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ABSTRACT
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Quantiles of the Gain Distribution of an 
Early Childhood Intervention*

We offer a new strategy to identify the distribution of treatment effects using data from the 

Infant Health and Development Program (IHDP), a relatively understudied early-childhood 

intervention for low birth-weight infants. We introduce a new policy parameter, QCD, 

which denotes quantiles of the effect distribution conditional on latent neonatal health. 

The dependence between potential outcomes originates from a new class of factor models 

where latent health can affect the location and shape of distributions. We first show that 

QCD depends on quantiles of marginal outcome distributions given latent health. We then 

achieve identification of these marginal distributions and QCD by proxying latent health 

with neonatal anthropometrics and accounting for measurement error in these proxies. The 

effects of enrolling in IHDP are widely distributed across children and depend on neonatal 

health. Moreover, the large average effects documented in past work for close to normal 

birth weight children from low-income families are driven by a minority of children in this 

group.

JEL Classification:	 C13, C21, I14, J18

Keywords:	 early childhood, factor models, policy evaluation, 
quantile regression, treatment effect distributions

Corresponding author:
Carlos Lamarche
Department of Economics
University of Kentucky
223G Gatton College of Business & Economics
Lexington, KY 40506
USA

E-mail: clamarche@uky.edu

*	 This version: March 26, 2020. The authors would like to thank Aaron Sojourner, Roger Koenker and seminar 

participants at the University of Illinois at Urbana-Champaign, Queen Mary University of London, University of 

Kentucky, University of St. Gallen, and the 14th IZA/CEPR European Summer Symposium for comments on previous 

versions. Financial support from Fondazione CARIPARO (Progetti di Eccellenza) is gratefully acknowledged.



2

1. Introduction

Randomized assignment is ideal for investigating treatment effect heterogeneity, as distri-

butions of potential outcomes with and without treatment are identified by design. If the

distance between these distributions varies over the support, treatment effects must vary

across participants. Quantile treatment effects (QTE) are often used to assess the extent of

heterogeneity, as in influential studies by Heckman et al. (1997), Bitler et al. (2006), and An-

drews et al. (2016), among others. Tests for the equality of potential outcome distributions,

as in Abadie (2002) and Heckman et al. (2010), show that there might be winners and losers

from policy interventions. Heterogeneous treatment effects raise several questions, including

how widely gains are distributed across participants and who benefits from interventions.

As individual gains cannot be identified, many of such policy-relevant questions cannot be

answered in general (Heckman, 2020).

How can one learn about the distribution of gains? We revisit this question using data

from the Infant Health and Development Program (IHDP), a randomized clinical trial which

provided comprehensive early intervention services for children in poor health (IHDP, 1990).

Learning about features of the effect distribution other than its average is particularly rele-

vant in this context, as poor health during childhood is an important mechanism for trans-

mission of economic conditions (Currie and Rossin-Slater, 2015). Besides, although IHDP is

one of the few early-life interventions implemented as randomized experiment, it has received

relatively scant attention from economists to date (Chaparro and Sojourner, 2019, is a re-

cent example). Differently from the Perry Preschool study and the Abecedarian Project, for

which eligibility was income-based, IHDP targeted a demographically heterogeneous popula-

tion of low birth-weight (LBW) children. Moreover, IHDP served both parents and children

at the same time by combining center-based education with regular home visits and parent

group meetings, as explained in Gross et al. (1997) among others.

We adopt a framework where potential outcomes with and without treatment are indepen-

dent conditional on latent factors which affect location and scale of the outcome distribution

in a flexible manner. This setting encompasses the traditional factor model as a special

case and allows for treatment effect distributions which are more general than in past work.

Our first contribution is to consider a collection of new policy parameters denoting quan-

tiles of the conditional distribution (QCD) of treatment effects given the latent factors. In

particular, we show that QTE and all distributional parameters discussed in Heckman et

al. (1997) among others can be derived from knowledge of QCD. We also show that QCD

can be written as a functional of quantiles of marginal outcome distributions conditional on

latent factors. This relationship paves the way for identification and analogue estimation,
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which is computationally convenient and can be applied to a number of empirical contexts

beyond the specific case study.

We take this framework to IHDP data by letting potential outcomes depend on unobserv-

able determinants of neonatal health. QCD in this setting allows us to study, for example,

differences in the gain distribution of children who otherwise would score low on indicators

of health and cognitive development. We additionally use features of the IHDP design to

study how QCD varies with family income. As eligibility for early childhood interventions

is often means tested, we know little about how distributional gains from early childhood

interventions change with family resources. Specifically, past work has considered how the

effects of IHDP vary with income or demographics by looking at differences between group

averages (see, among others, Gross et al., 1997, and Duncan and Sojourner, 2013). The

policy conclusions drawn from this approach rely entirely on the between-group variance of

treatment effects. However, if gains are distributed unevenly within groups, the comparison

between groups can be inadequate to fully address heterogeneity (Bitler et al., 2017). For

example, this comparison could signal no heterogeneity in average effects despite having

large disparities in how gains are distributed within groups. Our empirical investigation of

IHDP data based on QCD offers policy recommendations which are more general than those

obtained from a comparison of averages or from QTEs.

We identify QCD by exploiting smoothness in the relationship between (unobserved) quan-

tiles of the outcome conditional on latent neonatal health and (observed) quantiles of the

outcome conditional on proxies of neonatal health. Specifically, proxying latent health with

observed measurements poses a problem because of measurement error in the proxies. By

adapting results in Angrist et al. (2006), we show that outcome quantiles retrieved using

proxies converge to true quantiles smoothly as measurement error vanishes at zero. If mea-

surement error in these proxies is small, the measurement error variance is the leading term

for this convergence (as shown in Chesher, 2017). We argue that the case of small error

variance is the most relevant in many empirical applications on child development, as the

choice of accurate proxies is often driven by the underlying theory and the measurement

tools employed. Indeed, we show that this is true for IHDP data as well.

We discuss a strategy to simulate the bias arising from measurement error in proxies of

neonatal health at different values of the error variance, and identify quantiles of the out-

come conditional on latent neonatal health by extrapolation to the case of no error. Our

‘identification at zero’ strategy (Lewbel, 2019) requires cross-sectional data, and does not use

instrumental variation or repeated measurements when the researcher has information on the

measurement error variance. We also discuss a more general case when multiple auxiliary
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proxies in a system of equations enable us to identify the measurement error variance. Mon-

tecarlo simulations demonstrate that Cook and Stefanski’s (1994) simulation-extrapolation

method works well and can be applied to IHDP data to obtain quantiles of potential out-

comes conditional on latent health.

Our empirical investigation begins by finding the best proxy of a child’s latent health prior

to IHDP enrollment. As health inherently reflects several prenatal endowments, we consider

gestational age, birth weight, length, and head circumference as possible candidates. The

latter two measurements are markers of prenatal growth and brain development (Conti et al.,

2018). Low birth weight has long been used as an indicator of poor health among newborns,

and its effects on development throughout childhood and life-long well-being are documented

(Almond and Currie, 2011). We show that an exploratory factor analysis of all neonatal

anthropometrics supports a single-factor model for latent neonatal health. Moreover, we

find that birth weight is the measurement of neonatal health with the lowest error variance

(with a noise-to-signal ratio at about 5%).1

After proxying neonatal health with birth weight, we derive our second result - that

a child’s health endowment at birth affects the location and scale of potential outcome

distributions with and without treatment (a fact that a standard factor model would fail

to detect). Specifically, our outcome variables are indicators of cognitive development and

health from conception to age three in the original study (IHDP, 1990). We find that

better health endowment yields better and less dispersed outcomes in the baseline case of

no participation. However, we also find that participation in IHDP orders children in the

outcome distribution depending on neonatal health. This finding invalidates the assumption

of rank similarity conditional on neonatal health (Dong and Shen, 2018, and Frandsen and

Lefgren, 2018b), and serves as a catalyst for investigating treatment effect distributions.

We then present our third finding - that data reveals striking effect heterogeneity across

IHDP participants during the first three years of life, as well as differences in how widely gains

are distributed depending on neonatal health and family income. We estimate treatment

effect distributions for IQ which are skewed towards, and more concentrated around, large

positive values for those children endowed with better health at birth. As a result of this

finding, the share of HLBW children (LBW and above 2000 grams) with positive returns

from participation is 65% and about 20 points larger than in the LLBW group (LBW and

less than 2000 grams). Health-related outcomes show smaller differences between LLBW

and HLBW QCDs compared to IQ.

1We interpret birth weight as the child’s health endowment after netting off demographics that correlate
with other factors during pregnancy that may have affected condition at birth, as discussed for example in
Chaparro and Sojourner (2019).
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We conclude by showing that within income-group variability in treatment effects is at

least as important as between income-group differences in treatment effects. Specifically,

although the literature demonstrated that less well-off children benefited more from IHDP

on average, we find that about 20% of children in the high-income group had gains larger

than the median gain of children in the low-income group. We also show that the larger

average effects for the low-income group are driven by large returns for a minority of children

in this group. Finally, we find that the income gradient in treatment effects is much stronger

for close to normal birth-weight infants, a group for which the causal effects of family income

on health and development are well-documented (e.g., Ko et al., 2020). IHDP findings for

this group are suggestive of the gain distribution from early childhood interventions targeting

low-income families with normal birth-weight children.

Our results connect with a more general literature that aims at estimating heterogeneous

treatment effect distributions. Classical Frechet inequalities yield sharp bounds on the joint

distribution of potential outcomes which are consistent with their marginal distributions.

Heckman et al. (1997) use Frechet inequalities to bound the effect distribution. The re-

sulting bounds are, however, not sharp, which is a result following from Makarov (1981).

Fan and Park (2010) and Firpo and Ridder (2019) obtain sharp bounds on the distribu-

tion of the treatment effect. Several studies have proposed alternative bounds that make

use of additional assumptions, among which are Manski (1997), Fan et al. (2017), Frand-

sen and Lefgren (2018a), and Callaway (2019). The effect distribution is point-identified if

each unit maintains the same rank across potential outcome distributions (rank invariance).

Point-identification is also achieved if gains are independent of the non-participation out-

come. In our case study, this condition implies that IHDP would spread gains equally across

children with high and low outcomes in the status quo. This can be an overly restrictive

condition in ours and many other contexts. The approach developed in this paper yields

point-identification of gain distributions and a computationally convenient estimation strat-

egy that works well when one has good proxies of the latent factors causing the dependence

between potential outcomes.

