. Students

in the same classroom can end up being similar or dissimilar to one another, depending partly on

chance and partly on whether their school randomly assigns students to classrooms. Schools can

differ in two dimensions: whether they actively sort students of similar ability into classrooms

(sorter schools) or not (non-sorter schools), and—for sorter schools—the degree to which they

sort students into classrooms. In addition, we also simulate a school-level variable that predicts

whether the school is sorting or non-sorting. These three parameters—the number of sorting

schools, the strength of sorting within sorting schools, and the strength of the sorting school

predictor—are the key parameters we vary across our simulations. All other parameters, such

as school size and classroom size, are kept constant across DGPs.

Specifically, for each DGP we simulate data from 300 schools. We stochastically vary the

number of students across schools between 50 and 70 with an independent uniform distribu-

tion, U [50,70], mostly as a legacy for implementing the Guryan, Kroft and Notowidigdo (2009)

sorting test. Their method accounted for a small negative bias in classical sorting tests by con-

trolling for school-level leave-out-mean of student ability, but this correction only works well

when there is variation in school size in the data. For our exercises, however, we implement

instead the solution proposed by Jochmans (2020), who derives analytical expressions for this

negative bias and proposes a bias-corrected test with better power and implementable without

school-size variation. Once we have schools filled with students, we assign ability to students

according to ability∼U [0,1].
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At this point, we randomly determine which schools are the sorting schools that sort students

into classrooms based on ability, and which schools are non-sorting schools. The number of

sorting schools, Nsorting, is the first key parameter we vary across DGPs. Here we also generate

predictor, the variable predicting whether a school is a sorter or a non-sorter, given by:

predictor = 1{sortingschool}× p+U [0,1]× (1− p)

where 1{sortingschool} is a dummy variable which flags sorting schools, p ∈ [0,1] is a pre-

dictor strength parameter, and U [0,1] is another independent random uniform. If p equals 1,

predictor will be a perfect determinant of whether a school is systematically sorting students

into classrooms; if p equals zero, predictor will be completely uninformative for school type.

The predictor strength p is the second key parameter we vary across DGPs.

Within each school we then sort students based on the sortingstrength parameter in this school,

and then sequentially assign them to similar-sized classrooms of roughly 15 students. sortingstrength

is key for simulating student sorting into classrooms for some schools but not others, as is de-

fined as:

sortingstrength =

θability+(1−θ)U [0,1] if student is in a sorting school

U [0,1] otherwise

where θ ∈ [0,1] is the parameter that governs the sorting strength in sorting schools and we vary

it across DGPs. The way this parameter works is best explained with a few examples.

When θ is one, sortingstrength equals ability in sorting schools and a random uniform for non-

sorting schools. This implies that in sorting schools, students will be assigned to classrooms

based on their ability, with the first classroom having the top 15 students, the second classroom

the top 15 among the remaining students, and so on. This simulates very strong sorting of

students into classrooms in a scenario we refer to as “perfect stacking”. In non-sorter schools,

students will be randomly assigned to classrooms. If instead θ is zero, sortingstrength becomes

a random uniform for all schools (sorting and non-sorting, resulting in random assignment of

students to classrooms across the entire simulated data. Values of θ between zero and one will

vary the strength of sorting, or stacking, in sorting schools while keeping random assignment in

non-sorting schools. This θ is the second key parameter we vary across DGPs.

To make sure there is enough identifying variation in peer aggregates of ability, we ensure that

no classroom has fewer than 10 students—which can happen because initial classroom size is

set to 15 but variation in school size can occasionally lead to a classroom of fewer than 10

students. When this happens, we randomly redistribute students in these small classrooms to all

other remaining classrooms, such that classrooms are always larger than 15 students.
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We test the performance of our fishing algorithm using simulated data from three versions of our

DGP that correspond to cases of particular interest for an econometrician interested in applying

our method:

1. Nsorting = 50;θ = 0.8; p = 0.8 : 50 strongly sorting schools with a good sorting predictor

2. Nsorting = 50;θ = 0.8; p = 0.1 : 50 strong sorting schools with a weak sorting predictor

3. Nsorting = 300;θ = 0.15 : all schools are weak sorters, with a good sorting predictor

The first is an ideal case where the researcher can detect the few schools that violate random

assignment in the data, and has access to good enough predictors to detect whether a school is

sorting systematically students. The second case showcases the limitations of our fishing algo-

rithm when the researcher does not have access to reasonable predictors of sorter schools. The

third case simulates the unfortunate situation where all schools sort students into classrooms,

enough to invalidate random assignment in the data but with no hopes of being able to fish out

sorter schools with our method—or any other for that matter.

