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ABSTRACT
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Does the COVID-19 Pandemic Improve 
Global Air Quality? New Cross-National 
Evidence on Its Unintended Consequences*

Despite a growing literature on the impacts of the COVID-19 pandemic, scant evidence 

currently exists on its impacts on air quality. We offer the first study that provides cross-

national evidence on the causal impacts of COVID-19 on air pollution. We assemble a rich 

database consisting of daily, sub-national level data of air quality for 178 countries before 

and after the COVID-19 lockdowns, and investigate their impacts on air quality using a 

Regression Discontinuity Design approach. We find the lockdowns to result in significant 

decreases in global air pollution. These results are consistent across measures of air quality 

and data sources and robust to various model specifications. Some limited evidence 

emerges that countries with a higher share of trade and manufacturing in the economy 

or with an initially lower level of air pollution witness more reduced air pollution after the 

lockdowns; but the opposite result holds for countries near the equator. We also find that 

mobility restrictions following the lockdowns are a possible explanation for improved air 

quality.
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1. Introduction 

It has by now become clear that the COVID-19 pandemic is not only a global health emergency 

but has also led to a major global economic downturn. An emerging body of economic 

literature has examined the impacts of COVID-19 on a wide range of outcomes including 

unemployment (Fairlie et al., 2020), household consumption (Baker et al., 2020), and 

individual income (loss) and behaviour changes for the whole population or for different 

income groups (Akesson et al., 2020; Dang et al., 2020). Most studies generally confirm the 

adverse effects of the pandemic on these various outcomes in richer and poorer countries alike.  

 Yet, scant evidence currently exists on the impacts of the COVID-19 crisis on air quality, 

and among the few existing studies there appears no conclusive evidence. Employing a 

difference-in-difference model that compare Chinese cities with and without the pandemic-

induced lockdown policies, He et al. (2020) find that city lockdowns led to considerable 

improvement in air quality as measured by Air Quality Index (AQI) and PM2.5. This result is 

consistent with Brodeur et al.’s (2020) findings for the United States that ‘safer-at-home’ 

policies decreased PM2.5 emissions. Research in other disciplines such as environment studies 

also suggest a considerable decline in pollutant parameters during and after the lockdown.1 

However, using a similar difference-in-difference approach to examine the linkage between 

COVID-19 and air pollution in Hubei, the province at the center of the outbreak in China, 

Almond et al. (2020) show that COVID-19 had ambiguous impacts on China's pollution, such 

as even some relative deterioration in air quality near the pandemic's epicenter. Furthermore, 

to our knowledge, the emerging literature on COVID-19 focuses on country-specific case 

studies rather than investigates the impacts of the pandemic on the global scale.2  

                                                 
1 For example, Ma et al. (2020) show a decrease in concentration of nitrogen dioxide (NO2) by 14 percent in 

Wuhan, China. Similarly, Tobías et al. (2020) find that NO2 concentration was reduced by half during the 

lockdown in Spain, another hot spot of COVID-19.  
2 Other studies examine instead a related outcome, the impacts on health outcomes caused by the pandemic-

induced changes in air quality. For example, Cicala et al. (2020) use a sample of more than 3,100 counties in the 

US and show that reductions in emissions from travel and electricity usage reduced deaths by over 360 deaths per 
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 We fill in this gap in the literature and offer the first assessment of the pandemic impacts 

on air pollution in a multi-country setting. Given the negative impacts of air pollution on health 

in the recent studies cited above and its general linkage to heart and lung damage and other 

diseases (Brunekreef and Holgate, 2002; Liu et al., 2019), understanding how air quality is 

affected during the COVID-19 pandemic will provide important empirical evidence for health 

and environmental policies.  

 Specifically, we make several new contributions in this study. First, we offer global 

estimates for the causal impacts of COVID-19 on air quality, using a Regression Discontinuity 

Design (RDD) approach in a short window of time before and after each country implemented 

its lockdown policies. Since the lockdown—as most society-wide regulations or policies—

cannot be randomized across countries, the RDD offers us the most rigorous evaluation model 

that is available. Second, we provide estimates for several different measures of air quality. 

While most existing studies restrict analysis to one or two indicators of air quality, we employ 

two indicators NO2 and PM2.5 for our main analysis and several other indicators for robustness 

check including O3, PM10, and SO2. These various indicators help strengthen the estimation 

results.  

 Finally, we combine a variety of real-time data sources for richer analysis. We obtain 

daily data on air pollution at the sub-national level from two sources: satellite data (from the 

European Union’s Copernicus programme) and station-based data (from the World Air Quality 

Index). We then combine these air quality data with the Oxford COVID-19 Government 

Response Tracker (OxCGRT), which provides a unique measure of government 

responsiveness to COVID-19. We also supplement our analysis with data from several other 

reliable sources including the National Oceanic and Atmospheric Administration, Google 

                                                 
month. Isphording and Prestel (2020) find air pollution to affect the severity of already realized infections rather 

than the probability of infection itself in Germany. On the other hand, Cole et al. (2020) find that an increase in 

PM2.5 concentrations of 1𝜇/m3 is associated with an increase in COVID-19 cases of between 9.4 and 15.1 in the 

Netherlands. Notably, these studies focus on one specific country only. 
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Community Mobility Reports, World Bank World Development Indicators, WHO Global 

Ambient Air Quality Database, and Economist Intelligence Unit.  

 The rich database that we assemble allows us to address a key issue in cross-country 

analysis, which is to construct lockdown dates for different countries. Indeed, identifying 

comparable cut-off dates across different countries is challenging. The term ‘lockdown’ can 

refer to anything from mandatory quarantines to bans on events and gatherings, closures of 

certain types of businesses or non-mandatory stay-at-home recommendations. Some 

governments immediately respond to the outbreak by implementing a complete (regional or 

national) lockdown (e.g., China, Italy), while some implement a gradual lockdown in a 

staggering manner for different locations (e.g., the United States). We also present a number 

of robustness tests regarding our constructed lockdown dates. Once we establish the causal 

relationship of COVID-19-induced lockdowns on air pollution, we explore the role of 

movement and travel restrictions as potential mechanisms.   

 We find strong evidence for reduced air pollution after the lockdowns, with the reduction 

becoming stronger as the lockdowns go into effect for a longer period. In particular, the global 

decreases in NO2 and PM2.5 hover around 9 percent and 4 percent, respectively, 90 days after 

the lockdowns. Our estimation results are qualitatively similar for different indicators of air 

quality and government policy indexes, and remain robust to alternative model specifications 

regarding bandwidths, functional forms, and the inclusion of different covariates. We also find 

some limited evidence that countries with a higher share of trade and manufacturing in the 

economy have more reduced air pollution after the lockdowns, as do countries with an initially 

lower level of air pollution. But the opposite result holds for countries near the equator. Our 

findings suggest that mobility restrictions following the lockdowns can be a channel that 

explains the improvement of air quality. 
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 The remainder of the paper is organized as follows. We describe the database we 

constructed for analysis in Section 2 before discussing the empirical models in Section 3. We 

present the estimation results in Section 4 and conclude in Section 5. 

 

2. Data 

To examine the relationship between COVID-19 and air quality, we use two measures of air 

pollution, namely fine particulate matter PM2.5 (mass concentration of particles with diameters 

≤2.5 um) and nitrogen dioxide NO2. While other pollutants are available in our dataset, we 

select the PM2.5 and NO2 given their direct link to human health. PM2.5 is a common cause for 

adverse health outcomes such as chronic obstructive pulmonary disease (COPD) and lower 

respiratory infection (LRI) causing death of nearly three million people globally (Gakidou et 

al., 2017). At the same time, NO2 is the leading source of childhood asthma in urban areas 

globally (Achakulwisut et al., 2019). In this study, we collect data on these measures from  

October 1st, 2019 to June 1st, 2020. We also use other pollutants, such as NO2, SO2 and O3, for 

robustness checks. 

