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ABSTRACT

IZA DP No. 12766 NOVEMBER 2019

A New Strategy to Identify Causal 
Relationships: Estimating a Binding 
Average Treatment Effect*

This paper proposes a new strategy to identify causal effects. Instead of finding a 

conventional instrumental variable correlated with the treatment but not with the 

confounding effects, we propose an approach which employs an instrument correlated 

with the confounders, but which itself is not causally related to the direct effect of 

the treatment. Utilizing such an instrument enables one to estimate the confounding 

endogeneity bias. This bias can then be utilized in subsequent regressions first to obtain a 

“binding” causal effect for observations unaffected by institutional barriers that eliminate 

a treatment’s effectiveness, and second to obtain a population-wide treatment effect for 

all observations independent of institutional restrictions. Both are computed whether the 

treatment effects are homogeneous or heterogeneous. To illustrate the technique, we apply 

the approach to estimate sheepskin effects. We find the bias to be approximately equal to 

the OLS coefficient, meaning that the sheepskin effect is near zero. This result is consistent 

with Flores-Lagunes and Light (2010) and Clark and Martorell (2014). Our technique 

expands the econometrician’s toolkit by introducing an alternative method that can be used 

to estimate causality. Further, one potentially can use both the conventional instrumental 

variable approach in tandem with our alternative approach to test the equality of the two 

estimators for a conventionally exactly identified causal model, should one claim to already 

have a valid conventional instrument.
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Riddle: What do you call a student who graduates last in medical school? Answer: Doctor. 

 

1. Introduction 

 

Identification of causal effects (𝛽𝑇) in the typical regression  𝑦 = 𝛽0 + 𝛽𝑇𝑥 + 𝜖 requires 𝑥 to be 

exogenous, and thus uncorrelated with 𝜖. But instead for many practical applications 𝑥 is endogenous 

and thus correlated with 𝜖 because of simultaneity, omitted variables, and/or measurement errors in 𝑥. 

Rather than estimating the causal effect of 𝑥 on 𝑦, the OLS estimator for the 𝑥 coefficient measures a 

combined effect 𝛽 consisting of both the true effect (𝛽𝑇) as well as a bias 𝜃 so that 𝛽 = 𝛽𝑇 + 𝜃. As 

such, the OLS estimator in the presence of endogeneity is statistically inconsistent because it contains 

the confounding effect (𝜃) which prevents it from converging to the true population parameter 

representing the causal effect (𝛽𝑇) when the sample size grows large. 

The conventional approach to handle such an endogeneity problem is to find an exogenous instrumental 

variable correlated with 𝑥 but uncorrelated with the confounders. Unfortunately finding valid 

instruments is difficult because many seemingly valid instruments violate this exclusion restriction, as 

they are often correlated with confounder variables. As an example, take the case of growing up close 

to a college, an often used instrument to estimate returns to education (Card, 1995). Carneiro and 

Heckman (2002) found that despite being correlated with college attendance, distance to a college is 

an invalid instrument because it is similarly correlated with a measure of ability, a confounding variable 

which also determines a respondent’s earnings. 

This paper proposes an alternative strategy which yields a new causal effects estimator. It relies on a 

unique identifying assumption where exogenous institutional factors make the treatment ineffective for 

a subset of the population. These observations receive zero treatment effect despite being treated. For 

these observations any observed correlation between the outcome and treatment must be due to 

confounders. This population subset enables one to estimate the confounding endogeneity bias, which 

then can be used to identify the causal effects.       

This identifying assumption differentiates our approach from the existing literature in at least three 

ways. First, we identify two types of treatment effects. To our knowledge, one – the binding average 

treatment effect (BATE) – is new to the literature, as it explicitly differentiates between interpersonal 

heterogeneous treatment effects and treatment effects based on institutional considerations. Second, 

our identifying assumption enables us to use the treatment itself as an instrument whereas traditional 

approaches require finding exogenous variables or a valid instrument. Third, the approach enables us 

to test the validity of our identification strategy whereas traditional approaches only can do so with an 

exogenous variable or a potentially valid instrument. 

The BATE estimator is particularly important when institutions have an impact. As a very simple 

example, take the case of the federal minimum wage. A number of empirical analyses (e.g., beginning 

with Moore, 1971) estimate the impact of federal minimum wage legislation on teenage 

unemployment. However, a federal minimum wage increase is not binding in states where the 

minimum wage is already higher than the mandated federal level. Incorporating such states in the 

analysis will bias estimates of the overall impact; but omitting these states as in many of the current 
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difference-in-differences (DID) studies could lead to selectivity biases. Further, estimates obtained 

either incorporating or omitting these states not bound by the federal minimum wage would lead to 

erroneous estimates should a new binding federal law exceed these formerly binding state levels. As 

such distinguishing between binding treatment effects and non-binding treatment effects can have 

consequences with regard to public policy. 

We propose employing an instrument correlated with the confounders, but not causally related to the 

direct effect of the treatment. This contrasts with the conventional approach which instead finds a 

variable correlated with x but not with the confounding effects. As will be explained, our approach 

amounts to an instrument defining a situation where the treatment 𝑥 has no direct causal effect on the 

outcome, but instead operates only through confounders. This entails finding an instrument that 

correlates with the outcome variable solely by way of the confounders, yet not because of the treatment 

per se. As such, our exclusion restriction is diametrically the opposite of a traditional instrument. 

Whereas the traditional IV requires a situation in which the instrument has a zero correlation with the 

unobservable confounders, our approach requires a situation in which the instrument is correlated with 

the confounders, but has no direct effect on the outcome. Similarly, our approach is methodologically 

distinct from traditional approaches such as DID, regression discontinuity, propensity score matching, 

and randomized control trials. Selection in such conventional methods can be viewed as randomly 

assigning observations into treatment and non-treatment groups to get a causal effect. In contrast, our 

approach models selection into a “zero-treatment effect” group to get at the OLS bias 𝜃. Once the 𝜃 

bias is obtained, it can then be used in another regression to identify the treatment effect either when 

the treatment effect is homogeneous or heterogeneous. As such, in our approach, identifying 𝜃 using 

our alternative instrument serves as a new strategy to obtain a consistent estimator of the true causal 

effects.1     

Our approach is most related to the control function approach (Heckman and Robb 1985; Imbens and 

Woolridge 2007). Both approaches utilize existing sample data to compute an aspect of the 

confounding bias. The CFA approach adjusts for the endogeneity bias whereas our approach explicitly 

estimates the bias. Also, our approach is related to Angrist and Krueger (1995) and Flores and Flores-

Lagunes (2009) because their approaches use a subsample of data to adjust for the bias, as does ours. 

However, what differentiates our approach from the CFA, the Angrist and Krueger, and the Flores and 

Flores-Lagunes applications, is our method identifies the causal effect without any need for exogenous 

or traditional instrumental variables. This is because our identifying assumption utilizes the 

endogenous variable itself as an instrument for confounders when an institutional constraint sets the 

treatment effect zero. 

The main challenge to implementing the approach is to find an instrument for the confounding effects. 

This might seem difficult given confounders are typically unobservable. However, one way to do this 

is to use 𝑥 itself as an instrument for the confounders if one can find a situation in which 𝑥 does not 

influence 𝑦 directly, but only does so through confounders. This identification strategy amounts to 

finding a circumstance where treatment 𝑥 varies with outcome 𝑦, but by itself does not causally 

influence 𝑦. As it turns out, there are many such examples. 

                                                           
1 To be more precise, our analysis yields two treatment effects. 𝛽𝑇 represents the treatment when the treatment is effective, 

i.e. binding. We denote 𝛽𝑇 to be the binding average treatment effect (BATE). We also define a population-wide average 

treatment effect 𝛽𝑇
𝑃comparable to the commonly defined average treatment effect (ATE). 
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To illustrate, we apply the approach to estimate sheepskin effects, a topic for which there is an existing 

literature but with contradictory evidence. OLS estimates indicate employers pay large rewards to those 

with a high school or college diploma compared to those similarly schooled with 12 or 16 years of 

education. Many interpret this result to mean that a diploma per se is thus important for economic 

success. For obvious reasons, this is known as the sheepskin effect. However, these higher rewards 

observed in OLS regressions might come about not because having a degree is intrinsically valued by 

employers, but because those with a degree are motivated individuals with a high level of stick-to-

itiveness, an unobserved characteristic affecting earnings. In this situation OLS results are biased and 

inconsistent because actually earning a degree could signify the effects of these unobserved individual 

characteristics rather than the intrinsic causal value of such a certification. Perhaps for this reason many 

employers require a diploma as a validation especially in occupations where they believe the skill of a 

worker must reach a certain threshold, determined by a baccalaureate. On the other hand, for seemingly 

comparable workers, a number of employers do not require a degree. Clearly those employers do not 

value a sheepskin, or otherwise they would have required the degree. Thus, in this case, diplomas 

cannot have an intrinsic value if degreed employees get higher wages in these jobs not requiring a 

diploma. Higher earnings for these workers must come about because of unobserved confounders rather 

than the innate value of a diploma. We use such a subsample to estimate the OLS confounding bias 𝜃. 

As such, jobs not requiring a diploma motivate our instrument.  

To implement the technique we compute 𝜃 based on a regression of incumbents in occupations not 

requiring a degree. We find 𝜃 to be approximately equal to the OLS coefficient for those in all 

occupations, meaning that the sheepskin effect is near zero. This result is consistent with Clark and 

Martorell (2014) and Flores-Lagunes and Light (2010) who find similar results respectively using a 

regression discontinuity strategy and an OLS with interaction terms between years of school and getting 

a degree. 

Whereas we apply the technique to estimating sheepskin effects, there are numerous other applications 

for which our approach can be useful to estimate unbiased causal effects.  These include estimating the 

causal impact of deploying additional police on marijuana use, the impact of parental inputs on child 

development, and the impact of school quality on earnings. So if, the answer to the above riddle is 

really true, and the grades one gets in medical school relative to one’s classmates do not affect one’s 

ability to practice medicine, then variations in economic success for medical doctors must be 

attributable to unobserved factors, in short the confounders. In this case, one can compare the earnings 

gradient of class rank based on grades for physicians to that of other comparable occupations to get at 

the true direct effect of class rank. These are but several of numerous possible applications for which 

our approach can be useful to estimate unbiased causal effects.  

What is important is our approach identifies the bias contained in an OLS estimated causal relationship 

rather than attempting to isolate the effect via a potentially invalid instrument. Thus our technique 

expands the econometrician’s toolkit by introducing an alternative method that can be used to estimate 

causality. Because in some circumstances it may be easier to identify the bias by devising an instrument 

correlated only with the confounding effects rather than only correlated with the direct effect of the 

treatment, our procedure should be valuable to assess causal relationships.  Further, one potentially can 

use both the usual instrumental variable approach in tandem with our alternative approach to test the 

equality of the two estimators for a conventionally exactly identified causal model should one claim to 
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already have a valid traditional instrument. Obviously our approach is especially useful for policy 

related research since that literature requires unbiased causal effect estimates.   

Before describing our method in detail, we go over the basic endogeneity problem in Section 2 and 

describe the current typically used IV strategy in Section 3. In Section 4 we describe our method, which 

denote to be a “bias excision” approach. Then in Section 5 we apply it to estimate potential sheepskin 

effects. We conclude in Section 6 citing several possible applications of the technique. 