D.2 Performance of the Fishing Algorithm

After producing data using this DGP, we then i) test the degree of sorting in the simulated data,

ii) run our fishing algorithm following the steps in Box C.1, iii) evaluate the performance of our

fishing algorithm in detecting sorter schools in the simulated data, and iv) estimate the degree

of sorting in the data once the detected sorter schools are removed. These four sets of results

are presented in Panels A, B, C and D in the tables below.

We simulate five different realizations of each DGP and present the results of our fishing algo-

rithm for each. For each simulation, we present our results in columns (1) through (5) of the

tables below. The downslide of this approach is that it produces less systematic evidence of

the performance of our algorithm than would Monte Carlo simulations. The upside, apart from

being feasible, is that we can demonstrate the several decisions required from the researcher to

use our method, explain the reasoning behind them, and showcase results of situation when, by

chance, our method does not perform well.

Case 1: Few Strong Sorter Schools and a Strong Class Predictor

Table D.1 shows the performance of the Fishing algorithm in five simulated datasets with 50

strongly sorting schools and access to a good predictor for whether schools are sorters. Panel

A shows Jochmans’ (2020) sorting test t-statistic estimated using the simulated student-level

data. When positive and larger than critical values of the standard normal distribution, these t-

statistics indicate positive sorting of students into classrooms based on ability. As expected, our

simulated data shows strong evidence of sorting (first row) and this evidence is coming solely

from the few sorter schools (second and third rows).
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Panel B shows the steps to select the best Finite Mixture Models (FMM) to detect sorter schools.

These FMMs are estimated using school-level data where the outcome is our measure of ability

concentration in classrooms (Ss, see Appendix C). We first estimate FMMs with 2, 3, and 4

potential latent classes. We select the best among these models based on goodness of fit, using

the smallest Bayesian Information Criteria (BIC); the BIC of the preferred model is marked in

bold in each column.

Table D.1: Fishing Algorithm Performance in Five Simulated Datasets with 50 Strongly Sorting
Schools (Nsorting = 50,θ = 0.8 ) and Access to a Good Predictor for Whether Schools Are Sorters
(p = 0.8)

Simulation number = (1) (2) (3) (4) (5)
Panel A: Sorting t-statistic in student-level data if DGP were known

Jochmans (2020) sorting t-statistic:
for all schools 6.4 6.6 6.6 6.9 6.7
for non-sorter schools -1.2 -0.5 -0.4 1.7 0.1
for sorter schools 6.6 6.7 6.8 6.7 6.8

Panel B: Finite Mixture Model selection on school-level data

Model BIC for:
2 latent classes 316.7 336.7 326.6 313.4 327.8
3 latent classes 327.3 344.5 322.4 320.6 327.0
4 latent classes 318.6 350.5 334.6 325.3 330.3

LR for model with sorting predictor (p-value) 0.000 - - 0.000 -

Predicted sorting strength measure for:
class 1 0.48 0.13 0.09 0.53 0.11
class 2 1.02 0.73 0.53 1.01 0.55
class 3 - - 1.03 - 1.02
class 4 - - - - -

Panel C: Selected FMM model performance for defier classification

Schools identified as defiers 50 225 76 50 71
Correctly classified schools (as %) 100.0 41.7 91.3 100.0 93.0
Pr[Non-sorter school — Defier] 0.0 77.8 34.2 0.0 29.6
Pr[Sorter school — Complier] 0.0 0.0 0.0 0.0 0.0

Panel D: Sorting t-statistics in student-level data in classified schools

Jochmans (2020) sorting t-statistic:
for classified complier schools -1.2 -6.7 -4.2 1.7 -3.9
for classified defier schools 6.6 7.0 7.1 6.7 7.1

In Panels A and D, numbers in bold mark values larger than the 5% critical value in the reference a standard
normal distribution. In Panel B, numbers in bold correspond to the smallest Bayesian Information Criterion
(BIC) and the largest predicted outcome mean, used to select the preferred model, and numbers in italics
correspond to models that did not comply with convergence criteria. A missing Likelihood Ratio (LR) test
p-value is missing in Panel B, indicating that either the model using sorting predictors for the latent classes
or the model without predictors did not converge (almost always the former).