 The NO2 data are derived from images of pollution-monitoring satellites released by the 

National Aeronautics and Space Administration (NASA) and European Space Agency (ESA). 

In particular, we use data from the Sentinel-5P/TROPOMI (S5P) instrument of the European 

Union’s Copernicus programme. The Copernicus S5P provides daily global coverage of 

atmospheric parameters at high resolution (i.e., a pixel size of about 5.5 km x 3.5 km after  

August 6th, 2019).3 We then use Google Earth Engine to process and average air quality data 

at the sub-national level using administrative areas from Database of Global Administrative 

Areas (GADM). In particular, we measure air pollution at the first-order administrative division 

                                                 
3 The data have recently been used to study changes in air quality caused by COVID-19 in some health and 

environmental studies (see, e.g., Chen et al. (2020) and Zambrano-Monserrate et al. (2020)). 
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(ADM1).4 While the Copernicus S5P records a wide range of pollutants including NO2 and 

others (O3, SO2, CO, CH4, and aerosols), we focus on NO2 because this is a noxious gas emitted 

by motor vehicles, power plants, and industrial facilities (see, e.g., Dutheil et al. (2020)). 

Among other pollutants, NO2 is also a particularly well-suited data to analysis of emission 

because it has a short lifetime; this implies that molecules of NO2 stay fairly close to their 

sources and thus offer an appropriate measure of changes in emissions. 

 A potential concern of using satellite air quality, however, is cloud cover. This can bias 

results by obscuring the sensor’s view of the lower atmosphere. Concentrations of NO2 in the 

atmosphere are also highly variable in space and time due to factors such as varying traffic 

flows on weekdays versus weekends and changes in weather conditions. Therefore, we follow 

suggestions from the Copernicus program and perform a cloud masking which excludes results 

from pixels with > 10 percent cloud fraction.5 We also average data over weekly periods as a 

robustness test. Finally, we include data on daily rainfall and temperature to control for weather 

conditions, which are derived from the National Center for Environmental Prediction (NCEP) 

at the National Oceanic and Atmospheric Administration (NOAA). The global dataset provides 

four 6-hour daily records of temperature and precipitation at the resolution of approximately 

25 km. We extract the weather data at the sub-national level using a similar process as with the 

air pollution data. 

 As an alternative measure of air quality, we use daily station-based air quality index 

(AQI) from the World Air Quality Index (WAQI) project. The AQI provides accurate and 

reliable information on different air pollutant species from more than 12,000 ground-based air 

quality monitoring stations (primarily located at/near the US embassies and consulates) 

                                                 
4 In some countries, the ADM1 refers to province level while for others, it refers to state/region level. The 

administrative data are available at https://gadm.org/about.html.  
5 For more details, see: https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-

quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-

observations  

https://gadm.org/about.html
https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
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situated in 1,000 major cities in more than 100 countries from 2014 to present. However, there 

are certain limitations with station-based data. One is that station-based data are often reported 

more slowly, and not in a ‘real-time’ fashion as satellite data. Another limitation is the locations 

of air quality monitoring stations are likely not random, so they may not provide representative 

data on an area’s air quality. Consequently, the satellite data are our preferred data for analysis.  

 We subsequently match the air pollution data with the government stringency data from 

the Oxford COVID-19 Government Response Tracker (OxCGRT). The OxCGRT is a novel 

country-level dataset published by the Blavatnik School of Government at the University of 

Oxford, which contains information on various lockdown measures, such as school and 

workplace closings, travel restrictions, bans on public gatherings, and stay-at-home 

requirements (Hale et al., 2020). It measures government stringency responses on a scale of 0 

to 100%. We provide a description of the index components in Table A1 (Appendix 1). 

 To explore a potential channel through which COVID-19 affects air quality, we collect 

data on mobility from Google Community Mobility Reports. The Google Community Mobility 

Reports provide daily data on Google Maps users who have opted-in to the ‘location history’ 

in their Google accounts settings across 132 countries. The reports calculate changes in 

movement compared to a baseline, which is the median value for the corresponding day of the 

week from January to present. The purpose of travel has been assigned to one of the following 

categories: retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, 

and residential. In our analysis, we expect that the lockdowns will lead to reduced mobility of 

all categories, except for the residential category. We also examine data from several additional 

sources for robustness checks. The data sources are listed in Table A3 (Appendix 1). 

 

3. Empirical Model 
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We first employ a panel data model with country fixed effects and time fixed effects to examine 

whether air quality improves in response to government COVID-19 lockdown policies  

𝐴𝑖𝑡 = 𝛽𝑆𝑖𝑡 +  𝛾𝑋𝑖𝑡 + 𝛼𝑖 +  𝜏𝑡 + 𝜖𝑖𝑡     (1) 

The coefficient of interest in Equation (1) is 𝛽, which measures how the air quality (𝐴𝑖𝑡) in 

country i and date t changes in response to the stringency of government COVID-19 policies 

(𝑆𝑖𝑡). Because 𝐴𝑖𝑡 varies by country and date, this fixed-effects model allows for the inclusion 

of country fixed effects (𝛼𝑖) and time fixed effects (𝜏𝑡) to absorb the effects of unobservable 

time-invariant country or time characteristics. 𝑋𝑖𝑡 is a vector of time-varying control variables 

such as daily temperature and rainfall (or humidity). We estimate Equation (1) using global 

data at the sub-national level, and we also replicate our analysis at the country level as a 

robustness test. 

 Yet, while Equation (1) provides a useful evaluation of the relationship between air 

quality and the strictness of government COVID-19 policies, it will yield an inconsistent 

estimate of 𝛽 if there are omitted variables that simultaneously correlate with both air quality 

and government policies. For example, countries with strong institutions likely implement 

stringent policies during the pandemic, and at the same time, may have had better programs in 

place that ensures better air quality. Furthermore, since the model analyzes a sample of 

countries after the lockdown date (i.e., with the stringency index being positive), it does not 

take into account the fact that different countries can differ in terms of pre-COVID-19 

characteristics such as governance quality and public preferences for protecting the 

environment. Another potential threat to Equation (1) is reverse causality. If air pollution is 

positively associated with the number of COVID-19 cases (Cicala et al., 2020; Cole et al., 

2020; Isphording and Prestel, 2020), this can lead to governments implementing more stringent 

policies on air quality. 
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 In order to identify the causal effects of COVID-19 on air quality, we take advantage of 

the pandemic-induced lockdowns as an exogenous policy shock and apply a sharp Regression 

Discontinuity Design (RDD) approach. In this approach, the observations immediately before 

the lockdowns provide the counterfactual outcomes for those observations immediately after 

the lockdowns because the lockdown (treatment) status is randomized in a small neighborhood 

of the lockdowns (Hahn et al., 2001).  