 

2. The Endogeneity Problem  

 

Assume an economic relationship governed by the following equation  

𝑦 = 𝛽0 + 𝛽𝑇𝑥 + 𝜖 1 

 

where 𝐸[𝜖] = 0, but 𝑥 is statistically dependent of 𝜖 so that 𝐸[𝜖|𝑥] ≠ 0. The latter expectation implies (1) can 

be expressed as  

 

𝐸[𝑦|𝑥] = 𝛽0 + 𝛽𝑇𝑥 + 𝐸[𝜖|𝑥] 2 

 

 

The simple OLS estimate of 𝛽𝑇 suffers from an omitted variable bias because it omits 𝐸[𝜖|𝑥] which is a function 

of 𝑥. Running 𝑦 = 𝛽0 + 𝛽𝑇𝑥 + 𝜖 amounts to omitting the variable 𝐸[𝜖|𝑥], implying that 𝐸[𝜖|𝑥] goes into the 

error term 𝜖. Because under general conditions 𝐶𝑜𝑣[𝑥, 𝐸[𝜖|𝑥]] ≠ 0, it can be shown that 𝐶𝑜𝑣[𝑥, 𝜖] ≠ 0. As a 

result OLS yields a biased and inconsistent estimator on 𝛽𝑇. 

As such, 𝜖 can be represented by the following  

𝜖 = 𝑎 + 𝜃𝑥 + 𝑢 3 

 

 

where 𝜃 ≠ 0, and 𝑢 is an error vector such that 𝑢 ⊥ 𝑥. See Appendix A for the derivation. 

Substituting 𝜖 from (3) into (1) yields 

𝑦 = (𝛽0 + 𝑎) + 𝛽𝑇𝑥 + 𝜃𝑥 + 𝑢 4 

 

Rewriting (4) yields 

𝑦 = 𝜋0 + 𝛽𝑥 + 𝑢 5 
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where 𝜋0 = (𝛽0 + 𝑎) and 𝛽 = (𝛽𝑇 + 𝜃).  

In this form the 𝛽 coefficient of 𝑥 is 

𝛽 =
𝐶𝑜𝑣(𝑦, 𝑥)

𝑉𝑎𝑟(𝑥)
= 𝛽𝑇 + 𝜃 6 

 

If 𝜃 ≠ 0, then  𝛽 ≠ 𝛽𝑇, indicating the OLS of 𝑦 on 𝑥 produces a biased and inconsistent estimator of 

the true effect. 

 

3. The Traditional Solution: An Instrumental Variable Method (2SLS with IVs) 

 

The traditional solution entails finding a single instrument or a vector of instrumental variables 𝑧 such 

that each component of 𝑧 is strongly correlated with 𝑥 but uncorrelated with 𝜖. Thus the following 

conditions have to be met: 

𝐶𝑜𝑣(𝑥, 𝑧) ≠ 0 7 

 

and 

𝐶𝑜𝑣(𝜖, 𝑧) = 0 8 

 

Typically the estimation entails two stages. In stage 1, regress  𝑥 on 𝑧 such that  

𝑥 = 𝛿0 + 𝛿1𝑧 + 𝜁 9 

 

where the 𝛿s are the coefficients and 𝜁 is  random noise. This OLS yields estimates of  𝛿0 and  𝛿1 which 

are used to predict 𝑥̂. In stage 2 one regresses 𝑦 on  𝑥̂ such that  

𝑦 = 𝜙0 + 𝜙1 𝑥̂ + 𝜂 10 

 

where 𝜙0 and 𝜙1 are the coefficients and 𝜂 is random noise. If 𝑧 satisfies both the conditions (7) and 

(8), then the OLS estimator of 𝜙̂1 is consistent, so that 𝑝𝑙𝑖𝑚 𝜙̂1 = 𝛽𝑇 (e.g., Basmann, 1957; Sargan, 

1958; Theil, 1958; and Angrist and Imbens, 1995).  

This method directly identifies the true causal effect. However, in practice it may be difficult to find 

appropriate 𝑧 that satisfy the relevance and exclusion restriction conditions.  
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4. A Bias Excision Estimation Approach 

 

Our approach utilizes a different type instrumental variable to identify and estimate the endogeneity 

bias often inherent in OLS estimation. We utilize the instrument in an initial first-stage regression to 

estimate the OLS bias and the resulting confounding effects. Then after netting out the confounding 

effects from the outcome data, we run two subsequent regressions to obtain two types of treatment 

effect parameters. One (𝛽𝑇
𝑃) is the population-wide average effect and the other (𝛽𝑇) is the average 

treatment effect on the population for which the treatment is actually binding. We consider the bias and 

both parameters under homogenous and heterogeneous treatment regimes. When the treatment effects 

are homogeneous these parameters are constant across all observations. When the treatment effects are 

heterogeneous the parameters can vary across the observations.  

We begin by defining the necessary criteria underlying the instrumental variable we propose. This 

instrumental variable can be a continuous or dichotomous variable. First, we present each of these for 

the homogeneous treatment case. Second, we present each for the heterogeneous case. Third, we assess 

potential selectivity biases. Finally, in the fourth subsection, we briefly relate our approach to aspects 

of the existing causality literature.  

4.1 The Setup 

Begin by rewriting (4) as  

      

𝑦 = 𝛽0 + 𝜃𝑥 + 𝜖′ 11 

 

where 𝜃 is the OLS bias coefficient and 𝜖′ = 𝑎 + 𝛽𝑇𝑥 + 𝑢 includes the direct treatment effect rather 

than the confounding effect  in a typical regression, both previously defined in (3). Estimating (11) via 

an instrumental variable approach would require an instrument 𝑤 (or a vector of variables 𝑊) such that 

𝑤 varies with the treatment 𝑥, i.e.,  

𝐶𝑜𝑣(𝑥, 𝑤) ≠ 0 12 

 

but is uncorrelated with the error, i.e.,  

𝐶𝑜𝑣(𝜖′, 𝑤) = 0. 13 

 

Here 𝑤 is an instrument for 𝑥 that can be used to determine the bias 𝜃. For (12) and (13) to hold, 𝑤 

cannot be correlated with the true effect (𝛽𝑇𝑥) which is in the error 𝜖′, but instead correlated with the 

confounding effect (𝜃𝑥).2 Note, 𝑤  differs from the traditional instrument. Indeed both are on opposite 

sides of the spectrum. The traditional IV requires a zero correlation between the instrument and the 

unobservables. Our bias excision approach IV requires a zero correlation between the instrument and 

                                                           
2 One might argue such an instrument cannot exist since 𝑤  is correlated with x, and x is a component of 𝜖′, but as we will 

show, under the right circumstances 𝑤 can and does exist. 
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the direct effect of the endogenous variable. Clearly these exclusion restrictions differ from each other. 

Both are strong in their own ways, but surely there must be some circumstances in which our approach 

is more reasonable. This is the reason why in the conclusion we pitch our method as an alternative 

approach to identify causality without claiming superiority.3  

Should one be able to find such an instrument, the same estimation procedure as in the regular IV case 

can be followed to obtain the estimator of 𝜃, the bias component. Once the bias is identified, as will be 

shown, the bias component 𝜃𝑥 can be subtracted from (4) to obtain the two treatment effect estimates: 

𝛽 𝑇
𝑃 , the population-wide treatment effect, and 𝛽𝑇, the binding treatment effect, both mentioned above. 

Just as with the typical IV estimation, there are various ways to actually implement the approach. One 

way is a two-step procedure. First, one finds an instrument (𝑤) solely correlated with the biased effect 

of 𝑥 on 𝑦. Here one employs w to estimate x so that  

   

 

𝑥 = 𝛾0 + 𝛾1𝑤 + 𝜍. 14 

 

The second stage consists of using 𝑥̂ in the main regression  

   

 

𝑦 = 𝛽0 + 𝜓𝑥̂ + 𝜖′. 15 

 

This yields  𝜓̂ such that 𝑝𝑙𝑖𝑚 𝜓̂ = 𝜃. It constitutes the confounding impact of 𝑥, which we denote to 

be the bias parameter. Finally, as alluded to above, and as will be explained shortly in more detail, one 

can use this estimate of 𝜃 to subtract the biased component 𝜓̂𝑥 from 𝑦, and then with the appropriate 

regressions get the two treatment effects 𝛽̂𝑇 and 𝛽̂𝑇
𝑃.  

The challenge with this implementation procedure is to find an instrument actually correlated with 

confounders, but which itself has no direct effect on the outcome. However, because confounders are 

unobservable in the data, it is potentially hard to find such an instrument. As such, one cannot rely on 

empirical strategies, but instead one must build upon prior institutional knowledge. 4 

Economic theory can help identify situations where such an instrument can be found. One such instance 

is when a particular institutional circumstance prohibits treatment 𝑥 from having a direct causal effect 

on 𝑦, even though respondents are treated (have non-zero 𝑥). Here 𝑥 does not affect 𝑦 directly, but 

instead 𝑥 affects 𝑦 only through confounders.5 For this reason one would think 𝑥 should not enter the 

                                                           
3 See Appendix B which more formally contrasts our IV approach and the traditional IV approach. 
4 This is consistent with Basmann’s (2006:278) statement “Intuition of economic reality is central to conducting good 

econometrics.” 
5 In a sense this is the flipside of “twins” studies. Analyses using twins data run a differenced regression of treatment 

outcome for monozygotic twins (Taubman, 1976; Ashenfelter and Rouse, 1998). In this case the causal effects are obtained 

because the treatment effect is measured holding constant confounding genetic characteristics. In our case, we estimate only 

the bias by holding the direct effect constant, which we then subsequently use to get the true effect. It is important to note 
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regression equation (𝑦 = 𝛽0 + 𝛽𝑇𝑥 + 𝜖) because 𝛽𝑇 = 0, but in reality 𝑥 does enter since 𝑥 is 

correlated with the confounders given that 𝜃 ≠ 0. As such, in this case, one can use 𝑥 itself as an 

instrument for the confounders since 𝑥 affects 𝑦 only through the confounders and does not have a 

direct own effect.  

In such a circumstance we identify the causal effect based on a design that assigns 𝛽𝑇 = 0 to a 

representative subsample. Utilizing this subsample, we first identify the bias 𝜃 which later allows us to 

estimate the causal effect parameters 𝛽𝑇
𝑃 and 𝛽𝑇. In doing so two independence conditions are 

necessary, both of which are reasonable. 

Condition 1: The treatment 𝑥 is mean independent of 𝑢, implying 𝐸[𝑢|𝑥] = 𝐸[𝑢] = 0. 

Condition 1 simply indicates that the treatment assignment is mean independent of the unobserved 𝑢. 

Condition 1 is about independence and therefore different than the construction in (3) that 𝐶𝑜𝑣[𝑥, 𝑢] =

0. Intuitively Condition 1 implies that once one nets out the OLS bias, the error structure adheres to 

the usual bias free OLS error structure. 

Condition 2: The assignment of 𝛽𝑇 = 0 is independent of the assignment of treatment implying 

𝐸[𝛽𝑇|𝑥] = 𝐸[𝛽𝑇]. 

This condition means that those observations for which the treatment has no effect (𝛽𝑇 = 0) are not 

determined by the treatment status. This condition is reasonable given that an institutional circumstance 

dictates members of this population subgroup.6 Nevertheless, it is permissible that assignment to a 

𝛽𝑇 = 0 group depends on other observed and unobserved characteristics. This condition is less 

stringent than the usually used complete random assignment employed when using a typical IV. 