FMMs often have convergence issues—one of the reasons why we cannot produce complete

Monte Carlo evidence in this Appendix. We mark models that failed to converge in italics.
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After choosing the preferred number of latent classes based on the BIC, we then choose whether

the preferred model will include the variable predictor as a latent class predictor. For this, we

estimate FMMs with and without this latent class predictor and use a Likelihood Ratio (LR)

test to choose between these nested models. Rejecting the null that the models are equal leads

us to choose the model that includes predictor as a latent class predictor. Here too, we have

missing values for the p-value of this LR test when either model does not converge. Finally,

we show the marginal means for each class—the average outcome predicted for schools in

each latent class—in the preferred model. These correspond to the predicted level of classroom

concentration in schools in each latent class. We interpret the latent class(es) with unusually

high predicted means as those that identify sorter schools. These are also marked in bold.

There are three broad lessons from Panel B of Table D.1. First, models with two or three latent

classes are generally preferred, and models with four latent classes often have convergence

issues. This relatively simple latent class structure is partly a direct result of our DGPs—which

have, in fact, two latent classes of sorter and non-sorter schools—yet it confirms that the FMMs

do not tend to over-fit latent classes in the data. Second, models that use latent class predictors

also suffer convergence issues. This is a potential shortcoming, since we later show that these

predictors can meaningfully improve the performance of our fishing algorithm. Third, there is

almost always a latent class with a clearly larger predicted sorting strength, and the closer this

prediction is to 1 it is that this class identifies sorter schools.

Panel C summarizes the performance of the preferred FMM for classifying sorter schools—

schools which, in violation of random assignment, systematically sort students into classrooms.

We flag sorter school as those for which the posterior latent class probability for the sorter

class is larger than the sum of all the other posterior latent class probabilities, as described in

Appendix C. We report four standard indicators to describe the performance of our algorithm

at detecting schools that systematically sort students into classrooms: i) the number of schools

classified as sorters (out of 300), ii) the percentage of schools that are correctly classified as

sorter schools by the fishing algorithm and are truly sorter schools, iii) the probability of being

wrongly classified as a sorter school and actually being a non-sorter school (false positives), and

iv) the probability of being classified as a non-sorter school and truly being a sorter school (false

negative). Overall, the algorithm performs very well for this DGP: in 2 out of 5 simulations,

the algorithm perfectly separates sorter and non-sorter schools (col. (1) and col. (4)), and in 2

additional simulations it identifies no false negatives and only a few false positives (col. (3) and

col. (5)).

In column (2) the fishing algorithm somewhat fails: the algorithm indicates that the majority

of schools as sorters, over 50% of which are actually non-sorter schools. This failure is not

complete, however, in the sense that the algorithm only becomes too stringent, but does not mis-

classify sorter schools as compliant. The good news is that our exercise reveals why this failure

occurred: the selected FMM model in this instance could not use as a latent class predictor

to identify the latent class with sorter schools, and consequently the predicted sorting strength
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for this model is 0.73, well below that of all other models. The lesson for researchers apply-

ing our method here is that having access to a good predictor of whether schools are sorting

will meaningfully improve the performance of our fishing algorithm, even in settings with few

strongly sorting schools. Panel D shows the sorting test performance from Jochmans (2020)

back in the student-level simulated data in non-sorter schools—those classified as non-sorters

by the fishing algorithm. For the two models with perfect performance (Columns (1) and (4)),

we see that the t-statistics match the non-sorter t-statistics in Panel A. For the other three mod-

els, we see negative and significant t-statistics (Columns (3) and (5)); much more negative for

the worst-performing model (Column (2)).

Negative and significant t-statistics of sorting tests become increasingly more frequent as the

rate of false positives increases – that is, the probability of wrongly classifying non-sorting

schools as sorter schools. In Appendix C, we call this situation “over-trimming”, corresponding

to situations when the fishing algorithm wrongly excludes schools that are actually compliant

with random assignment. The issue with over-trimming is that it could lead to censuring the

distribution of peer effects.

Importantly, our algorithm can be used as a diagnostic tool for over-trimming, since a clear sign

of over-trimming is a “flipping” sign of Jochmans (2020)’s t-statistic: a positive and significant

t-statistic in the untrimmed data (as in Panel A) and a negative and significant t-statistic in the

trimmed data (as in panel D). When this occurs, we suggest going back to the FMM specifi-

cation to improve the classification performance, either my changing the number of classes or

by exploring additional and hopefully better class predictors. An important early sign that the

algorithm is able to discern sorter from non-sorter schools is a high predicted sorting strength

for at least one latent class, like in Column (1), and Columns (3) to (5) in Panel B.