 More formally, the treatment effect can be estimated as the change in air quality (𝐴) in 

the neighborhood of lockdown dates 

𝜏𝑅𝐷 =  lim
𝜀↓0

𝐸[Α|𝑑 = 0 + 𝜀] −  lim
𝜀↑0

𝐸[Α|𝑑 = 0 + 𝜀]    (2) 

where 𝑑 is the number of days before and after the official dates of lockdowns. We thus 

estimate the following reduced form 

𝐴𝑖𝑡 = 𝛿𝐿𝑖𝑡 + 𝑓(𝑑𝑖𝑡) + 𝜃𝑋𝑖𝑡 + 𝜇𝑖 +  𝜋𝑡 + 𝜀𝑖𝑡    (3) 

where 𝐿𝑖𝑡 (treatment variable) is a dummy variable that equals 1 after the lockdown and 0 

otherwise, and 𝛿 is the parameter of interest. 𝑓(𝑑𝑖𝑡) denotes a function of the running variable 

𝑑𝑖𝑡 (number of days from the lockdown dates). Similar to Equation (1), 𝜇𝑖 and  𝜋𝑡 respectively 

denote the country fixed effects and the time fixed effects, and 𝜀𝑖𝑡 denotes the error term. For 

comparison and robustness checks, we employ a parametric approach and use different 

functional forms of the running variable 𝑑𝑖𝑡 to estimate Equation (3). These include (i) the 

linear model, (ii) the linear model with the interaction term of the running variable and the 

treatment variable (𝐿𝑖𝑡*𝑑𝑖𝑡), (iii) the quadratic model, and (iv) the quadratic model with the 

interaction term of the running variable and the treatment variable (𝐿𝑖𝑡*𝑑𝑖𝑡
2 ). We present results 

for a broad range of bandwidths including 30, 60, and 90 days before and after the official 

lockdown dates. As shown by Figure 1 in the next section, the impacts of lockdowns become 

stronger over time, so these different bandwidths help capture the impacts of lockdowns over 
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different time windows. We cluster the standard errors at the sub-national level in all models. 

We also offer a number of robustness checks in Section 4.2. 

 A key challenge with estimating Equation (3) is to identify lockdown dates that are 

comparable across different countries. As discussed earlier, different countries likely 

implement lockdowns with different degrees of strictness (i.e., business activities and travels 

can continue to varying extents after the lockdown dates for different countries). Indeed, in 

quite a few countries, while all schools are shut down, universities operate on a different 

schedule. Furthermore, there can be multiple lockdown dates even within the same country 

where different regions/ states impose different lockdown dates (with different levels of 

intensity). To address this issue, the OxCGRT data provides a unique composite measure which 

combines indicators on different aspects of lockdown policies regarding school, workplace and 

public transportation and public events into a general index (Table A1, Appendix 1). By using 

a range of different indicators, this stringency index accounts for any indicator that may be 

over- or mis-interpreted, thus allows for a better and more systematic comparison across 

countries (Hale et al., 2020).  

 For each country, we define the official lockdown date as the first day on which the 

stringency index becomes positive. Using our constructed measure, Figure A1 (Appendix 1) 

shows that most countries introduced lockdown policies somewhere between the last week of 

January and the first week of February 2020. Notably, the start dates of lockdowns do not 

correspond to the intensity of the stringency index as countries that implemented lockdown 

policies later tend to be more stringent in their response.  

 Although the OxCGRT data provides a systematic comparison across different countries, 

it is still possible that not all business activities and travel cease exactly by the time of our 

constructed lockdown dates. In that case, a better approach is to employ the fuzzy RDD model 

rather than the sharp RDD model where the treatment variable 𝐿𝑖𝑡 can assume the value of 0 
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for 𝑆𝑖𝑡 > 0 for some countries. However, we do not have such additional information for 𝐿𝑖𝑡 

in our case and have to uniformly define 𝐿𝑖𝑡 as 1 after the lockdown date for each country. 

 But we offer a multi-layered approach to ensure that estimation results are robust. First, 

the estimates using Equation (1) above provide the first set of evidence over the (correlational) 

relationship between air quality and the government stringency index. Second, examining the 

outcomes over three different time bandwidths helps average out any lingering impacts after 

the lockdowns and provides comparisons for estimation results. If estimates remain 

(qualitatively) similar, this indicates that they are robust to this concern. Third, we also consider 

different versions of the bandwidths (such as using weekly air quality data instead of daily air 

quality data) and the stringency index (such as probing more deeply into its different 

components or using different thresholds). Finally, we also offer a battery of other additional 

robustness tests in Section 4.2.    

 An advantage of the RDD design is that the identification assumptions offer testable 

predictions. To validate our design, we present two types of tests. First, we investigate the 

distribution of observations (ADM1 level for satellite data and city level for station-based data) 

around the cut-off date. Table A2 (Appendix 1) provides results of the manipulation test 

suggested by McCrary (2008) and Cattaneo et al. (2018) based on the nonparametric local 

polynomial density estimator. The t-tests and their corresponding p-values confirm there is no 

evidence of systematic manipulation of the running variable. Second, we test for discontinuity 

in the other covariates around the dates of lockdowns. The results, shown in Figure A2 

(Appendix 1), rule out this concern. Table A3 (Appendix 1) provides the summary statistics of 

the main variables used in this study. 

 

4. Results 

4.1. Main findings 
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We present in Table 1 the estimation results for Equation (1) using two data samples at the sub-

national level (columns 1 and 2) and at the country level (columns 3 and 4). Our preferred 

estimates are shown in columns (2) and (4), which control for daily temperature and 

precipitation (humidity for station-based data)6. But we also show the estimates without these 

control variables in columns (1) and (3) for comparison and robustness checks. The estimation 

results are strongly statistically significant in our preferred models (columns 2 and 4) and point 

to reduced air pollution where government policies are more stringent. Overall, our findings 

suggest that global air quality improved in response to COVID-19-induced lockdown policies. 

 In particular, column (2) indicates that a one-point increase in the stringency index is 

associated with a 0.040 (mol/km2) decrease in NO2 (Panel A). When using station-based data, 

the corresponding figure is a 0.130 (µg/m3) decrease in PM2.5 (Panel B). Estimates are rather 

similar when we analyze the data at the country level (column 4). However, as discussed 

earlier, these estimates are likely biased since employing Equation (1) does not allow us to 

properly account for the unobservables that may be correlated with both the stringency index 

and air quality.  

 We subsequently present our main analysis which examines the lockdown impacts on air 

quality using the RDD model. For illustrative purpose, Figure 1 provides prima facie evidence 

of the impact of lockdowns on air quality. The figure shows the results from a data-driven RDD 

regression of air pollution, measured by NO2 (Panel A) and PM2.5 (Panel B), on the days before 

and after the lockdown dates.7 We observe a negative jump at the threshold of cut-off date, 

which suggests a reduction of air pollution after the lockdowns. The downward sloping trend 

for air pollution in Figure 1 also suggests that the reduction in air pollution becomes stronger 

                                                 
6 We do not use precipitation from the station-based data due to its low frequency (a large number of stations do 

not record rainfall level). 
7 We use the optimal bandwidth proposed by Imbens and Kalyanaraman (2012). 
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as the lockdowns go into effect for a longer period. This is understandable, since a short period 

of time may not be sufficient to detect the changes in air quality. 

 We report the estimation results for Equation (3) in Table 2, which shows estimates using 

two data samples: the satellite data (panel A) and the station-based data (panel B). We consider 

three different bandwidths, 30 days, 60 days, and 90 days before and after the lockdowns. As 

suggested by Figure 1, a wider time window from the lockdown date can capture a stronger 

impact of the lockdowns on air quality. Our preferred models are, again, those that control for 

weather conditions (columns 2, 4, and 6). In each panel of Table 2, we estimate four models 

using four different functional forms of the running variable as discussed earlier.  