In short, one estimates the impact of 𝑥 in two steps: One using only those respondents in the sample 

for which the treatment 𝑥 is known to have no direct effect, and then second, using the entire sample. 

To implement this approach, we parcel the sample into three groups. We denote 𝑆 to be the entire 

sample which contains the three subsamples: 𝑆𝐴, 𝑆𝐵, 𝑆𝐶. The first subsample 𝑆𝐴 ⊂ 𝑆 is the set of 

individuals (observations) that do not receive any treatment. For these 𝑥 = 0. The second subsample 

𝑆𝐵 ⊂ 𝑆 consists of individuals who receive treatment, but the sole effect of treatment is through 

confounders. Thus for individuals in 𝑆𝐵 the treatment has no direct own effect. Finally the remaining 

subsample 𝑆𝐶 ⊂ 𝑆 are those receiving treatment, but the effects arise partly from confounding forces, 

and partly from the treatment itself. Our first step entails a regression using the set {𝑆𝐴,  𝑆𝐵} and our 

second step utilizes the entire observation set { 𝑆𝐴, 𝑆𝐵,  𝑆𝐶}. 7  

                                                           
that our identifying assumption that 𝛽𝑇 = 0 arises because of institutional interventions, and not due to heterogeneous 

effects of 𝑥. As already indicated, later we distinguish between estimating the treatment effect for the whole population 

(𝛽𝑇
𝑃) which includes observations in which the treatment is and is not binding, and estimating the treatment effect only for 

the sample in which the treatment is binding (𝛽𝑇). 
6 We emphasize that the presence of a subsample with 𝛽𝑇 = 0 arises because of institutional considerations. However, 𝛽𝑇 

for these individuals would revert back to the binding 𝛽𝑇 should these institutional considerations be eliminated. 
7 The closest approaches to ours we are aware of in the literature are the control function approach (Heckman and Robb1985, 

Imbens and Wooldridge, 2007 and Angrist and Krueger, 1995) and the mediation bias elimination approach of Flores and 

Flores-Lagunes (2009). Appendix C shows how our approach differs from the CFA approach. Section 4.3 of the Flores and 

Flores-Lagunes (2009) paper utilizes a population subsample that eliminates mediation effects caused by a treatment in 

order to obtain a net average treatment effect (NATE). 
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We distinguish two possibilities: (1) when the treatment is continuous, and (2) when the treatment is 

dichotomous. As mentioned, for each of these possibilities we identify the two treatment effect 

parameters.8 One denoted 𝛽𝑇
𝑃 represents the average treatment effect for the whole population, which 

includes those population members for which the treatment is binding and those population members 

for which the treatment effect is institutionally zero and thus nonbinding. The second parameter 

denoted 𝛽𝑇 is the average treatment effect for those population members for which the treatment is 

binding.9 

4.1.A Continuous Treatment Variable 

Identification of 𝛽𝑇
𝑃: The Population Average Treatment Effect 

In general (14) depicts the first-stage regression. However, when 𝑥 affects 𝑦 only through confounders, 

one can use 𝑥 itself as an instrument, but for the subset of the data where 𝑥 has no direct effect on 𝑦.10 

Because 𝑥 is the instrument for itself, that is 𝑥̂ = 𝑥, this implies a second stage regression (16) rather 

than (15)  

𝑦 =  𝜋0 + 𝜓𝑥 +  𝑢 16 

 

Estimated only for observations in 𝑆𝐴 and 𝑆𝐵. This regression yields the estimate of the confounding 

effect 𝜃 such that the 𝑝𝑙𝑖𝑚 𝜓̂ = 𝜃 since 𝐸[𝑢|𝑥] = 0.11  

Once  𝜃 is obtained we subtract out the inherent bias in 𝑦 for the entire sample 𝑦̃ = 𝑦 − 𝜃𝑥. We then 

run the following regression for the entire sample (i.e. {𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 }) 

𝑦̃ = 𝜋0 + 𝛽𝑇
𝑃𝑥 + 𝑢. 17 

   

Condition 1, 𝐸[𝑢|𝑥] = 0, then allows one to consistently estimate  𝛽̂𝑇
𝑃, that is the overall population 

treatment effect.12 The coefficient 𝛽̂𝑇
𝑃 is a weighted average of 𝛽𝑇 (for those with  𝛽𝑇 ≠ 0) and 0 (for 

those with 𝛽𝑇 = 0).  

 

Identification of 𝛽𝑇: The Average Treatment Effect for Those Whom the Treatment is Binding 

                                                           
8 See Appendix B for details. 
9 As explained later, we call this the binding average treatment effect or BATE. Estimating this effect is new to the treatment 

effects literature because in that literature the treatment effect is binding for the whole population, albeit to different degrees 

in the heterogeneous treatment effect case. 
10 More formally, one would run a first-stage regression  𝑥 = 𝛾0 + 𝛾1𝑤 + 𝜍 where 𝑤 is the instrument. But here 𝑤 =

𝑥 for all observations in 𝑆𝐴 , 𝑆𝐵 ⊂ 𝑆. This implies 𝛾0 = 0 and 𝜍 = 0 since 𝑥 perfectly predicts itself. Thus 𝑥̂ = 𝑥. 
11 One should not confuse 𝜓̂ with a placebo effect. A placebo effect results when a respondent seemingly exhibits an impact, 

but in reality receives no treatment. The 𝜓̂ coefficient here measures the difference in outcomes between those treated who 

have a zero treatment effect and those untreated. As such, 𝜓̂ measures the impact of the confounders. Thus it is an estimate 

of the bias. 
12 See Appendix D for details. 
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To identify 𝛽𝑇 we construct  𝑦̃ following similar steps as before. However, we must up-weight our 

prior 𝛽𝑇
𝑃 estimate to measure the treatment solely for those when the treatment is binding, 𝛽𝑇 ≠ 0. 

Intuitively this means eliminating the zero impact of observations in the SB group for which the 

treatment effect is institutionally zero. As explained in Appendix B, we do so by setting 𝑥 = 0 for all 

SB observations since the effect of the treatment 𝛽𝑇𝑥 on 𝑦̃ is zero independent of x. We denote this new 

x as 𝑥̃, and then we run the following OLS regression for the entire sample (i.e. {𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 }) to 

obtain  𝛽̂𝑇 

𝑦̃ = 𝜋0 + 𝛽𝑇𝑥̃ + 𝑢. 18 

 

As before, Condition 1, 𝐸[𝑢|𝑥] = 0, allows one to consistently estimate 𝛽̂𝑇, the true treatment effect 

parameter when the treatment effect is binding.  

 

 

4.1.B Dichotomous Treatment Variable 

Here, the basic methodological intuition remains the same. However, one needs to use a Wald (1940) 

type estimator to get the biased component 𝜃 because in this case the instrument (the dummy variable 

𝑥 in the subsample) is binary.   

In a typical binary instrumental variable (say 𝑚) case, the IV Wald estimator is defined as 

 

𝜃 =  
𝐸[𝑦|𝑚 = 1] − 𝐸[𝑦|𝑚 = 0]

 𝐸[𝑑|𝑚 = 1] − 𝐸[𝑑|𝑚 = 0]
. 19 

 

As in the continuous case, one can employ an instrument 𝑚 that is the treatment itself, which we now 

denote as  𝑑  (i.e. 𝑚 = 𝑑). In this first stage we examine the effect of 𝑑 in the {𝑆𝐴, 𝑆𝐵 } subsample where 

𝛽𝑇 = 0 or 𝑑 = 0. Substituting 𝑚 = 𝑑 in (19) yields 

𝜃 =
𝐸[𝑦|𝑑 = 1] − 𝐸[𝑦|𝑑 = 0]

𝐸[𝑑|𝑑 = 1] − 𝐸[𝑑|𝑑 = 0]
=

𝐸[𝑦|𝑑 = 1] − 𝐸[𝑦|𝑑 = 0]

1 − 0
 

= 𝐸[𝑦|𝑑 = 1] − 𝐸[𝑦|𝑑 = 0]. 20 

 

This is equivalent to the OLS coefficient of 𝑑 (i.e. 𝜃) in the regression 

𝑦 = 𝛽0 + 𝜃𝑑𝑖 + 𝜖′  𝑖 ∈ {𝑆𝐴, 𝑆𝐵 }  #21 

run only on the subsamples 𝑆𝐴, and 𝑆𝐵 where 𝛽𝑇 = 0 or 𝑑 = 0. As above, 𝜃𝑥 is subtracted from 𝑦 to 

obtain 𝑦̃. Once 𝑦̃ is obtained one can estimate 𝛽𝑇
𝑃 and 𝛽𝑇 from the following two OLS regressions with 

the entire sample (i.e. ∈ {𝑆𝐴, 𝑆𝐵 , 𝑆𝐶 }).  
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𝑦̃ = 𝜋0 + 𝛽𝑇
𝑃𝑑 + 𝑢 22 

 

𝑦̃ = 𝜋0 + 𝛽𝑇𝑑̃  + 𝑢 23 

 

where 𝑑̃ is a reconstructed version of 𝑑 such that 𝑑̃  = 0 for all observations where institutions dictate 

𝛽𝑇 = 0. 

 

4.2 Heterogeneous Treatment Effects 

 

The analysis so far assumed the bias and treatment parameters θ, 𝛽𝑇 and  𝛽𝑇
𝑃 to be constant across all 

individuals. However, in reality these parameters could be heterogeneous, so that they vary across 

observations. Appendix B rigorously explains the details, but here we summarize. There, we interpret 

our estimate of the OLS bias parameter (θ) as well as our treatment effect parameters 𝛽𝑇 and 𝛽𝑇
𝑃in light 

of possible heterogeneity. We prove that our estimate of θ is the average OLS bias in the population as 

long as the assignment of observations into the 𝛽𝑇 = 0 group does not depend on 𝑥. As such, 𝜃 

measures the average bias effect (ABE). Based on this we show 𝛽𝑇
𝑃 measures the average treatment 

effect (ATE) and 𝛽̂𝑇 measures the average treatment effect when the treatment is binding. As such, we 

denote 𝛽̂𝑇 as the binding average treatment effect (BATE). The 𝛽𝑇
𝑃 parameter is similar to the ATE 

defined in the existing treatment effects literature. However, to our knowledge, 𝛽𝑇 is a parameter that 

is new to the causal effects literature as it measures the effect of the treatment only when the treatment 

is binding.   

 

4.3 Selectivity 

 

Interestingly, using two samples { 𝑆𝐴, 𝑆𝐵} and { 𝑆𝐴, 𝑆𝐵,  𝑆𝐶}, one of which is a subset of the other, does 

not lead to a selectivity bias when estimating 𝜃. 13 Unlike in the classic Heckman (1979) selectivity 

case, where the omitted variable defining selectivity is correlated with the treatment, our omitted 

variable defining selectivity is uncorrelated with the treatment 𝑥 because institutions dictate  𝛽𝑇 = 0 

(i.e., our selection rule).14 This institutional circumstance satisfies Condition 2. For this reason, we 

obtain an unbiased and consistent estimator of 𝜃.15 As a result, all potential biases due to sample 

selection goes into the intercept term, leaving the 𝜃 slope coefficient estimator unaltered. This result 

holds true for both the continuous and dichotomous cases. See Appendix E for details. 