The remainder of the paper is organized as follows. Section 2 provides the institutional

details underlying IHDP implementation and describes the working sample. It also shows

average and quantile treatment effects, setting the stage for investigating treatment effect

distributions in Section 3. QCD is defined in Section 4, where the assumptions maintained

throughout the paper are also presented. Section 5 presents identification results, Section

6 discusses estimation, and Section 7 offers a simulation study on the performance of the

proposed approach. Our empirical investigation of the IHDP is presented in Section 8 and
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Section 9 concludes. Derivations of mathematical results are provided in Appendices A, B,

and C, and additional empirical results in the Online Appendix.

2. Context, Data, and Descriptive Statistics

Working Sample. We use data from IHDP, a randomized clinical trial implemented start-

ing in 1985 to enhance the cognitive, behavioral, and health status of low birth weight (less

than 2500 grams) and premature (less than 37 weeks) infants born in catchment areas of

selected US medical institutions.2 Its most unique feature is perhaps the population tar-

geted, as in early childhood development interventions eligibility typically depends on the

socio-economic status of parents. IHDP provided services following a center-based and home-

based curriculum. The program consisted of activities to foster child functioning provided

in specialized institutions, pediatric follow-ups, frequent home visits, parent support groups,

and a systematic educational program (see Gross et al., 1997, and Elango et al., 2016). The

intervention lasted until the age of 3, and data were collected on treatment and control

children until the age of 18.

The size of the IHDP sample parallels that of many other model programs in the literature.

Two strata were considered at the randomization stage: the “lighter” low birth-weight group

(LLBW, less than 2000 grams), and the “heavier” low birth-weight group (HLBW, between

2000 and 2500 grams). We use children from both strata in the primary analysis dataset,

which is the sample considered in IHDP (1990). This selection yields a sample of 985 infants,

of which 377 belong to the treatment group and 608 to the control group.

Our analysis is restricted to three outcomes among those considered in the original study,

all measured at 36 months. We consider an index of cognitive (IQ) development, the

Stanford-Binet intelligence score, and two indicators of health. Specifically, we use a mor-

bidity index defined as the total number of hospitalizations, outpatient surgeries, injuries

not resulting in hospitalization or outpatient surgery, and different illnesses and conditions

over the first three years of life (higher values of this index indicate lower health). We also

use the General Health Ratings Index, from the Rand Corporation Health Insurance Study,

which is constructed using the maternal perception of child health over the first three years

of life (higher values of this index indicate better health). Due to missing data, our final

sample includes 929 infants, with 343 infants in the HLBW group and 586 infants in the

LLBW group (Table 1).

2Eight institutions were involved in Little Rock, Arkansas; New Haven, Connecticut; Miami, Florida; Cam-
bridge, Massachusetts; Bronx, New York; Philadelphia, Pennsylvania; Dallas, Texas; and Seattle, Washing-
ton. Participating sites were selected through a national competitive review.
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Balancing Tests and Average Effects. The baseline characteristics of treatment and

control groups were comparable at initial assignment. This can be seen from Table 1, where

no significant differences emerge across a number of demographics. The control group av-

erage and standard deviation of each variable at the left are reported in column (1) of

the table. Column (2) shows treatment-control differences obtained from regressions on

the treatment indicator controlling for randomization strata (medical site and birth-weight

group). Outcomes in these regressions are not standardized, and significance is assessed using

heteroskedasticity-robust standard errors. Significant differences emerge in a limited num-

ber of cases, although the size of these differences is negligible when compared to standard

deviations in column (1). This finding is consistent with the fact that randomization did

not yield any particular problem (see IHDP, 1990). Balancing tests shown in the remaining

columns of the table are for LLBW and HLBW groups, and convey a similar message.

IHDP participants showed significantly higher IQ scores, on average, in both the heavier

and lighter birth-weight groups. This can be seen from columns (2), (6), and (10) in Panel

A of Table 2, which presents treatment effect estimates from regressions of outcomes on the

participation indicator controlling for randomization strata. IHDP yielded a 9-point increase

in mean IQs from a baseline of about 84 points (or about 0.45σ using the standard deviation

in the control group), as shown in column (1). Results for IQ were considerably stronger for

HLBW children, as shown in column (6), and estimated at about 13.6 points from a baseline

of about 85, or about 0.72σ. Columns (3), (7), and (11) in Panel A report treatment effect

estimates obtained from regressions that include mother demographics (shown in Panel B of

Table 1). The estimates shown in columns (4), (8), and (12) are from regressions with both

mother demographics and infant demographics at birth (Panel A of Table 1). Demographics

at baseline are used in these specifications to control for residual differences in the treatment

and control groups, and yield similar conclusions.

The average gains on health were smaller than for IQ and driven by LLBW children, as

shown in Panel B of Table 2. Columns (2) to (4) show that, at the age of three, IHDP

participants had about one more reported episode of illness (the morbidity index effect is

in the 0.84 to 0.94 range depending on the specification adopted). However, there are no

statistically significant improvements, on average, using the General Health Ratings Index.

Estimates in columns (10) to (12) demonstrate that the effects on health are concentrated in

the lighter birth-weight group. In line with other influential studies, we conclude that aver-

age effects show relatively more substantive promise for reducing the risk of developmental

disability later in life for LLBW premature infants.
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Treatment Effect Heterogeneity. Figure 1 weighs against the possibility of constant

gains from IHDP enrollment. Dots reported here are QTE estimates for the three out-

comes in our analysis. Treatment-control differences at each quantile are obtained from

quantile regressions on the treatment indicator controlling for randomization strata, mother

demographics and infant demographics at birth. Each panel in the figure also plots values

generated by a local linear regression (LLR) fit to estimated QTEs, along with confidence

intervals obtained from 100 bootstrap replications. The LLR smoother uses a triangular

kernel and optimal bandwidth determined from the procedure in Calonico et al. (2019). We

find that QTEs appear to vary across quantiles.3 For example, the figure shows a difference

across outcomes of at least 26% from the 0.1 quantile to the 0.9 quantile.

Treatment effect heterogeneity is likely the result of changes in a child’s rank in potential

outcome distributions with and without IHDP. We reach this conclusion by looking at the

interaction between key neonatal anthropometrics (birth weight, length, and head circum-

ference) and ranks in observed outcome distributions for participants and non-participants.

The rationale for considering this relationship stems from the idea of rank similarity, which

is often used as a benchmark in empirical work (see Chernozhukov and Hansen, 2005, Dong

and Shen, 2018, and Frandsen and Lefgren, 2018b). Specifically, under rank similarity the

distribution of ranks should be identical for participants and non-participants conditional on

anthropometrics if these variables are “rank shifters”. This assumption is grounded on dis-

cussions in IHDP documentation, early evaluations of the program (IHDP, 1990) and other

studies on child development (for example, Conti et al., 2018). Following the procedure in

Frandsen and Lefgren (2018b), we find that the hypothesis of rank similarity is rejected by

the data used in our study (results are available on request).

3. General Formulation of the Problem

The notation employed in the potential outcome approach to causal inference is used

throughout. All results that follow hold conditional on a p-dimensional vector of covariates

X ∈ Rp, which we suppress for clarity. Let D be the treatment assignment indicator yielding

potential outcomes (Y1, Y0) for IHDP-treatment and IHDP-control children, respectively.

Since only Y = Y0 + D(Y1 − Y0) is observed, identification of the distribution of gains

∆ = Y1−Y0 is precluded because of a missing data problem. Randomized assignment to the

3However, the limited size of treatment and control samples affects the precision around estimates of QTEs,
and the hypothesis of constant gains is only marginally rejected in the data. Figure A.1 in the Online
Appendix reports LLR estimates of QTE first derivatives along with point-wise 95% confidence intervals at
each quantile. Point estimates suggest that QTEs have different slopes across quantiles, weighing against
the hypothesis of constant gains. Confidence intervals, however, are large and include zero in all cases unless
one considers confidence intervals with coverage between 85% and 90% – results are available on request.
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intervention does not eliminate this problem: as randomization reveals only one potential

outcome, a child’s gain is not identified nor is the gain distribution across children.

We model the dependence between potential outcomes as the result of persistent, long

term factors proxying conditions prior to IHDP enrollment. This approach has become a

workhorse in empirical work, and uses a factor model to take the idea to the data (see, among

others, Carneiro et al., 2003, Aakvik et al., 2005, Cunha et al., 2010, and Attanasio et al.,

2020). In this setting, the dependence between latent factors and outcomes is mediated by

the effects of the intervention. Specifically, factor loadings vary with potential outcomes,

which are allowed to have different variances. The model is completed by assuming that the

dependence between potential outcomes Y0 and Y1 is driven entirely by their common latent

factors, as we explain in the next section.4

Our approach yields an expression for the gain distribution which is more general than

the one implied by the traditional factor model. We consider the following equations for

d ∈ {0, 1}:
Yd = λd(Ud)

′Θ+ Ud, (1)

where Θ = (Θ1, . . . ,Θr)
′ is a vector of r continuous random variables (factors) and Ud is

a scalar random component for unexplained variability.5 This model allows factors to be

location-scale shifters for an individual’s rank in the gain distribution, and it also implies:

∆ = (λ1(U1)
′ − λ0(U0)

′)Θ+ U1 − U0. (2)

For example, in the case of a location-scale shift model equation (1) becomes:

Yd = λ′
dΘ+ (1 + γ ′

dΘ)Ud, (3)

where λd = (λ1d, . . . , λrd)
′ are factor loadings, γd = (γ1d, . . . , γrd)

′ are scale parameters and:

λd(Ud) = λd + γdUd. (4)

Equation (3) defines a factor model for potential outcomes, while allowing for heteroskedas-

ticity in the distribution of Yd conditional on Θ if γd is different from zero. The traditional

4Latent factor models have been used in the program evaluation literature also to gain external validity
in regression discontinuity designs (Rokkanen, 2015) and in time-varying treatment effect models (Cooley
Fruehwirth et al., 2016). Chaparro and Sojourner (2019) look at heterogeneity in average effects of IHDP
with respect to variables defined from latent factors.
5The model in (1) is similar to the one in Chen et al. (2019). Specifically, they consider estimation of a class
of factor models for high dimensional data using panel data.
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factor model is obtained by setting γd to zero, in which case Θ becomes a location shifter

in the distribution of ∆.6

Our model also allows for more general violations of rank similarity than in the traditional

factor model. For example, rank similarity conditional onΘ in equation (3) requires identical

distributions for errors of potential outcome equations:

(1 + γ ′
0θ)U0|Θ = θ ∼ (1 + γ ′

1θ)U1|Θ = θ,

which is equivalent to:

(1 + γ ′
0θ)U0 ∼ (1 + γ ′

1θ)U1,

because the vector of latent factor Θ and Ud for d ∈ {0, 1} are assumed independent (see