 The estimation results using the satellite data, our main data for analysis, shows that air 

quality improves after the lockdowns, and the results are strongly statistically significant at the 

5% level or less (panel A). The estimates are rather qualitative similar whether we include 

control variables or not. Specifically, the estimated coefficient on the lockdown variable is 

negative and statistically significant at the 1 percent level using the linear model (panel A, 

column 2). This indicates that the lockdown leads to a 2.097 (mol/km2) decrease in the global 

concentration of NO2 after 90 days. This translates into a 9.1 percent decrease compared to an 

average value of NO2 of 22.914 mol/km2 before the lockdowns. We also find that using 

different functional forms (models 2 to 4) results in similar estimates. Finally, the negative 

impacts of lockdowns on NO2 are rather consistent across bandwidths, but have a smaller 

magnitude with narrower bandwidths (as also seen with Figure 1). The decreases in 

concentration of NO2 are roughly 5 percent for 60 days (panel A, column 4) and 2 percent for 

30 days (panel A, column 6) after the lockdowns, respectively. 

 We turn next to the alternative station-based data and find a strong impact of the 

lockdowns on PM2.5 using the bandwidth of 90 days (panel B, column 2). The global decrease 

in PM2.5 for 90 days after the lockdowns hovers around 3 to 4 percent depending on the 
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functional form that we employ. But estimates become statistically insignificant for the shorter 

bandwidths of 60 days and 30 days. We then use different measures of air pollution available 

from the station-based data and reach a similar conclusion. Specifically, the results presented 

in Table A4 (Appendix 1) confirm the beneficial effects of lockdowns on air quality, as 

measured by NO2 and PM10, 90 days before and after the lockdowns. While there is no evidence 

of the lockdown effect on SO2, the indicator O3 is found to be positively associated with the 

lockdowns at the windows of 90 days and 60 days. A possible explanation for the increase in 

concentration of O3 is warmer weather during this period (Tobías et al., 2020). 

 

4.2. Robustness tests 

In this section, we conduct a battery of robustness tests on the estimation results. These include 

employing a nonparametric RDD method, adding different covariates to the regressions, using 

wider time bandwidths and different thresholds and versions of the stringency index, 

controlling for potentially differential time trends across countries, and converting the air 

quality variables into logarithmic form.  

 First, since employing specific functional forms can affect the parametric RDD 

estimation results, we adopt a nonparametric RDD method for robustness checks. An important 

feature of the nonparametric method is that the bandwidth is not selected arbitrarily; instead, it 

is calculated on a data-driven basis. In Table A5 (Appendix 1), we report the results of non-

parametric specifications using two optimal bandwidths: the one common mean squared error 

(MSE) bandwidth and the two selectors MSE-optimal bandwidth (MSE-2). We find consistent 

impacts of the lockdowns on NO2 using the satellite data, while there is little evidence of the 

impacts on PM2.5 using the alternative station-based data.  

 Second, our estimation results are rather similar whether we control for weather 

conditions in our RDD regressions. For further checks, we include additional covariates to 
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control for the pre-pandemic country characteristics, namely country’s log of GDP per capita 

(in constant 2010 USD), population density, log of energy consumption per capita, the number 

of motor vehicles per 1,000 inhabitants, and the share of electricity generated by coal power. 

These country characteristics come from the World Development Indicators (WDI) database 

in the latest year when data is available. The estimation results in Table A6 (Appendix 1) are 

consistent with our main findings. 

 Third, a potential issue with daily air pollution data is that these data can substantially 

vary from one day to another because of variations in emission and changes in weather 

conditions. Therefore, we replicate our parametric RDD approach using a weekly indicator. 

We employ different bandwidths of 5, 10 and 15 weeks before and after the lockdown date. 

The results are presented in Table A7 (Appendix 1), which are generally consistent with the 

main findings in Table 2. 

 Fourth, the lockdown dates are identified based on the stringency index becoming 

positive. As a robustness check, we also plot the estimated impacts of lockdowns from Model 

4 in Table 2 for other thresholds of the stringency index that range from 0 to 50% (on a scale 

of 0-100%). The estimation results, shown in Figure A3 (Appendix 1), indicate that using 

thresholds up to roughly 10% yields very similar results. The lockdown impacts, however, 

become much weaker for thresholds of larger values but remain strongly statistically 

significant. Fifth, we use alternative measures of stringency index taken from the OxCGRT 

dataset. There are two versions of the stringency index: (i) a “regular” version which returns 

null values if there are insufficient data to calculate the index, and (ii) a “display” version which 

extrapolates to smooth over the last seven days of the index based on the most recent complete 

data. We use the latter indicator for our main analysis, but we also find consistent results using 

the “regular” version (Appendix 1, Table A8). 
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 Sixth, the stringency index in the OxCGRT dataset is calculated using a simple additive 

unweighted approach. It is thus possible that some dimensions with higher weights will be 

underestimated in the index. To address this issue, we create a new index based on the Principal 

Component Analysis (PCA) method for all the dimensions of stringency index. Table A9 in 

Appendix 1 shows similar estimation results for our own index.8 Seventh, we further explore 

other indexes that are available from the OxCGRT dataset. They include: (i) Government 

response index, (ii) Containment and health index, and (iii) Economic support index.9 

Compared to our main measure, the government response index and the containment and health 

index include two additional dimensions: testing policy and contact tracing. Still, we find a 

consistent impact of the lockdowns on air pollution when using these indexes, except for the 

economic support index when using small bandwidths of 60 days and 30 days (Appendix 1, 

Table A10). However, the economic support index only includes income support programs and 

debt relief programs, so it does not fully capture the overall responsiveness of the government. 

 Eighth, we also check whether our results are driven by differential time trends across 

countries. We include in the regressions the interaction terms of country dummies with linear 

time trends. The results, presented in Table A11 (Appendix 1), are generally consistent with 

our main findings. They become somewhat weaker for NO2 but stronger for PM2.5 for the  30 

day bandwidth. Finally, our findings also remain consistent when we use the logarithmic form 

of the air quality variable (Appendix 1, Table A12). 

 

4.3. Heterogeneity analysis 

                                                 
8 A notable change is that the lockdowns have positive impacts on NO2 concentration for the 30 day bandwidth, 

but this is only marginally statistically significant. Another change is that the lockdowns now have negative 

impacts on PM2.5, and these impacts are strongly statistically significant. 
9 Another index is Legacy stringency index; however, it is not recommended by the OxCGRT team (Hale et al., 

2020).  
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Having shown that changes in air quality are driven by COVID-19, it is useful to understand 

whether the impacts of lockdowns differ by certain country characteristics. In particular, the 

impacts of lockdowns can vary according to a country’s geographic location. For example, 

cities near the deserts are often affected by sand and dust storms, which can strongly impact 

air quality. We thus interact a dummy variable indicating whether a country is near the equator 

with the treatment variable. The results presented in panel A of Table 3 show that countries 

near the equator have a higher concentration of NO2 after the lockdowns. 

 A country’s institution may also affect the impacts of lockdowns. A large body of 

economic literature has shown the important role of institutions and culture in shaping 

economic development (e.g. Gorodnichenko and Roland, 2017; Acemoglu et al., 2019). 

Consequently, we use the democracy index from the 2019 report of the Economist Intelligence 

Unit. We expect that countries with strong institutions likely implement stringent policies 

during the time of COVID-19, and therefore have a better performance in terms of air quality. 

The results in panel B of Table 3, however, provide little support for this argument. In contrast, 

partial democratic countries and countries with hybrid regime appear to have less reduced air 

pollution after the lockdowns than authoritarian countries. 