                                                           
13 However, there is a selectivity bias in estimating the constant 𝛽0 in (16) or (21), but this selectivity bias is irrelevant in 

estimating 𝛽𝑇.  
14 As is shown in Appendix B, one can test whether assignment into the 𝛽𝑇 = 0 group biases the estimator of 𝜃. Obtaining 

a zero 𝐸(𝜃𝑖 − 𝜃̅) coefficient when estimating 𝐸𝑞 (𝐵. 20) implies no selectivity bias when we estimate 𝜃. 
15 As illustrated in Appendix E, when 𝛽𝑇 = 0, 𝐸(𝑣|𝛽𝑇 = 0) = 𝑐, so that 𝐸(𝑌|𝑋) = (𝛽0 + 𝑐) + 𝜃𝑥 implying an unbiased 

and consistent estimate of 𝜃. 
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4.4 Relating the Bias Excising Approach to the Current Causality Literature 

 

We emphasize that our identification technique differs from the conventional IV approach in two major 

ways. First, standard IV requires finding a situation in which there are no confounders to bias the causal 

estimate (Koopman, 1953; Basmann, 1957, 1963; Imbens, 2014). Our approach is the opposite. We 

use an exclusion restriction that ensures that the instrument correlates with the confounders and thereby 

correlates with 𝑥, but because 𝛽𝑇 = 0 the instrument is uncorrelated with the direct causal effect of 𝑥 

on 𝑦. This entails finding a situation in which the treatment has no direct causal effect, but instead only 

the confounders impact the outcome through the treatment variable. As such, our approach requires 

finding a circumstance in which the treatment has no causal effect, whereas the traditional approach 

requires finding a situation in which the treatment yields no confounding effect. 

 

Second, the conventional methods (e.g. DiD, regression discontinuity, propensity score matching, 

randomized control trials, etc.) model selection into the treatment group to obtain a causal effect (e.g., 

Heckman 1979, Angrist and Krueger 1991, Card 1995). Similarly, the partial identification literature 

essentially does the same using data on always takers and never takers to bound the treatment effect 

(e.g., Manksi 1990; Manski and Pepper 2000; Blanco and Flores-Lagunes 2013 Chen et al., 2018). In 

contrast, our approach models selection based on a zero treatment effect. As a result of this different 

modelling strategy, our method is able to retrieve the bias component 𝜃 which then can be used to 

identify the true causal effect. 

Third, our approach differs from the control function approach. Whereas both seek to remove a 

confounding bias, the CFA approach concentrates on a bias originating from an imperfect instrument. 

In our approach, the treatment itself is the instrument, thus there is no need for exogenous or traditional 

instrumental variables. This is because our identifying assumption utilizes the endogenous variable 

itself as an instrument for confounders when an institutional constraint sets the treatment effect zero. 

 

5. An Application 

 

To illustrate consider the literature on sheepskin effects. The question is whether or not actually getting 

a degree (namely a high school or college diploma) yields a monetary benefit over and above the 12 or 

16 years of school required for each respective degree. 

Early literature simply ran an OLS regression  𝑦 =  𝛼𝑆 + 𝛽𝐷𝑒𝑔𝑟𝑒𝑒 + 𝜖 where y is ln earnings, S is 

schooling, and Degree is a categorical dummy variable denoting whether one has a diploma (Jaeger 

and Page, 1996).16 Typically 𝛽 is positive, consistent with a sheepskin effect. We illustrate this result 

in Table 1 (columns 1 and 6) where the 𝛽 coefficients are 0.46 and 0.08 respectively. However, Degree 

is not exogenous, as clearly intellectually able students with more stamina, an unobserved confounding 

factor, are likely to complete school and get a degree; whereas those less able students with less stamina 

                                                           
16Earlier literature such as Hungerford and Solon (1987) and Belman and Haywood (1991) do not actually use diploma per 

se, but instead a spline function with discontinuities denoting diploma levels at junior high, high school, and college. Other 

literature on sheepskin effects concentrate on particular countries. See Rodríguez and Muro (2015) and Omodunbi (2015) 

for a survey of such studies. 
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might not. Alfonso Flores-Lagunes and Audrey Light (2010) point this out by arguing the more able 

get their degree in fewer years. To illustrate, Flores-Lagunes and Light show the coefficient on 

schooling is negative for those holding a diploma. This negative coefficient means degree holders 

taking a longer number of years to get a degree are less able. However, the schooling coefficient is 

positive for those without a degree. This positive coefficient means an additional year of schooling is 

still valuable. Thus holding years of school constant, those getting a degree are more able. This finding 

is consistent with an endogeneity problem because ability is unobservable. To get around this hurdle, 

Damon Clark and Paco Martorell (2014) utilize a regression discontinuity approach to compare 

subsequent earnings of those students who just passed and just failed the high school exit exams 

required to get a diploma. Clark and Martorell find little evidence to support a sheepskin effect. 

We use our approach to reexamine potential sheepskin effects. We do so first for college diplomas and 

second for high school diplomas. 

We take all those respondents from the NLSY-79 data with 15 to 18 years of school when considering 

a college or university baccalaureate degree and all respondents with 11 and 12 years of schooling 

when considering a high school diploma. Some graduate with diplomas, whereas some others go out 

in the labor force but do not graduate. We run the regression 𝑦𝑖𝑡 =  𝛽0 + 𝛽𝐷𝑖𝑝𝑙𝑜𝑚𝑎𝑖𝑡 + 𝛾𝑀𝑖𝑡 + 𝜖𝑖𝑡 

whereby Diploma denotes those individuals receiving a diploma and M denotes years of schooling and 

other characteristics (See Table 1, footnote #7), and where i depicts the individual and t the year.  

According to traditional models the β coefficient (on x) denotes a sheepskin effect. However, in reality 

the 𝛽 coefficient could instead signify a combination of the sheepskin effect as well as the confounding 

effects. Typical 2SLS would require an instrument correlated with degree but not the error term. 

Devising such an instrument is difficult because most such instruments for a sheepskin are also usually 

correlated with confounders that affect earnings. For example, choosing location-specific 

unemployment rates as an instrument for receiving a diploma may seem reasonable since a low 

unemployment rate may cause one to quickly enter the labor force, thus foregoing actually finishing 

up and receiving a diploma. Yet a low local unemployment rate can put pressure on wages and thus 

violate the exclusion restriction. 

Our new approach requires two steps. The first is to find an instrument correlated with the confounding 

effects of x on y, but uncorrelated with the direct causal effect of x on y. This enables us to estimate the 

confounding bias 𝜃. We net out the biased effect (𝜃𝑥) in a second set of regressions first to obtain 

estimates of the population-wide sheepskin effect and second to obtain the sheepskin effect for those 

whom the sheepskin effect is binding.  

One such instrument is motivated by whether or not employers require a high school or college diploma 

for a particular occupation. If they do not value a college degree, then those employees in this 

occupation only get a diploma to somehow signal their stamina and hence their ability to stick to it, but 

the degree itself has no direct causal effect on earnings. As such, because the direct causal effect is 

zero, the treatment variable itself becomes an instrument for the confounders if used in a regression for 

individuals in occupations not requiring a degree.  

To make use of this instrument we run a regression comprising only those individuals whose employer 

does not require a diploma.17 This regression estimates the bias since it measures the impact of the 

                                                           
17 Information on degree requirements were obtained from the Bureau of Labor Statistics Education and Training. 
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diploma in an occupation where the diploma is not needed to perform well. Further, there is no 

difference in learning since we control for schooling. That is, those with a diploma and those without 

a diploma have a similar amount of school. Thus the impact of a diploma can only result from 

employers viewing the degree as a reflection of potential employee stick to it type ability. Hence the 

coefficient is a measure of the bias in the sheepskin effect. 

The second set of regressions comprise the same specification, but include the whole sample, with the 

confounding bias appropriately netted out. These regressions entail employees whose employers value 

a college degree as a requirement for the job as well as those employees who have a diploma even 

though it is not needed. For the latter, employers do not value the diploma as a job requirement, but 

they do value the diploma for the former, thus indicating a diploma has value at least for those 

employers. These latter regressions measure both the population-wide average treatment effect (ATE) 

and the effect for the affected population, the binding average treatment effect (BATE) . 

Take college diplomas first. Table 1 contains both sets of regressions. But first, as noted earlier, column 

(1) contains the sheepskin effect based on the past traditional OLS estimation specification. The 0.46 

coefficient is biased because it comprises both the true effect plus the endogeneity bias. The 0.42 

coefficient in column (2), obtained from the first regression (eq. 11) using the sample of those not 

requiring a degree, is the biased effect of a diploma since it depicts the percent increase in real wages 

in occupations where employers do not value a sheepskin per se. As such, the 0.42 effect arises solely 

because incumbents themselves are more able. Column 3 gives the 𝛽𝑇
𝑃 coefficient for all incumbents 

whether or not they are in a job requiring a diploma. It is obtained from a second regression obtained 

by netting out the confounding effect 𝜃𝑥. The 0.04 population-wide average treatment effect (ATE) 

implies virtually no sheepskin effect for the whole population. After further netting out those 

individuals for whom the sheepskin effect is zero based on institutional reasons, we obtain (column 4) 

the sheepskin effect for those for whom the sheepskin effect can actually be binding. Though, for 

obvious reasons, the 0.16 𝛽𝑇 coefficient exceeds 0.04 it still remains statistically insignificant. Finally, 

the virtually zero (0.01) coefficient in column (6) indicates assignment into the zero treatment group 

does not result in a selectivity bias thereby corroborating the validity of our identification strategy. 

Similarly for high school, the OLS coefficient is 0.08 (column 5).  The average biased coefficient 

(ABE) 𝜃 is 0.06 (column 6). After appropriately netting out the bias, column 7 gives the 0.02 

population-wide sheepskin effect 𝛽𝑇
𝑃. Finally, column 8 contains the 0.03  𝛽𝑇  effect measured for those 

for whom the sheepskin effect is binding. Again, the sheepskin effect is statistically insignificant. Both 

the high school and college results are consistent with recent findings of a negligible, if any, sheepskin 

effect obtained by Flores-Lagunes and Light (2010) and Clark and Martorell (2014).  

 

6. Conclusion 

 

This paper proposes a way a potentially endogenous treatment variable can be used as an instrument 

for itself. The approach results in two estimators, one yielding a typical population-wide average 

treatment effect (ATE), and the other yielding a binding average treatment effect (BATE) which to our 

knowledge is new to the literature. This latter BATE estimator is particularly important when a 

treatment is ineffective in a subpopulation for institutional reasons. In this case the former conventional 
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ATE measure includes zero effects. This would lead to underestimates if law or institutional changes 

render effective the previously ineffective treatment for that segment of the population.  

Rather than choosing an instrument correlated with the endogenous variable but not the error, as is 

conventionally done, we argue one is able to remove an endogeneity bias if one can find an institutional 

circumstance that for a subpopulation negates the effect of a treatment. For this subpopulation the 

treatment itself is correlated with the confounding but not the remaining effects. As such, it can be used 

as an instrument for itself. Indeed, finding such a situation may be even easier than finding a traditional 

instrument. But in any case, we hope our alternative method to get at endogeneity expands the 

profession’s options for solving important often policy related problems. 