Assumption 1 below). It follows that rank similarity can be violated here because of differ-

ences in scale parameters, γ0 ̸= γ1, or in the distributions of U0 and U1. Our investigation

of IHDP data yields identical distributions of U0 and U1, but different scale coefficients.7

4. Parameter of Interest and Assumptions

Consider that the variables (Y,D,W ′) are observed for a sample of units randomly

drawn from the relevant population, where Y is a scalar continuous outcome and W =

(W1, . . . ,Wr)
′ is a vector of r continuous random variables. Factors are not observed, but

proxied by W ∈ Rr. The following measurement equation is defined:

W = Θ+ V , (5)

where V = (V1, . . . , Vr)
′ is r×1. Components of the vector (Ud,V

′) ∈ Rr+1, for d ∈ {0, 1}, are
assumed mutually independent and independent of latent factors Θ. Measurement errors V

are assumed to have zero mean. The classical properties of measurement error are maintained

here to connect with factor models used in most empirical work. However, the approach we

take in Section 5 is also valid in more general non-classical models. The independence

restriction could be relaxed, for example by allowing the variance of measurement error to

6More general forms of heteroskedasticity than in equation (3) could be considered without affecting the
results that follow. For example, our identification strategy extends to settings where the loading λd(Ud) is
monotone in Ud. Equation (3) is supported by IHDP data, as we discuss below.
7Simple calculations show that our approach can be used to point-identify the density of scoring at the τ -th
quantile of the Y1 outcome conditional on scoring at the same quantile of the baseline outcome Y0. Using
this result, one can define test statistics for the hypothesis of rank invariance in addition to those discussed
in the literature (Dong and Shen, 2018, and Frandsen and Lefgren, 2018b).



11

depend onΘ (Carroll et al., 2006). This would introduce additional parameters whose values

would need to be specified in the estimation strategy below.8

Assumption 1. (Factor Model Representation). In the model defined by equations

(1) and (5) for d ∈ {0, 1}, the uniqueness Ud, errors in measurement equations V and

latent factors Θ have continuous distributions, with zero mean and finite moments, and are

mutually independent:

FUdV ′Θ(ud,v,θ) = FUd
(ud)

[
r∏

k=1

FVk
(vk)

]
FΘ(θ).

We maintain the assumption that treatment is randomly allocated across units, as in the

case of IHDP. Randomization ensures that treatment and control units are representative

of the same population, so that the conditioning on D is irrelevant. Assumption 2 is made

here for convenience: identification stems from the independence condition in Assumption 1

which is implied by the factor structure, rather than from the assignment mechanism. Our

analysis extends to regression discontinuity designs if units closest to the cutoff are viewed as

being part of a local randomized experiment. Variants to randomization may be considered

to allow for non-random selection into treatment (such as ignorability conditional on some

observables X; see Abbring and Heckman, 2007).

Assumption 2. (Treatment Assignment). The treatment statusD is randomly assigned.

Finally, the conditional independence condition stated in Assumption 3 has been used in

past work to achieve identification of the gain distribution and is standard in the literature

on factor models (see, e.g., Abbring and Heckman, 2007). Together with Assumption 1,

it implies that the dependence between potential outcomes is driven by Θ. Battistin and

Chesher (2014) show that independence conditional on Θ does not imply independence

conditional on W . Thus, the identification results presented below are in general not valid

by just conditioning on W .

Assumption 3. (Conditional Independence) The random variables (U1, U0) are inde-

pendent: FU0U1(u0, u1) = FU0(u0)FU1(u1).

We consider the following parameter:

∆(τ ;θ, u0) := QY1−Y0 (τ |Θ = θ, U0 = u0) ,

8The notation FA(a|B = b) indicates the distribution of random variable A calculated at a conditional on
random variable B taking value b. A similar notation is employed for the conditional τ -quantile function
QA(τ |B = b) ≡ F−1

A (τ |B = b). Joint distributions FAB(a, b) are defined similarly.
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which represents the quantile function of the conditional distribution (QCD) of treatment

effects given Θ = θ and U0 = u0. Specifically, we are interested in the collection of QCDs

at different quantiles of the uniqueness U0 and factors Θ. Knowledge of ∆(τ ;θ, u) allows

to answer policy questions regarding, for instance, how widely gains are distributed in the

IHDP-treatment group, or to study gains for children of this group at specific values of

the base state distribution. Using equation (2), Assumption 1 together with Assumption 3

imply:

∆(τ ;θ, u0) =
(
λ1 (QU1(τ))

′ − λ0(u0)
′)θ +QU1(τ)− u0, (6)

which defines a point-identifying functional conditional on Θ = θ and U0 = u0. Equation

(6) sets the stage for analogue estimation of QCD from knowledge of the quantile functions

QUd
(τ) and QΘ(τ), and factor loadings λd(Ud).

All distributional parameters used in the evaluation literature can be written as weighted

versions of QCDs. For example, QCD is more general than QTE because the latter parameter

can be obtained from knowledge of the former parameter. We discuss some examples next.

Example 1. QCDs are sufficient to retrieve the conditional density of the gain distribution

at values Θ = θ and U0 = u0 using the relationship:

fY1−Y0 (∆ (τ̄ ;θ, u0) |Θ = θ, U0 = u0) =

[
∂

∂τ
∆(τ ;θ, u0)

∣∣∣∣
τ=τ̄

]−1

,

which follows from differentiation of the quantile function. The conditional density of gains

at Θ = θ is obtained by integrating the last expression with respect to:

fU0 (QU0 (τ̄)) =

[
∂

∂τ
QU0 (τ)

∣∣∣∣
τ=τ̄

]−1

.

These expressions can be simplified considerably because of the factor model representation

in (3). Specifically, since:

∂

∂τ
∆(τ ;θ, u0)

∣∣∣∣
τ=τ̄

= (1 + γ ′
1θ)

∂

∂τ
QU1 (τ)

∣∣∣∣
τ=τ̄

,

we have that:

fY1−Y0 (η|Θ = θ) = (1 + γ ′
1θ)

−1

1∫
0

[
∂

∂τ
QU1 (τ)

∣∣∣∣
τ=τη

∂

∂τ
QU0 (τ)

∣∣∣∣
τ=τ0

]−1

dτ0,

where τη ≡ FY1−Y0 (η|Θ = θ, U0 = QU0 (τ0)) is the cumulative distribution at the point η in

the gain distribution conditional on Θ = θ and U0 = QU0 (τ0).
9

9The factor structure in (3) also implies simple expressions for the average relationship between Y1 and the
base state value Y0. For example, E [Y1|Y0 = y0] = λ′

1E [Θ|Y0 = y0] = λ′
1E [W |Y = y0, D = 0].
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Example 2. Integrating out latent factors in equation (6) at the value u = QU0(τ) yields:

QTE = E [∆ (τ ;θ, QU0(τ))] .

It follows that QTE can be written as the average of QCDs because Y0 and Y1 are independent

conditional on Θ = θ.

5. Identification

The Effects of Measurement Error. There are two sources of error in the model repre-

sented by equations (1) and (5). The first error Ud is in the outcome equation (1). Following

the literature on factor models, we refer to this quantity as uniqueness. The second error V

arises because W are error-ridden measurements of latent factors Θ. We consider a third

error here, ϵ, which is instrumental to attaining identification in the way we discuss below.

Let Σ be the variance of V , which we assume known at this stage. We define:

W̃ = W +
√
ρϵ,

for a known constant ρ by adding ϵ to the measurement W . We assume that ϵ is distributed

as a (multivariate) normal random variable with zero mean and variance Σ, and independent

of all other variables. Basic manipulations yield:

Θ = W̃ − ((1 + ρ)Σ)1/2Ṽ , (7)

where Ṽ = (V1, . . . , Vr)
′ and the Vl are standardized random variables.

We use the relationship in (1) to write:

QYd
(τ |B = b) = b′ϕd(τ), (8)

where ϕd(τ) := (λd (QUd
(τ)) , QUd

(τ))′ is the (r + 1) × 1 vector of slopes and intercepts at

quantile τ , and B = (Θ′, 1)′. After replacing (7) in (1), we obtain an alternative quantile

function:

QYd
(τ |B̃ = b̃, Ṽ = ṽ) = b̃′ϕd(τ) + ṽ′πd(τ),

where B̃ = (W̃ ′, 1)′ and πd(τ) = −λ′
d(τ)((1 + ρ)Σ)1/2. The solution to the following

unfeasible problem:

(ϕd(τ)
′,πd(τ)

′) = argminE
[
ϱτ

(
Yd − B̃′ϕd − Ṽ ′πd

)]
, (9)

yields ϕd(τ), where ϱτ (u) = u(τ−I(u < 0)) is the quantile loss function (see Koenker, 2005).

As the omitted variables formula extends to quantile regression (see the “short” versus

“long” derivations in Angrist et al., 2006), we can determine the bias in the feasible regression
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counterpart of (9) when Ṽ is the omitted variable. Specifically, let ϕ̃ρ
d(τ) be the (r + 1)× 1

vector retrieved from feasible quantile regressions of Y on B̃ for participants (D = 1) and

non-participants (D = 0):

ϕ̃ρ
d(τ) = argminE

[
ϱτ

(
Yd − B̃′ϕd)

)]
. (10)

For any ρ ≥ 0, the quantity ϕ̃ρ
d(τ) is the counterfactual parameter that would be estimated

had the measurement error variance been (1 + ρ)Σ instead of Σ. The parameter retrieved

from raw data is obtained by setting ρ = 0. We show in Appendix A that:

ϕ̃ρ
d(τ)− ϕd(τ) ≈ −E

([
σ(τ,θ)−1B̃B̃′

])−1

E
[
σ(τ,θ)−1B̃Ṽ ′ (λd(τ)

′((1 + ρ)Σ)1/2
)]

, (11)

where σ(τ,θ) are quantile specific weights defined as the conditional standard deviation times

the sparsity parameter associated with the quantile function QUd
(τ). It follows that the error

V hampers identification by attenuating estimates from unadjusted quantile regression.

Extrapolation to Zero Error. We achieve identification by exploiting smoothness in the

relationship between ϕd(τ) and the error-ridden values of slopes and intercepts ϕ̃ρ
d(τ) at

different ρ’s. One can take stock of this ‘identification at zero error’ idea by noting that:

lim
ρ→−1

ϕ̃ρ
d(τ) = ϕd(τ).