Case 2: Few Strong Sorter Schools and a Weak Class Predictor

Table D.2 shows the performance of our algorithm in a DGP where there are still 50 strongly

sorting schools, but the researcher only has access to a much weaker predictor of whether

schools are sorters. This reflects the situation of researchers with either limited data or lim-

ited institutional knowledge to construct such predictors.

Panel A confirms that our simulated data conform to the intended DGP. Panel B illustrates that

i) in these data the FMMs generally choose simpler 2-class structures, that ii) even with a much

weaker predictor the FMMs tend to prefer models with class predictors, but that iii) the predicted

sorting strength for the high-sorting class is much weaker (between 0.73 and 0.78) than when a

good class predictor is available (in Table D.1). As a direct result, Panel C shows much higher

rates of misclassification, driven entirely by a higher rate of non-sorter schools identified as

sorters; all sorter schools are always correctly classified. As explained above, this will lead

to over-trimming, Panel D confirms the presence of over-trimming: we find strong evidence

of negative sorting in classified non-sorter schools, and positive sorting in the classified sorter
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schools. In sum, Table D.2 corroborates the importance of having a strong sorting predictor

for good performance of our fishing algorithm, but it also indicates two useful diagnostics that

can tell the researcher whether the algorithm is likely to be performing poorly: a relatively low

predicted sorting strength for the high-sorting latent class, and a strong flipping for the Jochmans

(2020) sorting t-statistic for the classified non-sorters subsample. Compared to the findings of

Table D.1, the findings of Table D.2 indicate that finding one or multiple strong class predictors

is crucial for preventing the algorithm from over-trimming the sample.
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Table D.2: Fishing Algorithm Performance in Five Simulated Datasets with 50 Strongly Sorting
Schools (Nsorting = 50,θ = 0.8 ) but Only a Weak Predictor for Whether Schools Are Sorters
(p = 0.1)

Simulation number = (1) (2) (3) (4) (5)
Panel A: Sorting t-statistic in student-level data if DGP were known

Jochmans (2020) sorting t-statistic:
for all schools 6.7 7.0 6.5 6.7 6.6
for non-sorter schools 0.6 1.6 -1.8 -0.4 -0.8
for sorter schools 6.7 6.8 6.8 6.8 6.7

Panel B: Finite Mixture Model selection on school-level data

Model BIC for:
2 latent classes 307.5 322.9 324.1 308.7 323.4
3 latent classes 317.2 325.4 331.5 313.3 331.4
4 latent classes 329.7 336.9 342.0 330.1 346.1

LR for model with sorting predictor (p-value) 0.000 0.000 0.000 0.000 -

Predicted sorting strength measure for:
class 1 0.18 0.17 0.19 0.20 0.22
class 2 0.73 0.74 0.78 0.78 0.77
class 3 - - - - -
class 4 - - - - -

Panel C: Selected FMM model performance for defier classification

Schools identified as defiers 228 233 192 199 207
Correctly classified schools (as %) 40.7 39.0 52.7 50.3 47.7
Pr[Non-sorter school — Defier] 78.1 78.5 74.0 74.9 75.8
Pr[Sorter school — Complier] 0.0 0.0 0.0 0.0 0.0

Panel D: Sorting t-statistics in student-level data in classified schools

Jochmans (2020) sorting t-statistic:
for classified complier schools -5.9 -5.2 -8.8 -7.8 -6.8
for classified defier schools 7.1 7.2 7.1 7.2 7.0

In Panels A and D, numbers in bold mark values larger than the 5% critical value in the reference a standard
normal distribution. In Panel B, numbers in bold correspond to the smallest Bayesian Information Criterion
(BIC) and the largest predicted outcome mean, used to select the preferred model, and numbers in italics
correspond to models that did not comply with convergence criteria. A missing Likelihood Ratio (LR) test
p-value is missing in Panel B, indicating that either the model using sorting predictors for the latent classes
or the model without predictors did not converge (almost always the former).
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Case 3: Weak but Generalized Sorting

Table D.3 shows the performance of our fishing algorithm in a DGP that simulates sorting in

all schools, weaker relatively to the previous DGP but strong enough that it would be detected

by Jochmans (2020) t-statistic. This corresponds to setting with generalized violations of ran-

dom assignment, such that no natural experiment could be salvaged from the data using our

algorithm.