We apply the technique to estimating the sheepskin effect, a topic on which there is already a small 

literature. An OLS regression yields a large effect, but our alternative approach yields no effect. In a 

sense Clark and Martorell’s (2014) similar findings give credence to our results because the regression 

discontinuity approach they use is often thought to be a “gold standard” since those students that just 

pass and those students that just fail can be construed as random.  

But the technique can potentially be used in many other applications. One such application is to 

estimate the causal impact of deploying additional police on marijuana use. The number of police 

deployed depends on multiple factors that are typically unobserved. If these unobserved factors are 

related to marijuana use, then an OLS regression would yield an inconsistent estimate of the causal 

effect. However, in some states access to marijuana is legal. In such environments, the number of police 

should have a zero causal effect on marijuana use since in these states police are irrelevant (in this 

regard). If in these states there is a correlation between access to marijuana and number of police, then 

this correlation must be due to the effect of confounders that also correlate with the number of police. 

In such a situation, OLS regression of marijuana usage on the number of police deployed yields the 

consistent estimator of θ. So, supposing rich areas hire more police, but at the same time rich areas use 

more marijuana, then regressing marijuana use on the number of police in areas where marijuana is 

legal will then yield a positive 𝜃 -- the bias. As was explained, this bias can then be used in subsequent 

regressions to obtain the causal effect population-wide effect (ATE) as well as the causal effect (BATE) 

in states where the police have an effect.  

Another example is childhood development. Cunha and Heckman (2007) identify “critical periods” in 

which childhood interventions yield beneficial effects. This contrasts with interventions in other 

periods whereby there are no true effects. Typically parental child investments occur in both time 

periods, especially given that parents are either oblivious to such critical periods, or instead they want 

to hedge their bets. In this setting our method can potentially identify the causal effect of intervention 

by treating effects based on non-critical period interventions as arising from estimation biases. These 

are but a few examples. We leave to the reader to find others. 



 

17 
 

Table 1:  Biased and unbiased sheepskin effects for college and high school diplomas (heterogeneous treatment effect model)   

 College  High school 

 

Incumbents 

in all 

occupations 

including 

those 

requiring 

degree 

Incumbents 

in 

occupation 

not 

requiring a 

degree 

Population 

average 

treatment 

effect (ATE) 

Binding 

average 

treatment 

effect 

(BATE) 

Average of 

the residual 

bias  

Incumbents 

in all 

occupations 

including 

those 

requiring a 

diploma 

Incumbents 

in 

occupation 

not 

requiring a 

diploma  

Population 

average 

treatment 

effect (ATE) 

Binding 

average 

treatment 

effect 

(BATE) 

Average of 

the residual 

bias 

  𝛽̂ = 𝛽̂𝑇
𝑃 + 𝜃 𝜃  𝐴𝑣𝑔. 𝛽̂𝑇

𝑃  𝐴𝑣𝑔. 𝛽̂𝑇  𝐴𝑣𝑔. (𝜃𝑖 − 𝜃̅̅)     𝛽̂ = 𝛽̂𝑇
𝑃 + 𝜃 𝜃  𝐴𝑣𝑔. 𝛽̂𝑇

𝑃  𝐴𝑣𝑔. 𝛽̂𝑇  𝐴𝑣𝑔. (𝜃𝑖 − 𝜃̅̅)  

  (1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Coeff. 0.46 0.42 0.04 0.16 0.01  0.08 0.06 0.02 0.03 0.02 

SE (0.08)** (0.08)** (0.08) (0.10) (0.08)  (0.08) (0.09) (0.08) (0.09) (0.08) 

R-sq. 0.15 0.13 0.09 0.09 0.09  0.15 0.18 0.15 0.15 0.15 

N 3,299 2,403 3,299 3,299 3,299   4,960 3,191 4,960 4,960 4,960 
Source: NLSY79 and BLS Education and Training Data occupational degree/diploma requirements. 

Notes:  

1. We only consider male workers for the regressions.  

2. We run the regression specifications 𝑦𝑖𝑡 = 𝛽0 + 𝛽 × 𝐷𝑖𝑝𝑙𝑜𝑚𝑎𝑖𝑡  + 𝑀𝑖𝑡𝛾 + 𝑢𝑖𝑡 twice on the full sample, one for college degree and the other for high school diploma. Columns (1) and (6) 

represent the coefficients of the diploma variable. These include the biases. Here 𝑖 represents individual and 𝑡 represents year (𝑡 = 2006, 2008, 2010, 2012, 2014, 2016). 

3. We also run the regressions specifications 𝑦𝑖𝑡 = 𝛽0 + 𝜃 × 𝐷𝑖𝑝𝑙𝑜𝑚𝑎𝑖𝑡  + 𝑀𝑖𝑡𝛾 + 𝑢𝑖𝑡 twice on the sub samples sample where either occupations do not require diploma or workers do not have 

diploma. One regression is for college degree and the other for high school diploma. Column (2) and (7) represent the coefficients of the diploma variable. These represent estimates of the  

biases. 

4. To obtain the ATE estimates we run the regression specifications  𝑦̃𝑖𝑡 = 𝛽0 + [𝛽𝑇𝑖 + (𝜃𝑖 − 𝜃̅)] × 𝐷𝑖𝑝𝑙𝑜𝑚𝑎𝑖𝑡  + 𝑀𝑖𝑡𝛾 + 𝑢𝑖𝑡 twice on the full sample, one for college degree and the other for  

high school diploma. Column (3) and (8) represent the coefficients of the diploma variable representing the ATEs. 

5. To obtain the BATE estimates we run the regression specifications  𝑦̃𝑖𝑡 = 𝛽0 + [𝛽𝑇𝑖 + (𝜃𝑖 − 𝜃̅)] × 𝐷𝑖𝑝𝑙𝑜𝑚𝑎̃
𝑖𝑡 + (𝜃𝑖 − 𝜃̅) × 𝐷𝑖𝑝𝑙𝑜𝑚𝑎̆

𝑖𝑡  + 𝑀𝑖𝑡𝛾 + 𝑢𝑖𝑡 twice on the full sample, one for college 

 degree and the other for high school diploma. Column (4) and (9) represent the coefficients of the diploma variables representing the BATEs. 

6. Columns (5) and (10) present the average residual bias or  𝐴𝑣𝑔. (𝜃𝑖 − 𝜃̅̅). Both of them are statistically insignificant at 5% level of significance. 

7. The vector of control variables 𝑀 includes occupational fixed effects, year fixed effects, years of schooling (15-18 years for college since some complete schooling and some late; 11-12  

years of schooling for the high school graduate), years of work experience and its square, race and ability (AFQT). 
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Appendix A: Error Structure when the Treatment is Endogenous 

 

Proposition A1: If the 𝐶𝑜𝑟𝑟(𝑥, 𝜖) ≠ 0, then ∃ a unique (𝑎, 𝜃) ∈ ℝ2 and a noise vector 𝑢 with 

mean 0 and standard deviation 𝜎𝑢 such that 𝜖 = 𝑎 + 𝜃𝑥 + 𝑢.  

Proof: Let the 𝐶𝑜𝑟𝑟(𝑥, 𝜖) = 𝑐 such that −1 ≤ 𝑐 ≤ 1. Then one can express the correlation as  

𝑐 =
𝐶𝑜𝑣(𝑥, 𝜖)

𝜎𝑥𝜎𝜖
𝐴. 1 

 

𝐶𝑜𝑣(𝑥, 𝜖) = 𝑐𝜎𝑥𝜎𝜖 

Case 1: When the correlation between 𝜖 and 𝑥 is perfect, that is 𝐶𝑜𝑟𝑟(𝑥, 𝜖) = 𝑐 = 1.  

In this case the relationship between 𝜖 and 𝑥 is linear which can be presented as follows  

𝜖 = 𝑎 + 𝜃𝑥 𝐴. 2 

 

where 𝑎 and 𝜃 are two scalars such that 𝜇𝜖 = 𝑎 + 𝜃𝜇𝑥; and 𝜇𝜖 and 𝜇𝑥 are the means of 𝜖 and 𝑥 

respectively. Thus, the covariance can be expressed as 

𝐶𝑜𝑣(𝑥, 𝜖) = 𝜎𝑥𝜎𝜖 = 𝐶𝑜𝑣(𝑎, 𝑥) + 𝜃𝐶𝑜𝑣(𝑥, 𝑥) = 𝜃𝜎𝑥
2 𝐴. 3 

 

where 𝐶𝑜𝑣(𝑎, 𝑋) = 0 since 𝑎 is a constant. This yields the solution of 𝜃 =
𝜎𝜖

𝜎𝑥
. Based on this, one 

can then compute 𝑎 = 𝜇𝜖 −
𝜎𝜖

𝜎𝑥
𝜇𝑥 from (𝐴. 2). Thus, there exists a unique 𝜃 =

𝜎𝜖

𝜎𝑥
  such 𝜖 can be 

expressed as 𝜖 = 𝑎 + 𝜃𝑥. 

Case 2: When the correlation between 𝜖 and 𝑥 is imperfect, that is 𝐶𝑜𝑟𝑟(𝑥, 𝜖) = 𝑐 such that |𝑐| <

1.  

In this case let the following expression represent the relationship between 𝜖 and 𝑥  

𝜖 = 𝑎 + 𝜃𝑥 + 𝑢 𝐴. 4 

 

where 𝑢 is a noise vector with 0 mean and variance 𝜎𝑢
2. Additionally, 𝑢 ⊥ 𝑥, that is 𝐶𝑜𝑟𝑟(𝑥, 𝑢) =

𝐶𝑜𝑣(𝑥, 𝑢) = 0. We need to show that there exists an unique (𝑎∗, 𝜃∗) ∈ ℝ2 such that 𝜖 = 𝑎 + 𝜃𝑥 +

𝑢 

The covariance of 𝜖 𝑎𝑛𝑑 𝑥 can be written as 

𝐶𝑜𝑣(𝑥, 𝜖) = 𝑐𝜎𝑥𝜎𝜖 = 𝐶𝑜𝑣(𝑎, 𝑥) + 𝜃∗𝐶𝑜𝑣(𝑥, 𝑥) + 𝐶𝑜𝑣(𝑥, 𝑢) = 𝜃∗𝜎𝑥
2 𝐴. 5 
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Suppose these exists another distinct (𝑎̃, 𝜃̃) ∈ ℝ2such that the above equation is also satisfied. 