The term ϵ is fundamental for identification, in that it adds instrumental variability to

estimate the counterfactual bias arising from increasingly larger values of the measurement

error variance. However, V and the variable Ṽ generated through ϵ need not have the same

distribution. Because of this, smoothness alone might not be sufficient for identification as

values ϕ̃ρ
d(τ) at different ρ’s will result from changes in the measurement error variance and

a measurement error distribution different from that in raw data.10

The problem is solved if measurement errors V are normally distributed. This result

follows because, in this case, Ṽ are also normal. This case may not be uncommon in

empirical applications. For example, when measurements W are obtained as group means,

we can expect close to normally distributed measurement errors with modest group sizes.

Also, many random variables have a distribution which is approximately normal. This

is the case if the components of V (re-centered at zero) are Beta random variables with

10This problem arises in quantile regression. To see why, it is convenient to consider the alternative case
of linear regression, where the bias from using W̃ instead of Θ depends only on the measurement error
variance. In particular, this bias is independent of the specific distributions of Ud and V . Contamination of
measurement error will affect bias only by inflating the measurement error variance. Importantly, this result
is valid for any mean-zero distribution of ϵ. Like in any non-linear model, measurement error in quantile
regression will result in bias in a more complicated manner. Bias will depend on the distribution of V , ϵ
and Ud, as we show in (11).
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shape parameters equal and large, or Gamma random variables with large shape parameters

relative to their scale parameters. More in general, any contamination of V which is closed

or approximately closed under convolution with ϵ would also solve the problem.

More in general, it is possible to approximate ϕd(τ) sufficiently well under weaker dis-

tributional assumptions as long as the measurement error variance is small, which is the

relevant case in IHDP data. To see this, note that the solution to (10) coincides with the

solution to the unfeasible problem (9) when πd = 0, for d ∈ {0, 1}. It follows that, for small

measurement error variance, conditional quantiles given W̃ must be approximately equal to

conditional quantiles given Θ. Using this “small variance” idea, Chesher (2017) derives an

approximation to the bias when the measurement error in W̃ is small. Exact calculations in

his work suggest that the approximation is still accurate with more measurement error than

in our empirical analysis below. By adapting Chesher’s idea to the case of the quantile func-

tion in (8), we show in Appendix B that bias depends on the distribution of Ud, derivatives

of the quantile function, and the distribution of Θ. Importantly, this bias will not depend

on the specific distribution of the measurement error Ṽ , but only its variance (1 + ρ)Σ.11

Using this result, one can rely on the fact that the bias in (11) is approximately independent

of the error distribution generated through ϵ.

One can expect that the performance of the extrapolation to the case of ρ → −1 depends

on the particular form of the distribution of Ud. An inspection of Chesher’s approximation

adapted to the case at hand also reveals that heavily skewed distributions for Ud will in

general yield larger bias across all quantiles τ . For distributions symmetric around zero,

some terms in this approximation will go to zero, yielding smaller bias across all quantiles.

The relevance of this problem is ultimately an empirical matter, which we investigate in the

simulation section below.

6. Estimation

Error-Free Quantile Functions. We start by considering estimation of λd (QUd
(τ)) and

QUd
(τ), for d ∈ {0, 1}, when the measurement error variance Σ = diag(σ2

1, . . . , σ
2
r) is known.

We proceed in two steps. We first simulate how the quantity ϕ̃ρ
d(τ) varies with ρ using mul-

tiple draws from the distribution of ϵ. This step requires repeated computation of quantile

regressions from error-ridden data, as we explain below. The quantity ϕd(τ) is then obtained

by extrapolating this profile to the case of no error, ρ = −1. Because of the relationship

between ϕ̃ρ
d(τ) and ϕd(τ) in (11), we expect any smooth extrapolant to work well in most

11To offer a result that is consistent with the small variance approximation framework used by Chesher
(2017), equation (B.2) in Appendix B is obtained for the case where ρ = 0.
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realistic applications. The combination of simulation and extrapolation steps extends Cook

and Stefanski’s (1994) SIMEX to quantile regression. The logic for estimating ϕd(τ) corre-

sponds to the algorithm below, and the idea is most simply understood using its graphical

interpretation in Figure 2.12 As we discussed, extrapolation to no-error is more appropriate

when the proxies used for Θ have small measurement error variance (as in IHDP data).

Because of this result, we will use SV-SIMEX – small variance SIMEX – to refer to this

algorithm in what follows.

(i) For any given value ρ > 0, generate W̃ ρ
b = (W̃ ρ

1,b, ..., W̃
ρ
r,b)

′ as follows:

W̃ ρ
l,b = Wl +

√
ρσ2

l ϵl,b,

for l = 1, . . . , r, where the ϵl,b’s are independently distributed standard normals.

This step adds to Wl additional error with mean zero and variance ρσ2
l , indepen-

dently across all measurements in W . The last equation implies:

W̃ ρ
l,b = Θl + Vl +

√
ρσ2

l ϵl,b,

for l = 1, . . . , r, so that W̃ ρ
l,b can be interpreted as an error-ridden proxy of the

latent factor Θl with measurement error variance equal to (1 + ρ)σ2
l .

(ii) Use quantile regression to estimate slopes and intercepts of Y on W̃ ρ
b , separately

for participants (D = 1) or non-participants (D = 0). The estimated coefficients

are denoted by ϕ̂ρ
d,b(τ), for d ∈ {0, 1}.

(iii) For B large and b = 1, . . . , B, the same procedure is iterated to obtain:

ϕ̂ρ
d(τ) :=

1

B

B∑
b=1

ϕ̂ρ
d,b(τ),

for d ∈ {0, 1}.
(iv) Estimate a parametric model of ϕ̂ρ

d(τ) on ρ, and extrapolate at ρ = −1 (no error).

Two features of SV-SIMEX deserve further discussion. First, it is possible to extrapolate

the measurement error variance back to zero using alternative parametric models. One

might expect that the estimator performance depends on the specific model of choice. The

simulation results in Section 7 show that a quadratic model in ρ is a good choice in a

number of settings that we consider. Second, perturbation of W with increasingly higher

measurement error requires knowledge of the measurement error variances σ2
l , for l = 1, . . . , r.

12To the best of our knowledge, with the exceptions of Shang (2012) and Torres-Saavedra (2013), this is the
first application of SIMEX to quantile regression.
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Often these variances are derived from auxiliary data or knowledge of the context under

investigation. We discuss below how to estimate the measurement error variance when

external information is not available.

Although our recommendation is to use SV-SIMEX whenever possible, any alternative

approach to consistent estimation of (8) can be used to obtain identification of QCD via

(6). This choice depends on the application and the data available. For example, error-free

quantile functions could be obtained from the corrected-loss function estimator proposed by

Wang et al. (2012). Although their estimator is consistent in a general class of quantile

regression models, it requires smoothing the objective function to correct for bias and the

correction depends on the distributional assumptions of the measurement error variable. Our

approach does not require the use of numerical integration and outperforms the corrected-loss

function estimator when the measurement error variance is small, as shown in a simulation

study in the Online Appendix.13

Latent Factors Distributions. Standard SIMEX can be applied to fWl
(τ), so that fΘl

(τ)

for l = 1, . . . , r can be retrieved by extrapolation. Wang et al. (2010), in extending Stefanski

and Bay’s (1996) idea, show that SIMEX outperforms Fourier-type methods for density esti-

mation with small sample size and large measurement error variances. They also document

good performance of SIMEX without normal measurement error. The estimated densities

fΘl
(τ), for l = 1, . . . , r, can be used to condition on specific values θ in the support of Θ in

the computation of QCD.

When the measurement error variance is small, we show in Appendix B that the small-error

approximation can be used for approximating the quantiles QΘl
(τ) for l = 1, . . . , r. There

are alternatives to the approximation with small variance. For example, when repeated mea-

surements of Θ are available, Kotlarski’s (1967) theorem paves the way for non-parametric

estimation of fΘl
(τ) using deconvolution methods (Li and Vuong, 1998).

Alternatively, one can use Assumption 1 to write:

E(W |Y0 = y0) = E(Θ|Y0 = y0).

This quantity represents the average ofΘ for units at different values of the baseline outcome.

The QCD in (6) can then be computed at θ = E(W |Y0 = y0), the latter quantity being

13The literature offers alternative approaches. For instance, endogeneity arising from measurement error
prompts the use of instrumental variables, which are not required in our approach. Instrumental variation
is used by Schennach (2008), who considers non-parametric estimation using sieved-based methods. Wei
and Carroll (2009) propose a method that makes use of external information. Firpo et al. (2017) show how
to correct for measurement error when repeated measurements of the true regressors are available. If the
researcher has panel data, the approach by Chen et al. (2019) is also an option.



18

non-parametrically estimated from the sample of non-participants (D = 0). This is the

approach we take in our empirical investigation of IHDP.

Unknown Measurement Error Variances. Additional data are required when the mea-

surement error variance is unknown. Influential empirical work on factor models, reviewed

above, employs the factor structure to retrieve this unknown variance from multiple proxies

of the latent factors. Specifically, assume to have a r × 1 vector Z of additional variables,

whose properties are presented in the following assumption.

Assumption 4. (Instruments). The variables Z are such that E(V |Z = z) = E(V ) and

E(Yd|Θ = θ,Z = z) = E(Yd|Θ = θ) for d ∈ {0, 1}.

Assumption 4 states that (i) Z must be mean independent of measurement error V , and

(ii) the effect of Z on the outcome Yd must pass only through Θ, for d ∈ {0, 1}. In other

words, the information on the outcome brought along by Z is coarser than is the information

in Θ. This is a standard exclusion restriction in the measurement error literature (see, e.g.,

Hu and Schennach, 2008, and Chen et al., 2011), and in factor analysis more in general.

When additional proxies of Θ are used, Z brings instrumental variation to identify the

measurement error variance which is akin to that from repeated measurements.

Using equation (3), we show in Appendix C that Assumption 1 combined with Assumption

4 imply the following moment conditions for d ∈ {0, 1}:

E(Yd|Z = z) = λ′
dE(W |Z = z),

E

(
(λ′

dW − Yd)
Wl

λld

)
= σ2

l , l = 1, . . . , r. (12)

The first equation implies that a consistent estimate of λd can be retrieved from two-stage

least squares (2SLS) using Z as instruments. Assumption 2 ensures that regressions can

be estimated using treatment and control samples. Knowledge of factor loadings identifies

the variance of the measurement errors V through the moment condition (12). Note that

two independent estimates of σ2
l , l = 1, . . . , r, can be obtained using treatment and control

samples. The availability of multiple outcomes, as in our application, yields additional

degrees of over-identification for estimating the measurement error variances.14

Factor Loadings and Scale Parameters. Finally, we discuss options for estimating factor

loadings and scale parameters in equation (3). First, one can consider SV-SIMEX estimates

14If the instrumental variability induced by Z satisfies the conditions in Schennach (2008), the quantile
function QYd

(τ |Θ = θ), which we estimate using SV-SIMEX, is non-parametrically identified for d ∈ {0, 1}.