Table D.3: Fishing Algorithm Performance in Five Simulated Datasets with All Weakly Sorting
Schools (Nsorting = 300,θ = 0.15 )

Simulation number = (1) (2) (3) (4) (5)
Panel A: Sorting t-statistic in student-level data if DGP were known

Jochmans (2020) sorting t-statistic:
for all schools 3.6 4.5 4.3 4.6 3.0
for non-sorter schools - - - - -
for sorter schools 3.6 4.5 4.3 4.6 3.0

Panel B: Finite Mixture Model selection on school-level data

Model BIC for:
2 latent classes 105.0 103.7 85.4 104.9 99.4
3 latent classes 93.4 92.5 66.3 103.1 95.0
4 latent classes 95.1 84.9 70.4 88.7 91.9

LR for model with sorting predictor (p-value) 0.818 0.280 0.170 0.066 0.850

Predicted sorting strength measure for:
class 1 0.16 0.15 0.09 0.13 0.05
class 2 0.56 0.41 0.52 0.52 0.38
class 3 0.93 0.72 0.92 0.90 0.81
class 4 - 0.95 - - 0.96

Panel C: Selected FMM model performance for defier classification

Schools identified as defiers 79 66 82 107 46
Correctly classified schools (as %) 26.3 22.0 27.3 35.7 15.3
Pr[Non-sorter school — Defier] - - - - -
Pr[Sorter school — Complier] - - - - -

Panel D: Sorting t-statistics in student-level data in classified schools

Jochmans (2020) sorting t-statistic:
for classified complier schools -4.7 -3.6 -3.9 -4.7 -3.2
for classified defier schools 6.7 6.9 7.5 7.5 5.6

In Panels A and D, numbers in bold mark values larger than the 5% critical value in the reference a standard
normal distribution. In Panel B, numbers in bold correspond to the smallest Bayesian Information Criterion
(BIC) and the largest predicted outcome mean, used to select the preferred model, and numbers in italics
correspond to models that did not comply with convergence criteria. A missing Likelihood Ratio (LR) test
p-value is missing in Panel B, indicating that either the model using sorting predictors for the latent classes
or the model without predictors did not converge (almost always the former).

Panel A confirms that our simulated data conforms to this setting, producing t-statistics that sig-

nificant around the 1% level. Panel B shows that i) the FMMs in this setting tend to choose 3-
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and 4-class structures, ii) the sorter school predictor is never statistically significant at conven-

tional levels, which was to be expected since all schools are sorters, and iii) the predicted sorting

strength in the high-sorting latent class is higher than in Table D.2 but lower than in Table D.3.

This high predicted sorting strength results in relatively few schools identified as sorters, as

show in Panel C. Because the FMMs classify as sorters the schools where the strongest sorting

occurs, Panel D again shows strong flipping in the Jochmans (2020) t-statistic.

Overall, Table D.3 indicates that situations where all schools sort students into classrooms (gen-

eralized sorting) compared to clustered sorting (cases 1 and 2) are characterized by i) rela-

tively complex latent class structures, ii) relatively low model fit yet iii) high predicted sorting

strengths for the high-sorting latent class even in the absence of good sorting school predictors

(Panel B), and iv) flipping of the Jochmans (2020) sorting t-statistic for identified non-sorter

schools (Panel D).

D.3 A Practitioner’s Guide for Researchers Wanting to Use our Fishing Algo-
rithm

Our fishing algorithm combines several intuitive steps which are nonetheless somewhat techni-

cally complex. Drawing on the lessons illustrated in this section and on our own experience in

developing this algorithm, we make the following suggestions to researchers intending to use

our method:

1. Strive to find predictors of whether a school sorts students into classroom, even if these

predictors are not perfect. Good predictors will meaningfully improve the performance of

our method, even if it can still be applied without them. Place more trust in applications

with institutionally sound sorting predictors that are also statistically and quantitatively

strong inputs in your latent class model.

2. Your latent class that captures sorting schools will have a predicted sorting strength close

to or exceeding 1. By the nature of our measure of sorting strength, sorting schools

should have strengths very close to or greater than 1. Latent classes with predicted sorting

strengths much below 1 are therefore more likely to also capture non-sorting schools,

increasing over-trimming problems. If your latent class model is not identifying classes

with high enough predicted sorting strengths, this could be a sign that i) the class structure

is not complex enough (solved by testing models with more latent classes), ii) your sorting

school predictors are not good enough (solved by finding better predictors or a better

structure for existing ones), or iii) sorting is too widespread in your data (only solved,

sadly, by finding other data that reflects a better natural experiment).

3. Beware of sorting test flipping. Sorting test flipping—a large and positive sorting t-

statistic in the whole data and a large and negative sorting t-statistic in the subsample

of identified non-sorter schools—is a sign of either over-trimming or widespread sorting.
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