That is  

𝐶𝑜𝑣(𝑥, 𝜖) = 𝑐𝜎𝑥𝜎𝜖 = 𝜃̃𝜎𝑥
2   

𝜃̃ = 𝑐
𝜎𝜖

𝜎𝑥
𝐴. 6 

 

Because 𝜎𝑥, 𝜎𝜖 are unique constant scalars, 𝜃∗ = 𝜃̃. Once 𝜃 is uniquely identified, one can show 

that 𝑎∗ is also unique. Thus, there ∃ a unique (𝑎∗, 𝜃∗) ∈ ℝ2 such that  𝜖 can be expressed as 

𝜖 = 𝑎 + 𝜃𝑥 + 𝑢      …Q.E.D.  
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Appendix B: The IV Used to Identify the Bias Compared to the Traditional IV Used to 

Identify the Exogenous Variable 

 

Conventional 2SLS-IV 

 

Given the regression equation 

𝑦 = 𝛽0 + 𝛽𝑇𝑥 + 𝜖 𝐵. 1 
 

 

The conventional 2SLS-IV (instrument: 𝑧) requires the following two conditions be satisfied 

 

𝐶𝑜𝑣(𝑥, 𝑧) ≠ 0 

𝐶𝑜𝑣(𝜖, 𝑧) = 0 
       

Taking the covariance of (B.1) with respect to 𝑧 yields  

 

𝐶𝑜𝑣(𝑦, 𝑧) = 𝛽𝑇𝐶𝑜𝑣(𝑥, 𝑧) + 𝐶𝑜𝑣(𝜖, 𝑧) 𝐵. 2 
 

 

Because the instrument is uncorrelated with 𝜖, that is  𝐶𝑜𝑣(𝜖, 𝑧) = 0, one can compute 𝛽𝑇 as 

 

𝛽̂𝑇 =
𝑠𝑦𝑧

𝑠𝑥𝑧
𝐵. 3 

 

 

where 𝑠𝑦𝑧 and 𝑠𝑥𝑧 represent sample covariances between (𝑦, 𝑧) and (𝑥, 𝑧). Given that the sample 

covariances are consistent estimators of the population covariances, one can express 𝑝𝑙𝑖𝑚 𝛽̂𝑇 as  

 

𝑝𝑙𝑖𝑚 𝛽̂𝑇 =
𝐶𝑜𝑣(𝑦, 𝑧)

𝐶𝑜𝑣(𝑥, 𝑧)
. 

 

 

 Identifying the Bias 

 

In our alternative approach we express the regression equation as  

 

𝑦 = 𝛽0 + 𝜃𝑥 + 𝜖′ 𝐵. 4 

 

where 𝜖′ = 𝑎 + 𝛽𝑇𝑥 + 𝑢. Based on (𝐵. 4), identification of 𝜃 with our alternative instrument (𝑤) 

requires  

𝐶𝑜𝑣(𝑥, 𝑤) ≠ 0 
and 

𝐶𝑜𝑣(𝜖′, 𝑤) = 0 
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Finding an instrument 𝑤 that meets the latter covariance condition is difficult because 𝜖′ contains 

𝑥 which according to the first condition is correlated with 𝑤. However, both these covariance 

conditions can hold simultaneously if 𝛽𝑇 or 𝑥 equals zero and 𝐶𝑜𝑣(𝑢, 𝑤) = 0. If one can find a 

subpopulation which for institutional reasons 𝛽𝑇 = 0 or 𝑥 = 0 and 𝑢 and 𝑤 are uncorrelated, then 

the condition 𝐶𝑜𝑣(𝜖′, 𝑤) = 0 is satisfied and 𝑤 can be used as an instrument.  

 

For this subpopulation defined in the text as  {𝑆𝐴, 𝑆𝐵} one can obtain the estimator of 𝜃 by  taking 

the covariance of with respect to 𝑤 on the both sides  

 

𝐶𝑜𝑣(𝑦, 𝑤) = 𝜃𝐶𝑜𝑣(𝑥, 𝑤) + 𝐶𝑜𝑣(𝜖′, 𝑤). 𝐵. 5 
 

 

If 𝐶𝑜𝑣(𝜖′, 𝑤) = 0, one can compute 𝜃 as 

 

𝜃 =
𝑠𝑦𝑤

𝑠𝑥𝑤
𝐵. 6 

 

where 𝑠𝑦𝑤 and 𝑠𝑥𝑤 represent sample covariances between (𝑦, 𝑤) and (𝑥, 𝑤). If these sample 

covariances are consistent estimators of the population covariances, OLS yields a consistent 

estimator of 𝜃, that is  

𝑝𝑙𝑖𝑚 𝜃 =
𝐶𝑜𝑣(𝑦, 𝑤)

𝐶𝑜𝑣(𝑥, 𝑤)
. 𝐵. 7 

 

The variable 𝑥 can be used as the instrument for 𝑥 itself in the subsample {𝑆𝐴, 𝑆𝐵}. In subsample 

{𝑆𝐴, 𝑆𝐵}, 𝛽𝑇 = 0  and 𝑥 is uncorrelated with 𝑢 by Proposition A.1. The instrument 𝑥 in the {𝑆𝐴, 𝑆𝐵} 

subsample satisfies the above covariance conditions (𝐶𝑜𝑣(𝑥, 𝑥) ≠ 0 and 𝐶𝑜𝑣(𝑥, 𝜖′) = 0). This 

allows one to estimate  𝜃 by the following formula 

 

𝜃 ̂ =
𝑠𝑦𝑥

𝑠𝑥𝑥
 

 

 

Appendix E shows that estimating 𝜃 from {𝑆𝐴, 𝑆𝐵} rather than from {𝑆𝐴, 𝑆𝐵, 𝑆𝐶} does not result in 

a selectivity bias.  

 

Identification of the treatment effects (𝛽𝑇
𝑃, 𝛽𝑇) 

Treatment effects 𝛽𝑇
𝑃 and 𝛽𝑇 are obtained by running a second regression on the whole sample 

{𝑆𝐴, 𝑆𝐵, 𝑆𝐶} in which 𝜃𝑥, the confounding effect, is removed from the outcome data for each 

observation in the entire sample {𝑆𝐴, 𝑆𝐵, 𝑆𝐶}. Thus outcome 𝑦 is transformed as follows  
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𝑦̃ = 𝑦 − 𝜃𝑥 𝐵. 8 

 

B.1. The homogeneous treatment effect case  

B.1.a. Continuous treatment variable 

 Identification of 𝛽𝑇
𝑃 

Given 𝑦̃, the population average treatment effect 𝛽𝑇
𝑃 is obtained from the following regression  

𝑦̃ = 𝜋0 + 𝛽𝑇
𝑃𝑥 + 𝑢. 𝐵. 9 

 

𝛽𝑇
𝑃 is the weighted average of the treatment effects in the subsample where 𝛽𝑇 ≠ 0 as well as the 

treatment effects in the subsample where 𝛽𝑇 = 0. Condition 1 (i.e. 𝐸[𝑢|𝑥] = 𝐸[𝑢] = 0) ensures 

that 𝐶𝑜𝑣[𝑥, 𝑢] = 0 implying that the OLS estimator 𝛽̂𝑇
𝑃 is unbiased and consistent (See Appendix 

D for details).  

Identification of  𝛽𝑇 

As in Section 4 we partition the data into  𝑆𝐴, 𝑆𝐵, and 𝑆𝐶. Subsample 𝑆𝐴 contains observations in 

which either there is no treatment or in which the treatment effect is zero. Assume the latter has 

𝑛4 observations and the former 𝑛2 observations. 𝑆𝐵 contains observations in which the treatment 

effect is zero for institutional reasons. Assume there are 𝑛3 of these observations. Finally 𝑆𝐶 

contains observations with a true and confounded treatment effect. We assume 𝑆𝐶 contains 𝑛1 

observations. We represent the data structure as  

𝑛1: 𝑦̃1 = 𝜋0 + 𝛽𝑇 × 𝑥1 + 𝑢1                     

𝑛2: 𝑦̃2 = 𝜋0 + 𝛽𝑇 × 0 + 𝑢2                     

𝑛3: 𝑦̃3 = 𝜋0 + 0 × 𝑥3 + 𝑢3 𝐵. 10 

 

𝑛4: 𝑦̃4 = 𝜋0 + 0 × 0 + 𝑢4.                     

This is the original data structure but now rewritten to note explicitly the observations for which 

𝛽𝑇 = 0.  

An algebraic manipulation of the B.10 yields 

𝑛1: 𝑦̃1 = 𝜋0 + 𝛽𝑇 × 𝑥1 + 0 × 0 + 𝑢1 

𝑛2: 𝑦̃2 = 𝜋0 + 𝛽𝑇 × 0 + 0 × 0 + 𝑢2 

𝑛3: 𝑦̃3 = 𝜋0 + 𝛽𝑇 × 0 + 0 × 𝑥3 + 𝑢3 

𝑛4: 𝑦̃4 = 𝜋0 + 𝛽𝑇 × 0 + 0 × 0 + 𝑢4 
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or  

𝑦̃ = 𝜋0 + 𝛽𝑇 𝑥̃ + 0 × 𝑥̆ + 𝑢 𝐵. 11 

 

where 

𝑥̃ = [

𝑥3

0
0
0

] and 𝑥̆ = [

0
0
𝑥3

0

]. 

Because 0 × 𝑥̆ = 0 one can rewrite (B.11) as the estimable function that identifies 𝛽𝑇 

𝑦̃ = 𝜋0 + 𝛽𝑇 𝑥̃ + 𝑢. 𝐵. 12 

 

B.12 transforms the x matrix so that each observation gets the same treatment effect.  

B.1.b.  Dichotomous Treatment Variable 

Here, the methodological intuition remains the same. One simply substitutes the continuous 

variable 𝑥 by the dichotomous treatment variable 𝑑. Under similar assumptions, similar 

subsamples, and the following estimation procedure we identify average of 𝜃𝑖 or ABE as 

𝜃 =
𝐸[𝑦|𝑑𝑖 = 1] − 𝐸[𝑦𝑖|𝑑𝑖 = 0]

𝐸[𝑑𝑖|𝑑𝑖 = 1] − 𝐸[𝑑𝑖|𝑑𝑖 = 0]
=

𝐸[𝑦𝑖|𝑑𝑖 = 1] − 𝐸[𝑦𝑖|𝑑𝑖) = 0]

1 − 0
 

Based on this 𝜃, we construct  𝑦̃𝑖 = 𝑦𝑖 − 𝜃𝑑𝑖. Then utilizing  𝑦̃ and applying a parallel estimation 

methodology described in continuous treatment case, one obtains the estimators of average 𝛽𝑇
𝑃 (i.e. 

ATE) and average 𝛽𝑇 (i.e. BATE). 

 

B.2. The heterogeneous treatment effect case 

Notation 

We denote subscript 𝑖 to depict the 𝑖-th observation in the data. Heterogeneous treatment effects 

imply 𝛽𝑇 is subscripted yielding 

𝑦𝑖 = 𝛽0 + 𝛽𝑇𝑖𝑥𝑖 + 𝜖𝑖 𝐵. 13 

 

the counterpart to the homogeneous treatment effect case given in (1). As before we partition the 

data into 𝑆𝐴,  𝑆𝐵, and 𝑆𝐶. Recall observations in 𝑆𝐶 receive treatment (𝑥 ≠ 0) and the treatment is 

effective (𝛽𝑇 ≠ 0).   We assume there are 𝑛1 observations in𝑆𝐶. Subsample 𝑆𝐵 consists of all 

treated observations for which, given institutional considerations, the treatment has a zero effect 
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(𝛽𝑇 = 0 and 𝑥 ≠ 0). We assume 𝑛3 observations in 𝑆𝐵. Finally, 𝑆𝐴 consists of all observations for 

which there is no treatment (𝑥 = 0). In theory these can be observations for which a treatment 

would or would not have an impact if actually treated. We assume this group has 𝑛2 + 𝑛4 

observations, 𝑛2 of which would have an effect and 𝑛4 of which would not have a treatment effect, 

again for institutional reasons.   Based on this notation we interpret the parameters for the 

continuous and discrete cases.  