19

of λd (QUd
(τ)) and QUd

(τ) separately for participants (D = 1) and non-participants (D = 0),

and estimate the following regression:

λ̂ld (QUd
(τ)) = α0,ld + α1,ldQ̂Ud

(τ) + νld, (13)

where νld is an error term, λ̂ld (QUd
(τ)) is the SV-SIMEX estimate associated with the l-th

factor and l = 1, . . . , r. Slope coefficients from these regressions will yield an estimate of γd,

while intercepts will estimate λd.

When additional variables Z are available, estimates of λd can also be obtained using

2SLS regressions under Assumption 4. This case may be particularly relevant in empirical

applications. As SV-SIMEX is valid for a general class of factor models, finding that inter-

cepts retrieved from (13) are similar to factor loadings estimated by 2SLS methods suggests

that a linear factor structure is a good fit to the data. We show in the Online Appendix

that γd can also be identified using higher order moments under Assumption 1, Assumption

2 and Assumption 4.

7. Simulation Study

We consider the case of potential outcomes generated from equation (3) with one latent

factor: Yd = λdΘ + (1 + γdΘ)Ud. Factor loadings in the potential outcome equations are

λ0 = 0.75 and λ1 = 1. The values of γ0 and γ1 were chosen to define alternative scenarios

for the excess of variance induced by heteroskedasticity. For d ∈ {0, 1}, this quantity is

equal to 1 + γ2
d and is defined as the ratio of variance of (1 + γdΘ)Ud to variance of Ud. We

consider two scenarios for small (2.25%, γ0 = 0.15) and moderate (9%, γ1 = 0.30) excess of

variance. The variables U0 and U1 are distributed as χ2
3 standardized to satisfy Assumption

1. Moreover, we consider Z = 0.75Θ + (1 + 0.15Θ)V2, where V2 is distributed as χ2
3, and

standardized to have mean zero and unit variance.

Benchmark results are obtained for the measurement W = Θ + V1, where Θ is a N (0, 1)

random variable and the measurement error V1 is distributed as N (0, σ2). The parameter σ2

is determined by the noise to signal ratio (variance of V1 over variance of W ). We consider

two scenarios corresponding to values 5% and 10% of this ratio. We additionally investigate

the case of V1 distributed as Skew Normal, a generalization of the Normal that allows for non-

zero skewness. We parameterize this distribution to be heavily right-skewed, with zero mean

and variance σ2 (we set the shape parameter of this distribution to 8, which corresponds to

the value 0.934 for the skewness coefficient). Results presented in what follows are from 400

simulated samples of size 2, 500. Simulations considering samples of 500 observations are

presented in the Online Appendix, and convey conclusions similar to the ones shown here.
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SV-SIMEX estimation of quantile specific intercepts and slopes performs extremely well.

Its bias is well below 2% at most quantiles for all variants considered. The attenuation effect

of measurement error conjectured in (11) is also evident. Different distributions for measure-

ment error V1 do not yield significantly different results although, as expected, performance

deteriorates when the noise increases. Specifically, Table 3 presents simulation results for

SV-SIMEX estimates of QU0(τ) (Panel A) and λ0(τ) (Panel B) at different quantiles ranging

from 0.1 to 0.9. Simulations results for QU1(τ) and λ1(τ) convey a similar message, and are

omitted for brevity. The results for Normal measurement error are presented in columns (2)

to (5), and the results for Skew Normal errors are in columns (6) to (9). The estimator bias is

defined as the difference between the average of SV-SIMEX estimates across the 400 samples

and the true value of the quantity being estimated, which is reported at the left. Standard

errors are defined as the standard deviation of SV-SIMEX estimates across the 400 samples.

We set B = 50 at each value of ρ, starting from the true variance of V1. The extrapolation

step is obtained from a quadratic polynomial in ρ, considering 20 equally spaced values in

the interval [0.1, 2] (as in Figure 2).

The performance of the QCD estimator is also satisfactory, although distributional as-

sumptions here become marginally more important. This can be seen from Panel C of Table

3, where we compute the quantity QY1−Y0 (τ |Θ = θ, U0 = u0) at values θ = Φ−1(0.25) and

u0 = QU0(0.50) using the estimated quantile intercept. The largest bias in this panel is

2.5%, which is observed for extreme quantiles and in the case with more measurement error

as seen in column (8). Values of QCD are precisely estimated across quantiles. We therefore

conclude that SV-SIMEX has very good properties at the values of the measurement error

variance considered, which are in line with the amount of error in the empirical application

with IHDP data below.

We also investigate the performance of our method in a two-factor model, and in models

with Ud distributed as t5 or a centered χ2
3. Results in the Online Appendix confirm the good

properties of SV-SIMEX documented here. We additionally compare the performance of our

estimator with the corrected-loss estimator for Laplace measurement error (CLL) in Wang

et al. (2012). Results in the Online Appendix show that SV-SIMEX outperforms CLL in

terms of root mean squared error. This is expected because the measurement error variance

is small and our approach does not require correction of the quantile loss function by non-

parametric methods. We conclude that, while CLL can be applied to a larger class of models,

SV-SIMEX might work better in the case of a factor model and for small measurement error

variances.
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8. QCDs of Low Birth Weight and Premature Infants

Factor Loadings and Measurement Errors. We assume that potential outcomes are

correlated because of their dependence on one common factor. We consider four determinants

of neonatal health to proxy this factor. Specifically, we use measurements on weight, length,

head circumference, and gestational age for which descriptive statistics were reported in

Table 1. The first principal component constructed from these measurements explains 85%

of their correlation matrix, bolstering the idea that they can be considered manifestations

of the same latent dimension. We find that the average of the first principal component for

HLBW infants is about 1.4σ larger than in the LLBW group. Moreover, the first principal

component has large positive associations with all anthropometrics, suggesting that the

latent factor can be interpreted primarily as a proxy for health endowment at birth.

We adapt the strategy in Section 6 to estimate factor loadings to the case of IHDP. In

particular, we consider each measurement Wj in turn on the left hand side of equation (5):

Wj = Θ+ Vj,

where the index j = 1, . . . , 4 varies across the four measurements and Vj is a measurement-

specific error. We additionally define the following potential outcome equations for cognitive

development (Y CD
d ), morbidity (Y MB

d ) and general health (Y GH
d ):

Y CD
d = λCD

d Θ+
(
1 + γCD

d Θ
)
UCD
d ,

Y MB
d = λMB

d Θ+
(
1 + γMB

d Θ
)
UMB
d ,

Y GH
d = λGH

d Θ+
(
1 + γGH

d Θ
)
UGH
d ,

where d ∈ {0, 1}. Factor loadings are estimated from outcome-specific regressions using the

measurement Wj to proxy for Θ. Specifically, the parameters λCD
1 and λCD

0 are obtained

from 2SLS regressions in the IHDP-treatment sample (D = 1) and the IHDP-control sample

(D = 0), respectively, of cognitive development on Wj instrumented with the remaining

three measurements Ws, s ̸= j.15 Factor loadings for morbidity and the general health index

are obtained in the same way. This procedure yields 2 (treatment-control) times 3 (the

outcomes considered) estimates of factor loadings, which are presented in columns (1) to (6)

of Table 4. Panels in this table are organized by possible choices for the measurement Wj.

15 For brevity, we will often refer to children in the IHDP-treatment sample as ‘participants’. Similarly,
children in the IHDP-control sample will be called ‘non-participants’. 2SLS estimation is carried out after
taking residuals from regressions of all outcomes and measurements on randomization strata and mother
demographics (see Panel B of Table 1), separately for treatment and control groups. Here and in what
follows, residualized outcomes and measurements are standardized to have zero mean and unit variance in
the sample.
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For example, Panel A reports estimates of factor loadings using gestational age for Wj which

is instrumented with weight, length, and head circumference.

Estimates of factor loadings are robust to the measurement chosen to proxy for the latent

factor. This can be seen by looking at the values in the same column across panels of Table

4. The over-identification p-values associated with the estimates reported in each panel are,

in general, far from conventional significance levels. Our results show that randomization

to IHDP generally affected outcomes by changing dependence with health at birth. More

precisely, we find that the estimated λCD
1 is at least two times larger than estimated λCD

0 ; a

similar comment applies to the relationship between λGH
1 and λGH

0 . On the other hand, we

do not detect important treatment-control differences using the morbidity index.

SV-SIMEX Loadings and Scale Parameters. We use the measurement error variance

estimated from the factor model to initialize SV-SIMEX. Specifically, we use birth weight

to proxy for Θ because this measurement carries the lowest error among the measurements

considered. This can be seen from column (7) of Table 4, where reported are GMM estimates

of the noise-to-signal ratio σ2
Vj
/σ2

Wj
, where σ2

Vj
is the variance of Vj and σ2

Wj
is the variance

of Wj for j = 1, . . . , 4.16 The simulation step of SV-SIMEX is obtained from naive QR

regressions of outcomes on birth weight using the error variance in Panel C of Table 4 and

B = 50. The extrapolation step uses a quadratic polynomial over 20 equally spaced values

for ρ in the interval [0.1, 2], as in Figure 2.

We find that quantile slopes are well approximated by the factor model (3). Specifi-

cally, dots in Figure 3 represent “unconstrained” (SV-SIMEX) estimates of λ1 (QU1(τ)) and

λ0 (QU0(τ)) at different quantiles τ . These estimates are obtained by extrapolating τ -th

slopes for participants (D = 1) and non-participants (D = 0), respectively, and do not im-

pose the relationship in equation (4). Using SV-SIMEX slopes and intercepts, we estimate

equation (13) to obtain estimates of λd and γd. The estimates of the factor loading, corre-

sponding to the intercept of (13), are presented in columns (1) and (2) of Table 5. These

estimates are remarkably similar to the estimates of factor loadings reported in Table 4.

This finding prompts the use of the estimated slopes in (13) to estimate factor scale

parameters, which are reported in columns (4) and (5) of Table 5 along with their difference

γ̂1 − γ̂0 in the last column. The lines in Figure 3 are obtained as λ̂d + γ̂dQ̂Ud
(τ) for the three

outcomes considered. Sharper treatment-control differences in slopes emerge for cognitive

development.