 Another useful heterogeneity analysis is whether countries with a high level of openness 

have more reduced air pollution after the lockdowns. Whether trade is good or bad for the 

environment has been a topic of debate in the literature. While evidence exists on the beneficial 

effects of trade on the environment (e.g. Antweiler et al., 2001; Frankel and Rose, 2005), other 

studies show that trade openness could in fact lead to higher emissions (Managi et al., 2009, Li 

et al., 2015). To answer this question, we interact a country’s share of manufacturing and share 

of trade in its GDP (from the 2019 World Development Indicators (WDI) database) with the 

treatment variable. The estimation results, presented in panels C and D of Table 3, show that 
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countries with a larger share of trade or manufacturing have more reduced air pollution after 

the lockdowns. 

 Finally, we examine whether countries with existing lower levels of air pollution may 

reduce air pollution more. We use the WHO Global Ambient Air Quality Database that 

summarizes concentration of PM2.5 at the country level in 2018. We then split our sample into 

five quintiles and interact each with our treatment variable. The results in panel E indicate that 

countries with an initially lower level of air pollution (i.e., the 1st quintile) have more reduced 

air pollution compared to those with initially higher levels of air pollution. For further 

illustration, we interact our treatment variable with the country dummies and plot the estimated 

interaction terms against countries’ initial level of air quality in Figure A4 (Appendix 1). We 

highlight a country’s population size by drawing a bubble graph, where the size of a country’s 

circle is proportionate to its population size. Figure A4 shows countries bunching to the left of 

the graph and below the zero (no change) line, confirming that countries with better air quality 

before the pandemic tend to have higher reduction of NO2. Several countries with a large 

population size that improved air quality stand out, including China, Iraq, Norway, Russia, 

South Korea, and the United States.  

  

4.4. Stringency index and mobility restriction 

Once we established the causal impacts of COVID-19 on air pollution, we shift our attention 

to the role of mobility restrictions as a potential mechanism. Due to COVID-19, human 

mobility and relevant production and consumption activities have since decreased 

significantly. Given that one main source of air pollution comes from traffic mobility (Viard 

and Fu, 2015), it is reasonable to argue that more stringent policies will result in less mobility, 

thereby improving air quality.  
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 We directly test this hypothesis by using data from the Google Community Mobility 

Reports. Since mobility data were not available before the lockdown date, we are unable to 

apply the more rigorous RDD approach. Consequently, we estimate the panel data model with 

the country and time fixed effects in Equation (1). The estimation results obtained by the panel 

model are in fact qualitatively similar to those obtained by the RDD approach. As such, 

applying the panel data can provide some qualitative evidence on the mechanism of impacts. 

 We present the estimation results in Table 4, which show that geographic mobility has 

declined significantly where government policies are more stringent. In particular, a higher 

stringency index is associated with less mobility in both ‘essential services’ (e.g., grocery and 

pharma, workplace) and ‘non-essential services’ (retail and recreation, parks), but more 

mobility in the ‘residential’ category.  

 

5. Conclusions 

We contribute to the emerging literature on COVID-19 by offering the first study that provides 

cross-national evidence on the causal impacts of COVID-19 on air pollution. We assemble a 

rich database from a number of different reliable sources, which we analyze with panel data 

and RDD econometric models.   

 Our findings provide a better understanding of the unexpected positive impacts of the 

pandemic on air quality. We find heterogeneous impacts for different country characteristics 

such as shares of trade and manufacturing in the economy, initial levels of air pollution or 

proximity to the equator. We identify reduced mobility as a potential channel that can help 

reduce air pollution. Our findings suggest that while mobility restrictions appear not to be a 

long-term solution to address air pollution, reducing nonessential individual movements can 

help improve air quality on a global scale. A promising direction for future research can be 

more in-depth country studies on the impacts of the pandemic on air quality.
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Figure 1: COVID-19 lockdowns and air pollution 
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Table 1: Government response to COVID-19 and air pollution  

  ADM1/City level Country level 

 (1) (2) (3) (4) 

Panel A: Air quality is measured by NO2 (satellite data) 

Stringency index -0.032*** -0.040*** -0.040*** -0.033*** 

 (0.003) (0.003) (0.012) (0.010) 

Controls No Yes No Yes 

Country FE Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes 

Observations 250,838 248,120 14,850 14,712 

R-squared 0.381 0.381 0.657 0.658 

Panel B: Air quality is measured by PM2.5 (station-based data) 

Stringency index -0.165*** -0.130*** -0.176*** -0.150*** 

 (0.019) (0.017) (0.050) (0.041) 

Controls No Yes No Yes 

Country FE Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes 

Observations 81,478 75,048 12,784 11,986 

R-squared 0.449 0.456 0.591 0.614 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of panel model. Robust standard 

errors in parentheses. Standard errors are clustered at ADM1/city level in columns 

(1) and (2), and country level in columns (3) and (4). Regressions in columns (2) 

and (4) include country dummies and week dummies. Control variables are daily 

temperature and rainfall (humidity for station-based data). 
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Table 2: COVID-19 lockdowns and air pollution 

Panel A: Satellite air pollution 

Air quality: +/-90 days +/-60 days +/-30 days 

NO2 (1) (2) (3) (4) (5) (6) 

Model 1: Linear model 

Lockdown=1 -2.037*** -2.097*** -1.209*** -1.219*** -0.568** -0.535** 

 (0.231) (0.229) (0.220) (0.221) (0.223) (0.225) 

Model 2: Linear interaction model 

Lockdown=1 -1.973*** -2.057*** -1.182*** -1.185*** -0.540** -0.505** 

 (0.229) (0.229) (0.219) (0.220) (0.221) (0.223) 

Model 3: Quadratic model 

Lockdown=1 -1.987*** -2.078*** -1.197*** -1.206*** -0.551** -0.517** 

 (0.229) (0.229) (0.220) (0.221) (0.222) (0.224) 

Model 4: Quadratic interaction model 

Lockdown=1 -1.986*** -2.075*** -1.184*** -1.192*** -0.613*** -0.583*** 

 (0.229) (0.229) (0.220) (0.221) (0.224) (0.226) 

Means before lockdowns 22.914 22.914 23.316 23.316 22.719 22.719 

Controls No Yes No Yes No Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 381,872 378,101 255,628 252,991 128,041 126,799 

 

Panel B: Station-based air pollution 

Air quality:  +/-90 days +/-60 days +/-30 days 

PM2.5 (1) (2) (3) (4) (5) (6) 

Model 1: Linear model 

Lockdown=1 -4.539*** -2.665*** -1.952* -0.288 0.903 -0.669 

 (0.925) (0.912) (1.007) (0.914) (1.008) (1.047) 

Model 2: Linear interaction model 

Lockdown=1 -3.905*** -2.182** -1.386 0.127 1.195 -0.493 

 (0.917) (0.900) (0.996) (0.905) (1.002) (1.049) 

Model 3: Quadratic model 

Lockdown=1 -4.057*** -2.271** -1.520 0.063 1.104 -0.570 

 (0.919) (0.901) (0.999) (0.905) (1.001) (1.049) 

Model 4: Quadratic interaction model 

Lockdown=1 -3.886*** -2.159** -1.331 0.081 1.295 -0.367 

 (0.918) (0.900) (0.996) (0.903) (1.007) (1.048) 