B.2.a.  The Continuous Treatment Variable 

Identification of Average Bias Effect  

Based on this classification scheme, the subsample for which 𝛽𝑇𝑖 = 0 is determined institutionally 

and can be represented under the heterogeneous paradigm as   

𝑛3: 𝑦𝑖3
= 𝜋0 + 𝜃𝑖3

𝑥𝑖3
+ 𝑢𝑖3

 

𝑛4: 𝑦𝑖4
= 𝜋0 + 𝜃𝑖4

𝑥𝑖4
+ 𝑢𝑖4

 

alternatively expressed as 

𝑦𝑖 = 𝜋0 + 𝜃𝑖𝑥𝑖 + 𝑢𝑖 𝐵. 14 

 

where 𝑖 ∈ {𝑖3, 𝑖4}. 

As already shown, Condition 1 and Condition 2 allows one to consistently estimate 𝜃 in the 

homogeneous treatment effect case. The mean independence in Condition 1 and 𝐶𝑜𝑣[𝑥, 𝑢] = 0 

ensures that 𝑥 is an instrument for itself. Thus, the OLS regression with the third and fourth 

subsamples (with [𝑛3 + 𝑛4] observations) yields a consistent estimator of the average of 𝜃 ( 𝜃) for 

𝑖 = 𝑖3 and 𝑖4, that is, 𝑝𝑙𝑖𝑚 𝜃 = 𝜃̅. If Condition 2 holds, the OLS estimator 𝜃 from subsample 𝑖3 

and 𝑖4 is equal to the average of 𝜃 (i.e.  𝜃̅) for the entire population i.e. for 𝑖 = 𝑖1 𝑜𝑟 𝑖2 𝑜𝑟 𝑖3 𝑜𝑟 𝑖4. 

We call this the average bias effect or ABE.  

Identification of the Population Average Treatment Effect (𝛽𝑇
𝑃) 

To identify 𝛽𝑇𝑖
𝑃  we subtract 𝜃𝑥𝑖 from 𝑦𝑖 to obtain  𝑦̃𝑖 

𝑦̃𝑖 = 𝑦𝑖 − 𝜃𝑥𝑖 𝐵. 15 

 

where 𝑖 ∈ {𝑖1, 𝑖2, 𝑖3, 𝑖4}.  

Thus (B.15) can be expressed as  
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𝑦̃𝑖 = 𝜋0 + 𝛽𝑇𝑖𝑥𝑖 + (𝜃𝑖 − 𝜃̅)𝑥𝑖 + 𝑢𝑖 𝐵. 16 

  

Assuming that 𝛽𝑇𝑖 and 𝜃𝑖 are independent of 𝑥𝑖, one can express the conditional expectations as 

𝐸[𝑦̃𝑖|𝑥𝑖] = 𝜋0 + 𝑥𝑖𝐸[𝛽𝑇𝑖 + (𝜃𝑖 − 𝜃̅)] + 𝐸[𝑢𝑖|𝑥𝑖] 

Because Condition 1 implies that 𝐸[𝑢𝑖|𝑥𝑖] = 0, the above expression can be rewritten as 

𝐸[𝑦̃𝑖|𝑥𝑖] = 𝜋0 + 𝐸[𝛽𝑇𝑖 + (𝜃𝑖 − 𝜃̅)]𝑥𝑖  = 𝜋0 + 𝐸[𝛽𝑇𝑖]𝑥𝑖 + 𝐸[𝜃𝑖 − 𝜃]𝑥𝑖 𝐵. 17 

 

Given 𝑝𝑙𝑖𝑚 𝜃 = 𝐸[𝜃𝑖] = 𝜃̅, so that 𝐸[𝜃𝑖 − 𝜃] = 0, (B17) reduces to   

𝐸[𝑦̃𝑖|𝑥𝑖] = 𝜋0 + 𝑥𝑖𝐸[𝛽𝑇𝑖]. 𝐵. 18 

 

The OLS regression of 𝑦 on 𝑥 utilizing the entire sample 𝑛1,, 𝑛2, 𝑛3, and 𝑛4 yields an average of 

𝛽𝑇𝑖, but this average comprises those with 𝛽𝑇𝑖 ≠ 0 and those with 𝛽𝑇𝑖
= 0 for institutional reasons. 

Thus, 𝐸[𝛽𝑇𝑖] represents the ATE including observations for which 𝛽𝑇𝑖
 takes a zero value. We 

denote 𝐸[𝛽𝑇𝑖
] 𝑎𝑠 𝛽𝑇

𝑃 since it is the population average treatment effect.  

 Identification of the Binding Average Treatment Effect (𝛽𝑇𝑖
) 

To get the treatment when the treatment is actually effective, that is binding, we rearrange the data 

matrix as follows  

𝑛1: 𝑦𝑖1̃
= 𝜋0 + [𝛽𝑇𝑖1 + (𝜃𝑖1

− 𝜃̅)] × 𝑥𝑖1
+ 𝑢𝑖1

 

𝑛2: 𝑦𝑖2̃
= 𝜋0 + [𝛽𝑇𝑖2

+ (𝜃𝑖2
− 𝜃̅)] × 𝑥𝑖2

+ 𝑢𝑖2
 

𝑛3: 𝑦𝑖3̃
= 𝜋0 + [𝛽𝑇𝑖3

+ (𝜃𝑖3
− 𝜃̅)] × 𝑥𝑖3

+ 𝑢𝑖3
 

                𝑛4: 𝑦𝑖4̃
= 𝜋0 + [𝛽𝑇𝑖4

+ (𝜃𝑖4
− 𝜃̅)] × 𝑥𝑖4

+ 𝑢𝑖4
          B.19 

 

Recalling that 𝑥𝑖2
= 𝑥𝑖4

= 0 and 𝛽𝑇𝑖3
=  𝛽𝑇𝑖4

= 0, yields   

 𝑛1: 𝑦𝑖1̃
= 𝜋0 + [𝛽𝑇𝑖1 + (𝜃𝑖1

− 𝜃̅)] × 𝑥𝑖1
+ 𝑢𝑖1

 

 𝑛2: 𝑦𝑖2̃
= 𝜋0 + [𝛽𝑇𝑖2

+ (𝜃𝑖2
− 𝜃̅)] × 0 + 𝑢𝑖2
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 𝑛3: 𝑦𝑖3̃
= 𝜋0 +    0    +  (𝜃𝑖3

− 𝜃̅) × 𝑥𝑖3
+ 𝑢𝑖3

 

 𝑛4: 𝑦𝑖4̃
= 𝜋0 +    0    + (𝜃𝑖4

− 𝜃̅) × 0 + 𝑢𝑖4
 

Rearranging yields 

𝑛1: 𝑦𝑖1̃
= 𝜋0 + [𝛽𝑇𝑖1 + (𝜃𝑖1

− 𝜃̅)] × 𝑥𝑖1
+ (𝜃𝑖1

− 𝜃̅) × 0 + 𝑢𝑖1
 

𝑛2: 𝑦𝑖2̃
= 𝜋0 + [𝛽𝑇𝑖12  + (𝜃𝑖2

− 𝜃̅)] × 0 + (𝜃𝑖2
− 𝜃̅) × 0 + 𝑢𝑖2

 

𝑛3: 𝑦𝑖3̃
= 𝜋0 + [𝛽𝑇𝑖3 + (𝜃𝑖3

− 𝜃̅)] × 0 + (𝜃𝑖3
− 𝜃̅) × 𝑥𝑖3

+ 𝑢𝑖3
 

𝑛4: 𝑦𝑖4̃
= 𝜋0 + [𝛽𝑇𝑖4 + (𝜃𝑖4

− 𝜃̅)] × 0 + (𝜃𝑖4
− 𝜃̅)] × 0 + 𝑢𝑖4

 

which in condensed form can be written  

                                      𝑦𝑖̃ = 𝜋0 + [𝛽𝑇𝑖 + (𝜃𝑖 − 𝜃̅)]𝑥̃𝑖  + (𝜃𝑖 − 𝜃̅)𝑥𝑖̆ + 𝑢𝑖                𝐵. 20 

where   

𝑥̃ = [

𝑥𝑖1

0
0
0

]  and 𝑥̆ = [

0
0

𝑥𝑖3

0

].  

Because (B.20) is simply a rearrangement of (B.19), OLS estimation yields a consistent estimator 

of the average [𝛽𝑇𝑖 + (𝜃𝑖 − 𝜃̅)]. However, E[𝛽𝑇𝑖 + (𝜃𝑖 − 𝜃̅)] = E[𝛽𝑇𝑖] because. E(𝜃𝑖 − 𝜃̅) = 0. 

Thus, the OLS estimator of the 𝑥̃ coefficient in regression (B.19) represents the average of 𝛽𝑇𝑖
, 

namely the average treatment effect when the treatment is binding, what we call the binding 

average treatment effect, BATE. In estimating B.20, the (𝜃𝑖 − 𝜃̅) should be zero. A non-zero 

coefficient would imply a non-random selection of observations into the zero-treatment effect 

group, 𝑆𝐵. 

B.2.b. Dichotomous Treatment Variable 

The methodological intuition remains the same for a dichotomous treatment. One replaces the 

continuous variable 𝑥𝑖 by the dichotomous treatment variable 𝑑𝑖. Under similar assumptions, 

similar subsamples, we identify the average of 𝜃𝑖 or ABE as 

𝜃 =
𝐸[𝑦𝑖|𝑑𝑖 = 1] − 𝐸[𝑦𝑖|𝑑𝑖 = 0]

𝐸[𝑑𝑖|𝑑𝑖 = 1] − 𝐸[𝑑𝑖|𝑑𝑖 = 0]
=

𝐸[𝑦𝑖|𝑑𝑖 = 1] − 𝐸[𝑦𝑖|𝑑𝑖) = 0]

1 − 0
 

Based on this 𝜃, we construct  𝑦̃𝑖 = 𝑦𝑖 − 𝜃𝑑𝑖. Then utilizing  𝑦̃ and applying a parallel estimation 

methodology described for continuous treatment case, we obtain the estimators of the population 
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average treatment effect 𝛽𝑇
𝑃 (i.e. ATE) and average treatment effect when the treatment is binding 

𝛽𝑇 (i.e. BATE). 
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Appendix C: Relationship to the Control Function Approach 

 

As stated in the text, our approach appears closest to the control function approach (CFA). 

However, there is a significant feature in our approach that differentiates it from the CFA 

approach. In a linear in parameter model, the control function approach requires exogenous 

variables or instrumental variables to construct the control function (Wooldridge 2007)18.  The 

control function then can be included in the main regression as an explanatory variable to adjust 

for the endogeneity bias. In contrast, our approach does not require exogenous variables that are 

determined outside the model. Instead, our identifying assumption converts the endogenous 

variable into an exogenous variable within a representative subsample allowing for the 

estimation of the bias. To see this difference, consider the following regression equation. 

 
𝑦 = 𝛽0 + 𝛽𝑇𝑥 + 𝛾𝑤 + 𝜖 

 

The endogeneity problem arises because 𝐶𝑜𝑣[𝑥, 𝜖] ≠ 0. In this case the control function approach 

would require finding instruments or exogenous variables (𝑧, 𝑤) such that 𝐶𝑜𝑣[𝑥, 𝑧] ≠ 0 and 

𝐶𝑜𝑣[𝑧, 𝜖] = 0, 𝐶𝑜𝑣[𝑤, 𝜖] = 0. With these instruments or exogenous variables one can then 

construct the control function in the following manner 

 

Regress 
𝑥 = 𝛼0 + 𝛼𝑧𝑧 + 𝛼𝑤𝑤 + 𝑣 

 

Given that 𝑧 and 𝑤 are uncorrelated with 𝜖, any non-zero correlation between 𝑥 and 𝜖 must be 

due to non-zero correlation between 𝑣 and 𝜖. Thus, the residual   𝑣̂ from the above regression 

constitutes the control function. Inclusion of this in the main regression will now consistently 

estimate 𝛽𝑇, i.e. 