16This quantity is obtained by staking 2 × 3 equations like (12) defined from estimates of factor loadings
in each panel, and imposing one common value for the measurement error variance. As measurements are
standardized to have unit variance in the sample, the noise-to-signal ratio is σ2

Vj
.
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IHDP affects both location and scale of outcome distributions depending on a child’s

health at birth, as seen in Table 5, and this finding invalidates the traditional factor model.

Loadings and scale parameters in columns (2) and (5) imply that, without IHDP, as one

moves across the birth endowment distribution, outcomes should become more concentrated

around better values. Treatment-control differences in column (3) imply positive treatment

effects on outcome averages for all children. However, IHDP participation has different

effects on the distribution variance depending on the outcome, as shown in column (6). For

example, a value of −0.052 for the difference γ1 − γ0 for IQ implies that the intervention

changed the shape of the marginal distributions, and thus, not all children with the same

health endowment at birth benefited from the intervention in the same way. This result also

implies that rank similarity conditional on birth endowment is violated.

We do not find significant differences in the uniqueness distributions of IHDP participants

and controls. This can be seen in Figure 4, which reports estimates of QU1(τ) and QU0(τ)

for each of the outcomes along with bootstrap confidence intervals. These estimates are

obtained by extrapolation of τ -th intercepts from regressions in the samples of participants

(D = 1) and non-participants (D = 0), respectively.

Quantiles of the Conditional Distribution of Treatment Effects. QCD is evaluated

at the value u0 = QU0(0.5) obtained from SV-SIMEX estimates of U0. The latter quantity

is small and close to zero, as shown in Figure 4. We consider values of the non-participation

outcome corresponding to θ ∈ {θLLBW , θHLBW}. Specifically, θLLBW is a prediction from a

linear regression of birth weight on the outcome in the sample of LLBW non-participants

(as explained in Section 6). Separate regressions are considered for the three outcomes, and

predictions are computed at the outcome average. The value θHLBW is constructed in a

similar manner using HLBW non-participants, and we find θLLBW < θHLBW . It follows that

HLBW participants would have scored better outcomes than LLBW participants had IHDP

not been implemented.

We start by considering IQ gains, as this dimension shows consistently large average effects

in many early childhood interventions similar to IHDP (see Elango et al., 2016, and Table

2, above).17 We find that a positive change in neonatal health affects location and scale of

QCDs. This can be seen from the first panel of Figure 5 where dashed and continuous lines

represent estimates for HLBW and LLBW infants, respectively. Horizontal lines here denote

average effects, and shaded areas are 95% point-wise bootstrap confidence intervals. Infants

with better neonatal health present a gain distribution with a lower tail shifted towards

17However, we note that the literature has documented fading average effects on IQ starting from kinder-
garten years.
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larger values. Differences between QCDs tend to disappear as we go across quantiles (i.e.,

0.68σ at the 0.10 quantile and 0.07σ at the 0.90 quantile). Gains are, therefore, more widely

distributed for participants who would have been worse off without IHDP. For example,

the inter-quantile range for LLBW infants is about 0.6 + 1 = 1.6σ compared to a value of

0.8+0.3 = 1.1σ for HLBW infants. Moreover, estimates in the first panel imply positive gains

for about 65% of HLBW participants. This quantity is much lower for LLBW participants,

at about 45%.

Better neonatal health also shifts towards larger values QCDs for health-related outcomes,

as shown in the remaining panels of Figure 5 (recall that lower values of the morbidity index

are a desirable outcome). However, health in the first three years of life shows smaller

differences between LLBW and HLBW QCDs compared to IQ, which appear to change

slowly across quantiles. For example, the difference between curves in the third panel is

about 0.37σ at the 0.10 quantile, and 0.12σ at the 0.90 quantile. These differences are

marginally significant for the general health index in the third panel, but not significantly

different from zero in the second panel.

Are the positive effects of IHDP explained by differences in the socio-economic status

of participants? We address this question by defining two groups of children in families

with income below (low-income) and above (high-income) the IHDP median, and estimating

QCDs separately for each group.18 The four panels in Figure 6 show how QCD estimates at

selected quantiles (0.20, 0.40, 0.60, and 0.80) vary with neonatal health Θ. Only IQ gains are

considered in this figure, where values on the horizontal axis are the 1 to 99 percent range

for predictions of latent health from a regression of birth weight on IQ for non-participants.

IHDP treatment effects increase with neonatal health at all quantiles and for both income

groups. The estimated effects at the 0.60 and 0.80 quantiles are positive, uniformly over

the health spectrum. We also find that treatment effects tend to be larger for lower income

children in all panels. However, it is also clear that the limited size of treatment and control

samples somewhat affects the precision of our analysis.

Treatment effect differences between income groups grow increasingly larger at the top

end of the neonatal health distribution. For example, the last panel of Figure 6 shows a

value of about 0.6σ for the 0.80 quantile of QCD if one considers the healthiest children of

the higher income group (e.g., Θ above 0.5). At the same quantile, QCD is approximately

twice as large for comparable children of the lower income group. The interaction between

18About 10% of observations with missing income information are discarded from the analysis. Duncan
and Sojourner (2013) consider a different definition of income groups, which also follows from the multiple
imputation of missing values. Duncan and Sojourner (2013) estimate average differences by income using
weights defined from the Early Childhood Longitudinal Study - Birth Cohort data.
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income and health endowment at birth is also evident in the remaining panels, although the

health gradient fades away in the bottom two quintiles (as shown in the first two panels of

the figure).

Within income-group variability in treatment effects is at least as large in magnitude as

between income-group differences in treatment effects. Past work on IHDP data has doc-

umented larger effects, on average, for HLBW children from low-income families compared

to HLBW children from high-income families (see, for example, Table 3 in Duncan and So-

journer, 2013). In our analysis too, an OLS regression for HLBW children of IQ on the

IHDP treatment assignment dummy, a dummy for the lower-income group, and their inter-

action yields a coefficient of about 0.26σ on the latter variable (estimation results are not

presented for brevity). If one considers the ‘healthiest’ children in Figure 6, the 0.80− 0.20

quantile range for Θ = 0.5 is about 0.68 − (−0.75) = 1.43σ in high-income families and

0.99 − (−0.59) = 1.58σ in low-income families. These numbers suggest that variability in

IHDP effects within groups can be much larger than variability between groups.

Although children in the lower-income group benefit more from IHDP on average, about

20% of children in the higher-income group have gains larger than the median gain in the

lower-income group. This can be seen by considering the effect at Θ = 0.5 in the fourth

panel of Figure 6, which is about 0.6 for the higher-income group, and by noticing that

the median gain for the lower-income group at Θ = 0.5 must be below 0.5, which is the

0.60 quantile for the low-income group in the third panel. Moreover, our results also imply

that larger average effects for the healthiest children in the lower-income group are entirely

driven by large returns for a minority of children in this group. This can be seen by noticing

that the differences in panels of Figure 6 become more important for large values of Θ only

between 0.60 and the 0.80 quantile. At the same time, income differences among participants

are somewhat irrelevant for children with the worst health conditions (most likely LLBW

children here).

Given the particular population targeted by IHPD, infants at the top end of panels in

Figure 6 are the most similar to normal birth-weight infants. This fact corroborates the

external validity of our conclusions, and the beneficial effects of IHDP-like interventions to

close income-based gaps in IQ and health development in young ages.

9. Conclusion

The policy relevance of distributional treatment parameters has been discussed in past

work, starting from Heckman et al. (1997). A number of important policy questions arise

beyond the simple difference between outcome averages for participants and non-participants.
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Quantile treatment effects have been extensively considered in empirical work although, in

general, they are not informative about how widely individual gains from participation are

distributed across units.

We have revisited this problem by considering the case of IHDP, a small-scale early child-

hood program implemented in the 1980s which targeted low birth-weight infants. A growing

body of evidence demonstrates the beneficial effects of these programs, but IHDP has re-

ceived scant attention to date. Understanding the number of children with positive gains

and characterizing which demographics are the best predictors of these gains, are crucial

inputs for cost-effective policy targeting to mitigate the effects of adverse early childhood

conditions that exacerbate inequalities over a lifetime.

We have proposed a simple approach to learn about treatment effect distributions. Our

approach connects with the literature on factor models, a tool that has become increasingly

more common in applied labor and education work. The setting we have considered here is

the one faced by researchers in those fields. We have assumed that the dependence between

potential outcome distributions is driven by latent factors. This idea in not new and goes

back to work by Carneiro et al. (2003), among others. We studied identification of QCD, and

we showed that common distributional treatment parameters can be derived from knowledge

of this parameter. Moreover, we have proposed a method to estimate this new parameter

by offering a simple algorithm for models when the measurement error variance is small.

This approach does not require the use of instrumental variables or repeated measurements.

We believe that small measurement error is reasonable in many empirical settings, because

economic theory or the context under investigation can be informative about relationships

between proxies and latent factors. The literature on early childhood interventions is an

ideal example because of its important contributions on measurement (see Conti et al.,

2018, among others).

Our findings raise a number of additional questions, including consistent estimation of

more general models and inference. It is important to investigate a generalization of the

proposed approach for cases when the error-measurement variance is large, although practi-

tioners can estimate QCDs by employing the corrected-loss function estimator proposed by

Wang et al. (2012). Moreover, statistical inference for the QCD imposes several challenges

and it remains to be fully investigated. The investigation of models with a larger number

of unknown factors is also important. We hope to address some of these questions in future

work.
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Appendix A. Partial Quantile Regression with Measurement Error

The notation in Section 5 is employed here. Let ϵ be a r × 1 random variable that is

jointly distributed as FV with mean 0 and variance Σ. Based on equation (5), define:

W̃ = W +
√
ρϵ = Θ+ V +

√
ρϵ,

where ρ > 0. Under these assumptions we have that:

W̃ = Θ+ ((1 + ρ)Σ)1/2Ṽ , (A.1)

where Ṽ ∼ FV (0, 1). Solving for Θ in equation (A.1) and replacing it in the outcome

equation we obtain:

Yd = λd(Ud)[W̃ − ((1 + ρ)Σ)1/2Ṽ ] + Ud,

= ϕd(Ud)
′B̃ − πd(Ud)

′Ṽ .

Recall that Ṽ is the omitted variable.

Let ϱτ (u) = u(τ − I(u < 0)) be the quantile regression loss function. The feasible quantile

regression problem solves:

ϕ̃d(τ) = argminE
[
ϱτ

(
Yd − ϕ′

dB̃)
)]

,

while the unfeasible version of the problem finds the following coefficient vector:

(ϕd(τ)
′,πd(τ)

′) = argminE
[
ϱτ

(
Yd − ϕ′

dB̃ − π′
dṼ

)]
.