Means before lockdowns 64.599 64.599 66.015 66.015 67.544 67.544 

Controls No Yes No Yes No Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 93,941 82,193 63,779 52,502 33,151 24,910 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD. Robust standard errors in 

parentheses. Standard errors are clustered at city level. Air pollution in panel A and panel B is respectively 

measured by NO2 from satellite data and PM2.5 from station-based data. Model 1 uses running variable in 

linear form, Model 2 includes interaction of running variable and treatment variable, Model 3 includes 

quadratic term of running variable, Model 4 includes interactions of running variable (linear and quadratic 

terms) with treatment variable. All regressions include country dummies and week dummies. Control 

variables are daily temperature and humidity. 
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Table 3: Heterogeneity tests 

Air quality: NO2 +/-90 days +/-60 days +/-30 days 

 (1) (2) (3) 

Panel A: Location    
Lockdown*Countries near equator 4.069*** 3.531*** 1.945*** 

 (0.279) (0.274) (0.246) 

Observations 378,101 252,991 126,799 

Panel B: Democracy       

Reference: Authoritarian    

Lockdown*Hybrid regime 1.097* 1.399** 0.852 

 (0.656) (0.692) (0.574) 

Lockdown*Partial democracy 1.055* 1.141* -0.210 

 (0.605) (0.662) (0.555) 

Lockdown*Full democracy -0.504 0.458 -0.677 

 (0.797) (0.764) (0.663) 

Observations 341,845 229,054 114,787 

Panel C: Share of trade    

Lockdown*Trade -0.038*** -0.034*** -0.041*** 

 (0.008) (0.009) (0.013) 

Observations 293,697 196,456 98,313 

Panel D: Share of manufacturing    

Lockdown*Manufacturing -0.441*** -0.445*** -0.363*** 

 (0.048) (0.057) (0.058) 

Observations 252,656 169,888 85,258 

Panel E: Air pollution index    
Reference: 1st quintile      

Lockdown*2nd quintile   0.995** 0.837** 0.644** 

 (0.406) (0.384) (0.326) 

Lockdown*3rd quintile   1.600*** 1.463*** 1.675*** 

 (0.344) (0.344) (0.336) 

Lockdown*4th quintile   -1.433** -0.866 0.243 

 (0.649) (0.610) (0.518) 

Lockdown*5th quintile   -0.038 -0.686 -0.208 

 (0.586) (0.661) (0.583) 

Observations 373,444 249,859 125,275 

Means before lockdowns 22.914 23.316 22.719 

Controls Yes Yes Yes 

Country FE Yes Yes Yes 

Time FE Yes Yes Yes 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include 

interactions of running variable (linear and quadratic terms) with treatment variable. 

Robust standard errors in parentheses. Standard errors are clustered at ADM1 level. 

Air pollution is measured by NO2 from satellite data. All regressions include country 

dummies and week dummies. Control variables are daily temperature and rainfall. 
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Table 4: Stringency index and mobility restriction 

Mobility changes 
Retail and 

recreation 

Grocery and 

pharmacy 
Park Transit Workplaces Residential 

 (1) (2) (3) (4) (5) (6) 

Panel A: Sub-national level 

Stringency index -0.819*** -0.384*** -0.586*** -0.766*** -0.619*** 0.291*** 

 (0.009) (0.013) (0.013) (0.012) (0.007) (0.003) 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 364,599 351,147 211,813 245,560 458,450 254,625 

R-squared 0.726 0.461 0.424 0.605 0.656 0.724 

Panel B: Country level 

Stringency index -0.764*** -0.478*** -0.536*** -0.787*** -0.594*** 0.284*** 

 (0.021) (0.019) (0.028) (0.018) (0.019) (0.008) 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 13,284 13,284 13,284 13,284 13,284 13,238 

R-squared 0.802 0.608 0.670 0.846 0.710 0.788 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of panel model. Robust standard errors in parentheses. Standard 

errors are clustered at sub-region level in Panel A and country level in Panel B. Results of panel analysis. All 

regressions include country dummies and week dummies. Control variables are daily temperature and rainfall. 
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Appendix 1: Additional Figures and Tables  

Figure A1: Number of countries that introduced lockdowns and policy stringency index, 

OxCGRT database  
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Figure A2: COVID-19 lockdowns and temperature/precipitation 
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Figure A3: Reduction of air pollution using alternative cut-offs of stringency index  

 
Notes: Air pollution is measured by NO2 from satellite data. Each point in the figure shows point 

estimate and 95 percent confidence interval of treatment variable (lockdown) using different percentiles 

of stringency index to construct lockdown date. The parametric RDD model includes interactions of 

running variable (linear and quadratic terms) with treatment variable. The running variable is number 

of days from the lockdown date. We use bandwidth of 90 days before and after the lockdowns. All 

regressions include country dummies and week dummies. Control variables are daily temperature and 

rainfall. 
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Figure A4: Air pollution reduction by country 

 
Notes: Air index is measured by concentration of PM2.5 at country level from the 2018 WHO Global 

Ambient Air Quality Database, where a higher index indicates a higher level of pollution. The figure 

shows the point estimates of the interaction of the treatment variable (lockdown) and the country 

dummies using parametric RDD model. The running variable is the number of days from the lockdown 

date. We use bandwidth of 90 days before and after the lockdowns. Countries are depicted with their 

population sizes taken from 2019 WDI database. All regressions include country dummies and week 

dummies. Control variables are daily temperature and rainfall.
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Table A1: Stringency index components 

Number Components Description 

1 School closing Record closings of schools and universities 

2 Workplace closing Record closings of workplaces 

3 Cancel public events Record cancelling public events 

4 Restrictions on gatherings 
Record the cut-off size for bans on private 

gatherings 

5 Close public transport Record closing of public transport 

6 Stay at home requirements 
Record orders to “shelter-in- place” and 

otherwise confine to home. 

7 Restrictions on internal movement Record restrictions on internal movement 

8 International travel controls Record restrictions on international travel 

9 Public info campaigns Record presence of public info campaigns 

Notes: Each component is measured by an ordinal scale. The stringency index is measured by the 

OxCGRT team as simple averages of the individual component indicators. Each component is 

measured by an ordinal scale (e.g. 0 – no measures, 1 – recommended closing, 2 – require partial 

closing, 3 – require closing all levels). It is then rescaled by maximum value to create a score between 

0 and 100. These scores are then averaged to get the stringency index. 
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Table A2: Manipulation test 

 Bandwidth Observations t-test 

 left right left right t-test p-value 

NO2 (satellite) 7.367 6.694 16,378 16,396 1.170 0.242 

PM2.5 (station-based) 6.741 6.964 4,101 4,308 -0.225 0.822 

Notes: Results of manipulation test developed by McCrary (2008). We implement a 

regression discontinuity (RD) manipulation test using local polynomial density 

estimation following Cattaneo et al. (2018). T-tests and their corresponding p-values 

indicate there is no statistical evidence of systematic manipulation of the running 

variable. 
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Table A3: Data sources and summary statistics 

Variable Descriptions Mean 
Standard 

deviation 
Min Max 

Oxford COVID-19 Government Response Tracker (OxCGRT)   
Source: Blavatnik School of Government at the University of Oxford (https://covidtracker.bsg.ox.ac.uk/)   

  
Stringency index Government responses to COVID-19 (Score between 0 and 100) 44.751 35.254 0 100 

Government response index 41.404 31.499 0 96.15 

Containment and health index 44.148 33.202 0 100 

Economic support index  26.331 32.501 0 100 

Satellite air quality (daily)   
Source: European Union’s Copernicus programme (https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p)   

  

NO2 Nitrogen dioxide 20.458 26.334 -43.400 886 

Satellite weather data (daily)   
Source: National Oceanic and Atmospheric Administration (NOAA) (https://www.ncep.noaa.gov)   