 
𝑦 = 𝛽0 + 𝛽𝑇𝑥 + 𝛾𝑤 + 𝜌 𝑣 + 𝑢 

 

where 𝑢 is the new error term such that 𝐶𝑜𝑣[𝑥, 𝑢] = 0. The key to this identification is the 

availability of an instruments or exogenous variables 𝑤. Without availability of instrumental 

variables or exogenous determinants of the outcome this method cannot identify the causal 

effects. 

 

In contrast, our identifying condition identifies a representative subset of population where 𝛽𝑇 =

0. This automatically makes 𝑥 an exogenous variable for this subset of the population, so that the 

regression equation is 
𝑦 = 𝛽0 + 𝜖 

 

Thus, if 𝑥 is suspected to be endogenous, then it must be correlated with 𝜖. Thus, a regression in 

a subsample with 𝛽𝑇 = 0 yields the endogeneity bias, that is 𝜃 in the following regression 

 

                                                           
18 See Imbens and Wooldridge (2007) at http://www.nber.org/WNE/Slides7-31-07/Slides7-31-07.pdf 

http://www.nber.org/WNE/Slides7-31-07/Slides7-31-07.pdf
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𝑦 = 𝛽0 + 𝜃𝑥 + 𝑢 
 

Here 𝑥 can be seen as an instrument for itself to identify 𝜃. Unlike CFA, no additional instrument 

or exogenous variables are needed for the identification of 𝜃. Moreover, since 𝑥 serves as an 

instrument for itself, it identifies the population average bias 𝜃 and not the local average that a 

typical instrumental variable estimation would obtain. 
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Appendix D: Unbiasedness and Consistency of 𝜃,  𝛽̂𝑇
𝑃 and 𝛽̂𝑇 

Proof:  

Case 1: homogeneous treatment and bias effect 

Unbiasedness and consistency of  𝜃 

The regression equation is  

𝑦 = 𝛽0 + 𝜃𝑥 + 𝜖′ 

where 𝜖′ = 𝑎 + 𝛽𝑇𝑥 + 𝑢. When the regression is run only for the subsamples where 𝛽𝑇 = 0, 

𝐶𝑜𝑣[𝑥, 𝜖′] = 0.  In the absence of the selectivity problem, this zero covariance condition ensures 

that 𝜃 is an unbiased and consistent estimator of 𝜃.  

Unbiasedness of 𝛽̂𝑇
𝑃and 𝛽̂𝑇 

Unbiasedness implies that  

𝐸(𝛽̂𝑇
𝑃) = 𝛽𝑇

𝑃 and 𝐸(𝛽̂𝑇) = 𝛽𝑇 

As stated earlier, the estimator of  𝛽̂𝑇
𝑃 emerges from the following regression equation 

 

𝑦̃ = 𝜋0 + 𝛽𝑇
𝑃𝑥 + 𝑢 

𝑦̃ = 𝑀𝛾 + 𝑢  

where  

𝑀 = [

1 𝑥1

1 0
1 𝑥3

1 0

] and 𝛾 = [
𝜋̂0

𝛽̂𝑇
𝑃] 

The OLS estimator  𝛾 is estimated as  

𝛾 = (𝑀′𝑀)−1𝑀′𝑦̃ 𝐶. 1 

 

 

Substituting 𝑦 = 𝑀𝛾 + 𝑢  in (C.1) yields 

𝛾 = (𝑀′𝑀)−1𝑀′𝑀𝛾 + (𝑀′𝑀)−1𝑀′𝑢 

Taking conditional expectations 

 

𝐸[𝛾|𝑀] = 𝛾 + (𝑀′𝑀)−1𝑀′𝐸[𝑢|𝑀] 
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Because 𝐸[𝑢|𝑀] = 0 by condition 1, the conditional expectations above equals 𝐸[𝛾|𝑀] = 𝛾. 

Again, by the law of iterated expectations 𝐸𝑀[𝐸[𝛾|𝑀]] = 𝐸𝑀(𝛾). In other words 𝐸[𝛾] = 𝛾 

That is 𝐸[𝛽̂𝑇
𝑃] = 𝛽𝑇

𝑃 (Q.E.D.) 

Unbiasedness of 𝛽̂𝑇 

The regression equation in this case is  

𝑦̃ = 𝜋0 + 𝛽𝑇 𝑥̃ + 𝑢 

Following the same steps it can be shows that 𝐸[𝛽̂𝑇] = 𝛽𝑇 as long as 𝐸[𝑢|𝑥̃] = 0. As already stated 

above, 𝑥̃ is transformed based on the observations in which 𝛽𝑇 = 0 for institutional reasons. 

Therefore, 𝑥̃ will also be mean independent of 𝑢 since 𝑥 is mean independent of 𝑢 by Condition 

1. Thus, 𝐸[𝛽̂𝑇] = 𝛽𝑇. 

Consistency of of 𝛽̂𝑇
𝑃and 𝛽̂𝑇 

Consistency requires that 𝑝𝑙𝑖𝑚 𝛽̂𝑇
𝑃 = 𝛽𝑇

𝑃 and 𝑝𝑙𝑖𝑚 𝛽̂𝑇 = 𝛽𝑇. The primary requirement for this 

condition is that the independent variables are uncorrelated to 𝑢. Condition 1 and Condition 2 

jointly satisfy the mean independence conditions for both  𝑥 and  𝑥̃. Thus both the treatments 

effects are consistent. 

The same logic applies to the heterogeneous treatment effect cases. Thus, the estimators 𝛽̂𝑇
𝑃and 𝛽̂𝑇 

are also consistent.  

Simulation exercises (available upon request) show parameter estimates converge to the true 

values of 𝜃,  𝛽𝑇
𝑃 and 𝛽𝑇 as sample size increases. Also, as expected, the estimates are more precise 

as the sample size of the 𝛽𝑇 = 0 bias identifying sample increases. 
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Appendix E: Sample Selection and the Unbiasedness and Consistency of 𝜽 

 

We examine two cases: (1) when 𝑥  is continuous, and (2) when 𝑥 is binary. 

 

1. Continuous x 

 

Proposition 1: When selection into 𝛽𝑇 = 0 does not depend on 𝑥, omitting 𝑆𝐶 from the sample to 

estimate 𝜃 causes a selection bias in the constant term, but does not bias the estimator of 𝜃.  

Proof: Ideally obtaining an unbiased and consistent estimator of 𝜃 entails estimating  

𝑦 = (𝛽0 + 𝑎) + 𝜃𝑥 + 𝑢 𝐷. 1 

 

when 𝛽𝑇 = 0, for all observations in𝑆𝐴, 𝑆𝐵, and 𝑆𝐶 . However, 𝛽𝑇 ≠ 0 for observations in 𝑆𝐶. Thus 

we estimate D.1 using subsample {𝑆𝐴, 𝑆𝐵}. Given that the selection rule 𝛽𝑇 = 0 does not depend 

on 𝑥, one can express the regression equation as  

                                     𝐸[𝑦| 𝛽𝑇 = 0, 𝑥] = (𝛽0 + 𝑎) + 𝜃𝑥 + 𝐸[𝑢|𝛽𝑇 = 0, 𝑥].                              𝐷. 2 

 

Since 𝑢 and 𝑥 are statistically mean independent and 𝑥 and 𝛽𝑇 are independent, then 

𝐸[𝑢|𝛽𝑇 = 0, 𝑥] = 𝐸[[𝑢|𝛽𝑇 = 0]] yielding  

                                                𝐸[𝑦| 𝛽𝑇 = 0, 𝑥] = (𝛽0 + 𝑎) + 𝜃𝑥 + 𝐸[𝑢|𝛽𝑇 = 0].                    𝐷. 3 

 

Given that the selection rule 𝛽𝑇 = 0 does not depend on 𝑥, the omitted term due to sample selection 

is 𝐸[𝑢|𝛽𝑇 = 0], a constant. Let 𝐸[𝑢|𝛽𝑇 = 0] = 𝑐 to denote this constant term. Substituting 

𝐸[𝑢|𝛽𝑇 = 0] = 𝑐 into D.3 yields  

𝐸[𝑦|𝑥, 𝛽𝑇 = 0] = (𝛽0 + 𝑎 + 𝑐) + 𝜃𝑥. 𝐷. 4 

 

Thus, the sample selection causes a bias in the intercept only when 𝑐 ≠ 0. It does not affect 𝜃. 

Proposition 2: When for some observations in {𝑆𝐴, 𝑆𝐵}, selection into the 𝛽𝑇 = 0 group occurs if 

and only if 𝑥=0, then omitting 𝑆𝐶 from the sample to estimate 𝜃 yields a consistent and unbiased 

estimator if 𝛽𝑇 and 𝑥 are mean independent of 𝑢. 

This selection rule gives rise to two distinct subsamples. In the first subsample selection into 𝛽𝑇 =

0 does not depend on 𝑥. For these entities the regression equation is as before   
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                                               𝐸[𝑦| 𝛽𝑇 = 0, 𝑥] = (𝛽0 + 𝑎) + 𝜃𝑥 + 𝐸[𝑢|𝛽𝑇 = 0].                        𝐷. 3 

 

However, for the second group where 𝛽𝑇 = 0 only because 𝑥 = 0, the regression equation is  

                                    𝐸[𝑦| 𝛽𝑇 = 0, 𝑥 = 0] = (𝛽0 + 𝑎) + 𝜃𝑥 + 𝐸[𝑢|𝛽𝑇 = 0, 𝑥 = 0]                 𝐷. 5 

 

Let 𝐸[𝑢|𝛽𝑇 = 0, 𝑥 = 0] = 𝑐1. The regression equation is 

𝐸[𝑦| 𝛽𝑇 = 0, 𝑥 = 0] = (𝛽0 + 𝑎) + 𝑐1 + 𝜃𝑥 

Bringing both subsamples together yields 

For Sample 1:    𝐸[𝑦| 𝛽𝑇 = 0, 𝑥] = (𝛽0 + 𝑎 + 𝑐) + 𝜃𝑥 

For sample 2:   𝐸[𝑦| 𝛽𝑇 = 0, 𝑥 = 0] = (𝛽0 + 𝑎 + 𝑐1) + 𝜃𝑥 

However, in this case, identification of 𝜃 requires that 𝑢 be independent of 𝛽𝑇 and 𝑥, that is  

𝐸[𝑢|𝛽𝑇 = 0, 𝑥 = 0] = 𝑐1 = 0 and 𝐸[𝑢|𝛽𝑇 = 0] = 𝑐 = 0. This is a stronger assumption than 

selection independent of 𝑥. However, the selection rule can depend on the observables or 

unobservables that are independent of 𝑥 and 𝑢.  

Binary x: the treatment effect case 

The proof of unbiasedness and consistency of 𝜃 is similar to the continuous variable case.  

 

 