Theorem 1 in Angrist et al. (2006) shows that the quantile regression solves a weighted least

squares problem. The solution depends on weights that can be approximated as:

wτ (W̃ , ϕ̃d) =
1

2
fYd

(QYd
(τ |θ)|θ) + ϱτ (W̄ , ϕ̃d), (A.2)

where:

ϱτ (W̃ , ϕ̃d) ≤
1

6

∣∣∣W̃ ′(ϕ̃d − ϕd)− π′
dṼ

∣∣∣ f̄ ′(W̃ , ϕ̃d),

and f̄ ′ denotes the first derivative with respect to Yd. The first term on the right hand side

of (A.2) is equal to:

fYd
(QYd

(τ |θ)|θ) =

[
(1 + γ ′

dθ)
∂

∂τ
QUd

(τ)

]−1

,

implying that the density is inversely proportional to the standard deviation conditional on

Θ = θ. We denote the term inside the brackets in the last expression as σ(θ). It follows
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that:

wτ (W̄ , ϕ̃d) ≈
1

2
fYd

(QYd
(τ |θ)|θ) = 1

2
σ(θ)−1.

Following closely Angrist et al.’s (2006) derivations for the omitted variable bias in quantile

regression we obtain:

ϕ̃d(τ) ≈ ϕd(τ)−
(
E
[
σ(θ)−1B̃B̃′

])−1

E
[
σ(θ)−1B̃Ṽ ′πd(τ)

]
,

≈ ϕd(τ)−
(
E
[
σ(θ)−1B̃B̃′

])−1

E
[
σ(θ)−1B̃Ṽ ′ (λd(τ)

′((1 + ρ)Σ)1/2
)]

.

As long as ρ → −1, the remainder term ϱτ (W̃ , ϕ̃d) → 0 and:

E
[
σ(θ)−1B̃Ṽ ′ (λd(τ)

′((1 + ρ)Σ)1/2
)]

→ 0.

It follows that ϕ̃d(τ) → ϕd(τ) as ρ → −1.

Appendix B. Approximate Effects for Small Error Variance

Equation (6) in Chesher (2017) in the case of one latent factor under our assumptions

yields (the index d is omitted throughout for simplicity):

QY (τ |W = w) = QY (τ |Θ = w) + σ2
[
Qθ

Y (τ |Θ = w)gθΘ(w) +
1

2
Qθθ

Y (τ |Θ = w)

− Qτθ
Y (τ |Θ = w)Qθ

Y (τ |Θ = w)

Qτ
Y (τ |Θ = w)

+
1

2

Qττ
Y (τ |Θ = w)(Qθ

Y (τ |Θ = w))2

(Qτ
Y (τ |Θ = w))2

]
+ o(σ2), (B.1)

where W = Θ+ V , σ2 is the variance of V , and:

Qθ
Y (τ |Θ = w) =

∂

∂θ
QY (τ |Θ = w)

∣∣∣
θ=w

, gθΘ(w) =
∂

∂θ
log(fΘ(w))

∣∣∣
θ=w

,

Qθθ
Y (τ |Θ = w) =

∂

∂θ
Qθ

Y (τ |Θ = w), Qτ
Y (τ |Θ = w) =

∂

∂τ
QY (τ |Θ = w)

∣∣∣
θ=w

,

Qττ
Y (τ |Θ = w) =

∂

∂τ
Qτ

Y (τ |Θ = w), Qτθ
Y (τ |Θ = w) =

∂

∂θ
Qτ

Y (τ |Θ = w).

The location-scale shift model in equation (3) yields the following expressions:

Qθ
Y (τ |Θ = w) = λ+ γQU(τ) = λ(τ),

Qθθ
Y (τ |Θ = w) = 0,

Qτ
Y (τ |Θ = w) = (1 + γw)Qτ

U(τ),

Qττ
Y (τ |Θ = w) = (1 + γw)Qττ

U (τ),

Qτθ
Y (τ |Θ = w) = γQτ

U(τ),
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where QU(τ) is the quantile of the uniqueness U , Qτ
U(τ) =

∂
∂τ
QU(τ), and Qττ

U (τ) = ∂
∂τ
Qτ

U(τ).

Replacing the derivatives of the quantile function in equation (B.1) we obtain:

QY (τ |W = w) = QY (τ |Θ = w) + σ2

[
λ(τ)f θ

Θ(w)−
γQτ

U(τ)λ(τ)

(1 + γw)Qτ
U(τ)

+
1

2

(1 + γw)Qττ
U (τ)(λ(τ))2

((1 + γw)Qτ
U(τ))

2

]
+ o(σ2).

The error contaminated quantile function QY (τ |W = w) can be approximated as follows:

QY (τ |W = w) = QY (τ |Θ = w)

+ σ2λ(τ)

[
gθΘ(w)−

γ

(1 + γw)
+

1

2

Qττ
U (τ)λ(τ)

(1 + γw)(Qτ
U(τ))

2

]
+ o(σ2). (B.2)

The small variance approximation can also be used for the quantiles of the latent factor

Θ. Let QV (τ) be the quantile of V , Qτ
V (τ) = ∂

∂τ
QV (τ), and Qττ

V (τ) = ∂
∂τ
Qτ

V (τ). Because

W = Θ + V , we can employ Chesher’s (2017) equation (6) considering λ(τ) = λ = 1 and

γ = 0. Basic manipulations lead to:

QW (τ) = QΘ(τ) + σ2

[
gθΘ(w)−

1

2
gvV (τ)

]
+ o(σ2),

because,
Qττ

V (τ)

Qτ
V (τ)

= − ∂

∂v
log(fV (v))

∣∣∣
v=QV (τ)

= −gvV (τ).

Appendix C. Unknown measurement error variances

The conditioning on D is omitted throughout as the participation status is randomly

assigned (Assumption 2). Equation for potential outcomes (3) implies for d = 0, 1:

E(Yd|Z = z) = λ′
dE(Θ|Z = z) + γ ′

dE(ΘUd|Z = z) + E(Ud|Z = z). (C.1)

Use Assumption 4. The assumption E(V |Z = z) = E(V ) implies:

E(Θ|Z = z) = E(W |Z = z),

since E(V ) = 0 from Assumption 1. The assumption E(Ud|Θ = θ,Z = z) = E(Ud|Θ = θ)

implies for d = 0, 1:

E(ΘUd|Z = z) = 0, E(Ud|Z = z) = 0,
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because of Assumption 1. The relationships above substituted in (C.1) imply:

E(Yd|Z = z) = λ′
dE(W |Z = z).

For d = 0, 1 this defines the 2SLS regression of Yd on W in which the latter is instrumented

with Z.

Using (5) and Assumption 1, for d = 0, 1 we have:

E

(
(λ′

dW − Yd)
Wl

λld

)
= E

(
(λ′

dV − γ ′
dΘUd − Ud)

Θl + Vl

λld

)
= σ2

l , l = 1, . . . , r

which defines two moment conditions (for treatment and control samples) for variances in

Σ.
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Table 1. Balancing tests for random assignment of infants.

All HLBW (2,000– LLBW (Less
2,500 grams) than 2,000 grams)

Mean Effect Mean Effect Mean Effect

(1) (2) (3) (4) (5) (6)

Panel A. Demographics at Birth

Weight (gm) 1.787 0.025 2.256 -0.001 1.520 0.041
[0.465] (0.019) [0.138] (0.015) [0.363] (0.029)

Length (cm) 42.259 0.485∗∗ 45.33 0.165 40.511 0.682∗∗

[3.966] (0.206) [2.208] (0.247) [3.672] (0.293)
Body Mass Index 9.823 -0.034 11.046 -0.070 9.127 -0.017

[1.602] (0.088) [1.310] (0.149) [1.311] (0.107)
Gestational Age (weeks) 33.067 -0.061 34.961 -0.091 31.989 -0.015

[2.719] (0.148) [1.431] (0.168) [2.690] (0.213)
Neonatal Health Index 99.75 0.924 98.913 0.365 100.227 1.243

[15.446] (1.077) [14.371] (1.641) [16.025] (1.425)
Head Circumference (cm) 29.426 0.050 31.437 -0.168 28.282 0.183

[2.553] (0.132) [1.348] (0.141) [2.363] (0.192)
Infant is a boy 0.484 0.013 0.539 -0.052 0.453 0.048

[0.500] (0.034) [0.500] (0.056) [0.498] (0.043)
Infant is a first-born 0.430 0.032 0.393 0.077 0.450 0.008

[0.495] (0.033) [0.490] (0.054) [0.498] (0.042)

Panel B. Mother Demographics

Age 24.863 -0.214 24.99 -0.831 24.79 0.154
[6.148] (0.388) [6.346] (0.645) [6.04] (0.489)

Married 0.484 -0.057∗ 0.485 -0.035 0.483 -0.070∗

[0.500] (0.032) [0.501] (0.054) [0.500] (0.040)
High School Graduate 0.491 -0.054 0.471 -0.105* 0.503 -0.028

[0.500] (0.034) [0.500] (0.055) [0.501] (0.042)
College Graduate 0.120 0.004 0.155 -0.034 0.099 0.028

[0.325] (0.021) [0.363] (0.035) [0.300] (0.027)
Black 0.526 -0.008 0.500 -0.074 0.541 0.029

[0.500] (0.030) [0.501] (0.048) [0.499] (0.038)
Hispanic 0.116 0.000 0.126 0.007 0.110 -0.003

[0.321] (0.019) [0.333] (0.033) [0.314] (0.024)
Observations 929 343 586

Note. Columns (1), (3), and (5) show control-group means and standard deviations (in

square brackets) for variables listed at the left. Columns (2), (4), and (6) show treatment-

control differences, with robust standard errors in parenthesis. Results in columns (3)-(6) are

from regressions stratified for infants with birth weights lower (LLBW) or higher (HLBW)

than 2,000 grams. All regressions control for randomization strata effects (site and birth

weight group). The health index is defined from the residuals of a regression of gestational

age on birth weight and site dummies. These residuals were centered at 100 and rescaled to

have a standard deviation of 16. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3. Simulation results for intercepts, slopes, and QCDs.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Intercept, QU0

Normal errors Skew-Normal errors

5% noise 10% noise 5% noise 10% noise
True value Bias SE Bias SE Bias SE Bias SE
0.10 -0.986 0.003 0.014 0.004 0.017 0.011 0.014 0.021 0.017
0.25 -0.730 0.002 0.019 0.004 0.019 0.001 0.018 0.005 0.018
0.50 -0.259 -0.000 0.024 0.001 0.025 0.000 0.024 0.002 0.026
0.75 0.452 -0.001 0.040 0.001 0.041 0.000 0.038 0.001 0.041
0.90 1.327 0.000 0.062 0.002 0.065 -0.002 0.061 -0.003 0.062