  
Rainfall  Average rainfall (m) 0.0002 0.0003 0.000 0.015 

Temperature Average temperature (K) 289.715 10.399 232.625 313.183 

Station-based data (daily)   
Source: World Air Quality Index (WAQI) project (https://waqi.info/)   

  

PM2.5 Particles with a diameter of 2.5 micrometres or less. 56.291 43.799 1 999 

PM10 Particles with a diameter of 10 micrometres or less. 27.338 25.403 1 999 

NO2 Nitrogen dioxide 10.118 8.442 0 500 

SO2 Sulfur dioxide 4.126 7.895 0 500 

O3 Ozone 19.459 12.670 0 500 

Humidity Average humidity (%) 69.084 19.276 0 122 

Temperature Average temperature (°C) 14.393 9.200 -67.7 93.3 

Mobility rates    
Source: Google Community Mobility Reports (https://www.google.com/covid19/mobility/)   

  
Retail & Recreation Changes in people’s mobility (%) in different categories -22.801 28.661 -100 313 

https://covidtracker.bsg.ox.ac.uk/
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p
https://www.ncep.noaa.gov/
https://waqi.info/
https://www.google.com/covid19/mobility/
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Grocery & pharmacy -6.118 21.645 -100 345 

Park -2.925 51.956 -100 616 

Transit -27.151 30.046 -100 497 

Workplaces -23.812 21.033 -94 258 

Residential 10.669 9.177 -25 56 

Other control variables (Table A6)   
Source: World Bank World Development Indicators (https://databank.worldbank.org/source/world-development-indicators)   

  
Energy consumption Energy consumption per capita (kWh) 24,620 25,452 706.246 215,883 

Vehicles Number of motor vehicles per 1,000 inhabitants 200.713 217.914 1.000 797 

GDP GDP per capita (in constant 2010 USD) 13,260 17,763 208.075 111062 

Population density People per sq. km of land area 164.668 586.711 0.137 20480 

CO2 emissions CO2 emissions (kg per 2010 US$ of GDP) 0.516 0.374 0.056 2.004 

Electricity Electricity production from coal sources (% of total) 19.917 24.166 0.000 96.360 

Other control variables (Table 3)   
Democracy index 2019 Economist Intelligence Unit Report (https://www.eiu.com/topic/democracy-index) 54.714 20.579 13.200 98.700 

Air index 2018 WHO Global Ambient Air Quality Database (https://www.who.int/airpollution/data) 36.234 31.953 4.071 203.744 

 

 

https://databank.worldbank.org/source/world-development-indicators
https://www.eiu.com/topic/democracy-index
https://www.who.int/airpollution/data
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Table A4: COVID-19 lockdowns and air pollution – Other parameters of pollution 

  (1) (2) (3) 

Bandwidths +/-90 days +/-60 days +/-30 days 

Panel A: Air quality is measured by PM10  

Lockdown=1 -1.529*** -0.423 -0.694 

 (0.552) (0.546) (0.582) 

Means before 

lockdowns 30.676 30.904 31.242 

Observations 80,024 51,207 24,208 

Panel B: Air quality is measured by NO2  

Lockdown=1 -1.523*** -0.709*** 0.180 

 (0.233) (0.214) (0.200) 

Means before 

lockdowns 12.747 12.899 12.815 

Observations 79,912 51,094 24,090 

Panel C: Air quality is measured by O3  

Lockdown=1 2.214*** 1.132*** -0.608** 

 (0.308) (0.214) (0.251) 

Means before 

lockdowns 14.982 14.493 14.464 

Observations 74,209 47,295 22,372 

Panel D: Air quality is measured by SO2  

Lockdown=1 -0.457 -0.325 0.466 

 (0.331) (0.417) (0.649) 

Means before 

lockdowns 4.535 4.697 4.866 

Observations 67,689 43,341 20,628 

Controls Yes Yes Yes 

Country FE Yes Yes Yes 

Time FE Yes Yes Yes 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD 

that include interactions of running variable (linear and quadratic 

terms) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at city level. Air 

pollution parameters are derived from station-based data. All 

regressions include country dummies and week dummies. Control 

variables are daily temperature and humidity. 
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Table A5: COVID-19 lockdowns and air pollution – Optimal bandwidth 

 Satellite NO2 Station-based PM2.5 

Optimal bandwidth: MSE-1 MSE-2 MSE-1 MSE-2 

Lockdown=1 (Conventional) -0.718*** -1.046*** 0.264 -0.029 

 (0.210) (0.214) (0.912) (0.945) 

Means before lockdowns 22.914 22.914 64.599 64.599 

Controls Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes 

Observations 184,782 216,911 36,162 36,875 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of RDD use the optimal bandwidths 

based on Calonico et al. (2019). Standard errors are in parentheses and are obtained 

by clustering at ADM1 level (satellite data) and city level (station-based data). Mean 

of air quality before lockdowns is calculated 90 days before the official dates of 

lockdowns. Control variables are daily temperature and rainfall (humidity for station-

based data). 
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Table A6: COVID-19 lockdowns and air pollution – RDD with additional covariates 

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Lockdown=1 -3.345*** -1.944*** -0.964*** -3.322*** -1.195 -0.240 

 (0.365) (0.299) (0.340) (1.075) (1.160) (1.146) 

Controls Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Means before 

lockdowns 
22.914 23.316 22.719 64.599 66.015 67.544 

Observations 272,653 182,163 90,934 76,486 48,857 23,215 

R-squared 0.201 0.205 0.204 0.428 0.448 0.472 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions 

of running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1 level. Control variables are daily 

temperature and rainfall (humidity for station-based data), log of GDP per capita (constant 

2010 USD), population density, log of energy consumption per capita, motor vehicles per 

1,000 inhabitants, and share of electricity generated by coal power. All regressions include 

week dummies. 
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Table A7: COVID-19 lockdowns and air pollution - Weekly data   

Panel A: Satellite air pollution 

Air quality: +/-15 weeks +/-10 weeks +/-5 weeks 

NO2 (1) (2) (3) (4) (5) (6) 

Model 1: Linear model 

Lockdown=1 -2.291*** -2.380*** -1.235*** 0.129 -0.231 -0.216 

 (0.239) (0.239) (0.229) (0.467) (0.254) (0.257) 

Model 2: Linear interaction model 

Lockdown=1 -2.087*** -2.201*** -1.163*** -1.146*** -0.150 -0.114 

 (0.235) (0.235) (0.227) (0.227) (0.247) (0.250) 

Model 3: Quadratic model 

Lockdown=1 -2.110*** -2.232*** -1.196*** -1.193*** -0.172 -0.142 

 (0.236) (0.236) (0.227) (0.228) (0.249) (0.252) 

Model 4: Quadratic interaction model 

Lockdown=1 -2.098*** -2.217*** -1.191*** -1.185*** -0.257 -0.240 

 (0.235) (0.236) (0.228) (0.228) (0.256) (0.259) 

Means before lockdowns 22.756 22.756 23.225 23.225 22.955 22.955 

Controls No Yes No Yes No Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 435,571 431,344 296,819 293,832 146,864 145,443 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD. Robust standard errors in parentheses. 

Standard errors are clustered at ADM1 level. Air pollution is measured by NO2 from satellite data. Model 1 

uses running variable in linear form, Model 2 includes interaction of running variable and treatment variable, 

Model 3 includes quadratic term of running variable, Model 4 includes interactions of running variable (linear 

and quadratic terms) with treatment variable. All regressions include country dummies and week dummies. 

Control variables are daily temperature and rainfall. 