Panel B: Slope, λ0(τ)
Normal errors Skew-Normal errors

5% noise 10% noise 5% noise 10% noise
True value Bias SE Bias SE Bias SE Bias SE
0.10 0.602 -0.001 0.015 -0.002 0.017 -0.006 0.014 -0.015 0.016
0.25 0.641 -0.002 0.017 -0.005 0.018 -0.003 0.017 -0.007 0.017
0.50 0.711 -0.003 0.025 -0.007 0.026 -0.002 0.024 -0.001 0.025
0.75 0.818 -0.004 0.036 -0.008 0.038 -0.001 0.038 0.002 0.041
0.90 0.949 -0.006 0.062 -0.010 0.063 0.002 0.063 0.006 0.067

Panel C: QCD, QY1−Y0 (τ |Θ = θ, U0 = u0)
Normal errors Skew-Normal errors

5% noise 10% noise 5% noise 10% noise
True value Bias SE Bias SE Bias SE Bias SE
0.10 -0.723 -0.001 0.028 -0.011 0.030 0.016 0.027 0.025 0.029
0.25 -0.518 -0.004 0.029 -0.006 0.030 0.003 0.029 0.015 0.029
0.50 -0.142 -0.002 0.032 -0.001 0.033 -0.003 0.033 -0.004 0.035
0.75 0.425 -0.000 0.042 0.004 0.043 -0.006 0.040 -0.013 0.042
0.90 1.123 0.006 0.067 0.015 0.073 -0.004 0.063 -0.017 0.066

Note. The table reports bias and standard error of SV-SIMEX estimators for QU0
(τ) (Panel

A), λ0(τ) (Panel B), and QCD(τ ; θ,QU0
(0.5)) at θ = Φ−1(0.25) (Panel C). True values at

the quantile τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9} are reported in column (1). The distribution of V1

is Normal in columns (2) to (5), and (right) Skew Normal in columns (6) to (9). The variance

of V1 is either 5% or 10% of the variance of W1. Group size (treatment and control) is 2, 500.

Results from 200 replications are obtained setting B = 50 and considering a 20-point grid

for ρ between 0.10 and 2. See Section 7 for additional details.
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Table 4. Factor loadings and measurement equations

Cognitive Morbidity General Error
Development Health Variance

Treatment Control Treatment Control Treatment Control

(1) (2) (3) (4) (5) (6) (7)

Panel A: Gestational Age (weeks)

Estimate 0.380∗∗∗ 0.111∗∗ -0.180∗∗ -0.123∗∗ 0.256∗∗∗ 0.116∗∗ 0.344
(0.077) (0.054) (0.081) (0.052) (0.079) (0.053)

Sargan p-value 0.615 0.181 0.816 0.081 0.288 0.206

Panel B: Length at Birth (cm)

Estimate 0.347∗∗∗ 0.0922∗ -0.167∗∗ -0.120∗∗ 0.228∗∗∗ 0.099∗∗ 0.273
(0.070) (0.049) (0.074) (0.047) (0.072) (0.048)

Sargan p-value 0.624 0.219 0.872 0.092 0.222 0.988

Panel C: Birth Weight (gm)

Estimate 0.285∗∗∗ 0.115∗∗ -0.150∗∗ -0.093∗∗ 0.185∗∗∗ 0.109∗∗ 0.051
(0.062) (0.046) (0.068) (0.045) (0.065) (0.046)

Sargan p-value 0.905 0.922 0.837 0.138 0.553 0.340

Panel D: Head Circumference at Birth (cm)

Estimate 0.334∗∗∗ 0.095∗ -0.155∗∗ -0.129∗∗∗ 0.234∗∗∗ 0.105∗∗ 0.278
(0.068) (0.050) (0.072) (0.049) (0.070) (0.049)

Sargan p-value 0.469 0.347 0.975 0.949 0.850 0.176
Observations 332 523 331 513 330 521

Note. Results from a system of seven equations: six equations describe potential outcomes

after three years from the assignment, and one measurement equation is for the latent factor

at birth. Outcomes considered: Cognitive Development Index, Morbidity Index, and Gen-

eral Health Ratings Index. Definitions for these outcomes are in Table 2. Estimation results

using gestational age are in Panel A. All variables are residuals from separate regressions

on randomization strata effects and mother demographics (see Panel B of Table 1). These

residuals are standardized to have unit variance. Columns (1) to (6) of this panel show

estimates of the factor loadings for the potential outcome equations. The error variance in

the measurement equation using gestational age is in column (7), and can be interpreted

as the noise to signal ratio because of the standardization. Loadings are estimated using

2SLS equations, where the excluded instruments are length at birth, birth weight, and head

circumference at birth. P-values for over-identification tests are presented as well. The

remaining panels have the same interpretation. In each panel, the excluded instruments

are all the remaining measurements at birth (e.g., gestational age, birth weight, and head

circumference at birth in Panel B). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5. SV-SIMEX estimates of factor loadings (or, location parameters)
and scale parameters

Loadings Scale Parameter
Treatment Control Difference Treatment Control Difference

(1) (2) (3) (4) (5) (6)

Panel A: Cognitive Development Index

Estimate 0.297∗∗∗ 0.070∗∗∗ 0.227∗∗∗ -0.135∗∗∗ -0.083∗∗∗ -0.052∗∗∗

(0.005) (0.003) (0.006) (0.004) (0.003) (0.004)

Panel B: Morbidity Index

Estimate -0.140∗∗∗ -0.100∗∗∗ -0.041∗∗∗ -0.007∗ -0.028∗∗∗ 0.021∗∗∗

(0.004) (0.003) (0.005) (0.004) (0.003) (0.005)

Panel C: General Health Ratings Index

Estimate 0.221∗∗∗ 0.086∗∗∗ 0.135∗∗∗ -0.052∗∗∗ -0.089∗∗∗ 0.037∗∗∗

(0.005) (0.003) (0.005) (0.003) (0.002) (0.004)

Note. The table shows estimates for the factor loadings and the scale parameters obtained

from SV-SIMEX, separately for treatment and control groups. Specifically, columns (1)

and (4) are obtained from 200 bootstrap replications of estimates of λ1(τ) and QU1
(τ)

(treatment group). For each bootstrap replication, we regress values of λ1(τ) on values

of QU1
(τ) using a grid from τ = 5% to τ = 95%. This regression yields one intercept

and one slope for each bootstrap replication. Column (1) reports average and standard

deviation of the intercept across bootstrap replications. Column (4) reports average and

standard deviation of the slope across bootstrap replications. Columns (2) and (5) of the

table are obtained in the same way, using 200 bootstrap replications of SV-SIMEX estimates

of λ0(τ) on QU0
(τ) (control group). Columns (3) and (6) show treatment-control differences

in estimates for intercept and slope, respectively. Panels in the table refer to different

outcomes. *** p < 0.01, ** p < 0.05, * p < 0.1.



39

Figure 1. Quantile Treatment Effects and Infant Health and Development
Program
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Note. Dots show estimates of quantile treatment effects (QTE) for the three outcomes.

Treatment-control differences at each quantile are obtained from quantile regressions on the

treatment indicator controlling for randomization strata, mother demographics, and infant

demographics at birth. The continuous line is generated by a local linear regression fit to

estimated QTEs. Shaded areas denote 95% confidence intervals obtained from 100 bootstrap

replications.
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Figure 2. SV-SIMEX estimation
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Note. The estimation idea behind SV-SIMEX is presented using one of the Montecarlo

experiments in Section 7. Dots are estimates of ϕρ
d(τ) at different values of ρ (degree of

contamination, on the horizontal axis) obtained setting B = 50. The dashed line is a

quadratic fit from these dots, and is used to extrapolate to ρ = −1 (no measurement error).
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Figure 3. Estimates of quantile slope of factor for treatment and control children

0.2 0.4 0.6 0.8

−
0.

2
0.

0
0.

2
0.

4
0.

6

Cognitive Development Index

Quantile τ

Lo
ad

in
g 

λ(
τ)

Control
Treatment

0.2 0.4 0.6 0.8

−
0.

2
0.

0
0.

2
0.

4
0.

6

Morbidity Index

Quantile τ

Lo
ad

in
g 

λ(
τ)

Control
Treatment

0.2 0.4 0.6 0.8

−
0.

2
0.

0
0.

2
0.

4
0.

6

General Health Ratings Index

Quantile τ

Lo
ad

in
g 

λ(
τ)

Control
Treatment

Note. Dots in the figure are SV-SIMEX estimates of λ1(τ) (treatment) and λ0(τ) (control).

The solid line is the estimate of λ1(τ) obtained by imposing the factor model. This estimate

is obtained from factor loading and scale parameter estimates in columns (1) and (4) of

Table 4, and SV-SIMEX estimates of QU1
(τ) in Figure 4. The dashed line is the estimate of

λ0(τ) obtained by imposing the factor model. This estimate is obtained from factor loading

and scale parameter estimates in columns (2) and (5) of Table 4, and SIMEX estimates

of QU0
(τ) in Figure 4. Shaded areas denote 95% confidence intervals obtained from 200

bootstrap replications. Panels refer to the three outcomes considered in the analysis.
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Figure 4. Estimates of quantile intercepts for treatment and control children
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Note. The figure shows SV-SIMEX estimates of QU1
(τ) (treatment) and QU0

(τ) (control).

Shaded areas denote 95% confidence intervals obtained from 200 bootstrap replications.

Panels refer to the three outcomes considered in the analysis.
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Figure 5. Estimates of quantiles of the conditional distribution of treatment
effects
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Note. The figure shows estimates of QCD at u0 = QU0
(0.50) and selected values of θ for the

LLBW and HLBW groups (see text for details). The horizontal lines denote estimates of the

average effects for LLBW and HLBW groups obtained from OLS regressions of residualized

outcomes (see footnote 15) on the treatment indicator. Shaded areas denote 95% confidence

intervals obtained from 200 bootstrap replications. Panels refer to the three outcomes

considered in the analysis.
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Figure 6. Conditional quantiles by neonatal health and family income
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Note. The figure shows how estimates of QCD at u0 = QU0
(0.50) and selected quantiles

(in different panels) vary with neonatal health Θ. QCD is estimated separately for children

in families with income below (low-income) and above (high-income) the sample median.

Only the cognitive development outcome (Stanford-Binet intelligence scale) is considered.

Shaded areas denote 90% confidence intervals obtained from 200 bootstrap replications. See

text for details.