 

Panel B: Station-based air pollution 

Air quality: +/-15 weeks +/-10 weeks +/-5 weeks 

PM2.5 (1) (2) (3) (4) (5) (6) 

Model 1: Linear model 

Lockdown=1 -4.950*** -3.191*** -2.481** -0.756 -0.115 -1.099 

 (0.914) (0.941) (1.054) (0.989) (1.131) (1.144) 

Model 2: Linear interaction model 

Lockdown=1 -4.160*** -2.597*** -1.619 -0.203 0.732 -0.560 

 (0.902) (0.919) (1.044) (0.979) (1.100) (1.129) 

Model 3: Quadratic model 

Lockdown=1 -4.466*** -2.797*** -1.852* -0.358 0.595 -0.689 

 (0.905) (0.923) (1.046) (0.980) (1.098) (1.127) 

Model 4: Quadratic interaction model 

Lockdown=1 -4.173*** -2.505*** -1.461 -0.050 0.436 -0.660 

 (0.907) (0.930) (1.044) (0.978) (1.141) (1.167) 

Means before lockdowns 63.477 63.477 65.666 65.666 66.682 66.682 

Controls No Yes No Yes No Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 107,611 95,855 73,452 61,863 38,031 28,633 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD. Robust standard errors in parentheses. 

Standard errors are clustered at city level. Air pollution is measured by PM2.5 from station-based data. Model 

1 uses running variable in linear form, Model 2 includes interaction of running variable and treatment 

variable, Model 3 includes quadratic term of running variable, Model 4 includes interactions of running 

variable (linear and quadratic terms) with treatment variable. All regressions include country dummies and 

week dummies. Control variables are daily temperature and humidity. 
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Table A8: COVID-19 lockdowns and air pollution – ‘Regular’ stringency index 

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Lockdown=1 -2.097*** -1.219*** -0.535** -2.665*** -0.288 -0.669 

 (0.229) (0.221) (0.225) (0.912) (0.914) (1.047) 

Means before 

lockdowns 
22.914 23.316 22.719 64.599 66.015 67.544 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 378,101 252,991 126,799 82,193 52,502 24,910 

R-squared 0.386 0.397 0.411 0.525 0.562 0.603 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions 

of running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1/city level. All regressions include country 

dummies and week dummies. Control variables are daily temperature and rainfall (humidity 

for station-based data). 
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Table A9: Stringency index and air pollution – Principal Component Analysis 

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Lockdown=1 -0.878*** -0.296 0.393* -1.758* 1.118 -2.563** 

 (0.201) (0.233) (0.218) (0.910) (1.040) (1.157) 

Means before 

lockdowns 
22.914 23.316 22.719 64.599 66.015 67.544 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 351,376 256,242 128,826 82,214 52,795 25,344 

R-squared 0.378 0.373 0.354 0.503 0.546 0.570 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions 

of running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1/city level. Stringency index is constructed 

using Principal Component Analysis. For all dimensions of stringency index, see Table A1 

(Appendix). All regressions include country dummies and week dummies. Control variables 

are daily temperature and rainfall (humidity for station-based data). 
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Table A10: Stringency index and air pollution – Alternative stringency indexes 

  Air pollution: NO2 

Bandwidth +/-90 days +/-60 days +/-30 days 

Panel A: Government response index 

Lockdown=1 -2.372*** -1.376*** -0.715*** 

 (0.231) (0.215) (0.248) 

Observations 378,254 251,973 125,976 

R-squared 0.388 0.399 0.411 

Panel B: Containment and health index 

Lockdown=1 -2.463*** -1.454*** -0.872*** 

 (0.230) (0.215) (0.245) 

Observations 377,986 251,983 125,978 

R-squared 0.389 0.399 0.411 

Panel C: Economic support index 

Lockdown=1 0.129 0.492*** 0.638*** 

 (0.172) (0.172) (0.218) 

Observations 323,154 242,563 125,164 

R-squared 0.384 0.368 0.377 

Means before 

lockdowns 
22.914 23.316 22.719 

Controls Yes Yes Yes 

Country FE Yes Yes Yes 

Time FE Yes Yes Yes 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that 

include interactions of running variable (linear and quadratic) with 

treatment variable. Robust standard errors in parentheses. Standard 

errors are clustered at ADM1 level. All indexed are taken from “display” 

version of OxCGRT which will extrapolate to smooth over the last seven 

days of the index based on the most recent complete data. All regressions 

include country dummies and week dummies. Control variables are 

daily temperature and rainfall (humidity for station-based data). 
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Table A11: COVID-19 lockdowns and air pollution – Country linear time trend   

 

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Model 1: Linear model 

Lockdown=1 -2.116*** -1.113*** -0.441* -2.979*** -0.347 -2.702** 

 (0.232) (0.221) (0.238) (0.923) (0.916) (1.099) 

Model 2: Linear interaction model 

Lockdown=1 -2.081*** -1.067*** -0.384 -2.484*** 0.104 -2.508** 

 (0.231) (0.220) (0.235) (0.909) (0.903) (1.089) 

Model 3: Linear interaction model 

Lockdown=1 -2.106*** -1.092*** -0.407* -2.575*** 0.043 -2.599** 

 (0.232) (0.220) (0.236) (0.910) (0.904) (1.092) 

Model 4: Quadratic interaction model 

Lockdown=1 -2.102*** -1.073*** -0.550** -2.460*** 0.067 -2.655** 

 (0.231) (0.221) (0.240) (0.910) (0.903) (1.122) 

Means before 

lockdowns 
22.914 23.316 22.719 64.599 66.015 67.544 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Country linear 

time trend Yes Yes Yes Yes Yes Yes 

Observations 378,101 252,991 126,799 82,193 52,502 24,910 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions of 

running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1/city level. Model 1 uses running variable 

in linear form, Model 2 includes interaction of running variable and treatment variable, Model 

3 includes quadratic term of running variable, Model 4 includes interactions of running variable 

(linear and quadratic terms) with treatment variable. All regressions include country dummies, 

week dummies, and interaction of country dummies with linear time trend. Control variables 

are daily temperature and rainfall (humidity for station-based data). 
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Table A12: COVID-19 lockdowns and air pollution – Air pollution in log form   

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Model 1: Linear model 

Lockdown=1 -0.066*** -0.036*** -0.009 -0.050*** -0.020 -0.013 

 (0.006) (0.006) (0.007) (0.014) (0.013) (0.017) 

Model 2: Linear interaction model 

Lockdown=1 -0.065*** -0.034*** -0.007 -0.045*** -0.015 -0.011 

 (0.006) (0.006) (0.007) (0.013) (0.013) (0.017) 

Model 3: Linear interaction model 

Lockdown=1 -0.066*** -0.035*** -0.008 -0.046*** -0.017 -0.012 

 (0.006) (0.006) (0.007) (0.013) (0.013) (0.017) 

Model 4: Quadratic interaction model 

Lockdown=1 -0.065*** -0.033*** -0.008 -0.045*** -0.016 -0.008 

 (0.006) (0.006) (0.007) (0.013) (0.013) (0.017) 

Means before 

lockdowns 
22.914 23.316 22.719 64.599 66.015 67.544 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 374,218 250,161 125,309 82,193 52,502 24,910 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions of 

running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1/city level. Model 1 uses running variable 

in linear form, Model 2 includes interaction of running variable and treatment variable, Model 

3 includes quadratic term of running variable, Model 4 includes interactions of running variable 

(linear and quadratic terms) with treatment variable. All regressions include country dummies 

and week dummies. Air pollutants are in log form. Control variables are daily temperature and 

rainfall (humidity for station-based data). 

 

 


