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This paper documents the effect of primary forest cover loss on increased incidence of 

malaria. The evidence is consistent with an ecological response. I show that land use 

change, anti-malarial programs or migration cannot explain the effect of primary forest 

cover loss on increased malarial incidence. Falsification tests reveal that the effect is specific 

to malaria, with forest cover having no discernible effect on other diseases with a disease 

ecology different from that of malaria. Back-of-the-envelope calculations indicate that the 

morbidity-related malaria-reducing local benefits of primary forests are at least $1-$2 per 

hectare.
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1 Introduction

The conservation of critical ecosystems has become a definitive policy priority of sustain-

able development goals in the 21st century (United Nations, 2015). In settings with weak

enforcement – often developing countries – there has been a growing interest in under-

standing the local effects of ecosystem degradation (Bauch et al., 2015; Myers et al., 2013;

Prüss-Üstün and Corvalán, 2007). Does the decline in such ecosystems generate adverse

health outcomes for local populations? In this paper, I document the malaria burden of

increased forest cover loss in Indonesia, which has one of the highest rates of deforestation

in the world.

I report two principal findings. First, primary forest cover loss increases the incidence

of malaria; a 1% decline in forest cover increases malarial incidence by 1.85 percentage

points, or 10%. The effect is strongest in villages near forests but persists to a lesser extent

in villages more distant from forests. Conservative calculations (reported in Section 4.3)

suggest that the malaria-related morbidity-reducing benefits of primary forest cover are

$1-$2 per hectare.

Second, the type of forest matters; loss of primary forests that are rich in biodiversity

increases incidence of malaria while loss of secondary forests, which are designated for

the purposes of logging, has no impact on the incidence of malaria. This suggests an un-

derlying ecological response, distinct from socio-economic responses such as migration

or agricultural land-use that could be correlated with both forest loss and malaria. Con-

sistent with this hypothesis, I find that the effect of primary forest cover loss is specific to

malaria with no discernible impact on other diseases, inconsistent with alternative, non-

ecological mechanisms that could explain the relationship between forest cover loss and

malaria. I further demonstrate that the effect of forest cover loss on incidence of malaria

cannot be explained by agricultural land use, anti-malarial programs or migration.

In theory, forest cover loss can affect malaria through several channels. First, forests are

often cleared for agricultural activity. When such agricultural activity involves standing

water (e.g., paddy cultivation) and other complimentary conditions favorable for malaria-

carrying vectors, forest cover loss can indirectly lead to increased incidence of malaria.
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Second, forest clearing is often correlated with migratory behavior either due to labor-

intensive deforestation that requires migrant labor or because of plantation and other

commercial activities that attract migrants. Migrants can act as latent hosts of malaria

since they typically have lower incomes and less access to medical facilities than native

populations. Third, changes in forest cover can alter the disease ecology of malaria; forest

cover loss results in a reduction in biodiversity and higher order species that would other-

wise feed on anopheles mosquitoes, resulting in increased malarial incidence (Pattanayak

and Pfaff, 2009).

The identification strategy follows a two-pronged approach. First, I use district-level

annual satellite data on forest cover and rich biennial village census data on disease out-

breaks, allowing me to employ a fixed-effects approach to control for time-invariant district-

level geographic, climatic and demographic factors that could be correlated with both

forest cover and disease incidence. I include controls for health care access, poverty mea-

sures, distance from cities, sanitation facilities, population density, government sponsored

health interventions, precipitation and primary sector of employment. Second, I exploit

the epidemiological differences across diseases, in particular the mode of disease trans-

mission, to perform falsification tests on other diseases whose disease ecology differs from

that of malaria and show that the effect of forest cover loss is specific to malaria. I include

a number of additional robustness checks to show that agricultural land-use, migration

or social programs don’t don’t explain the effect of forest cover loss on malaria.

While I rely on an important and long-standing literature linking forest loss to malaria

(MacDonald and Mordecai, 2019; Tucker Lima et al., 2017; Myers et al., 2013; Pattanayak

and Yasuoka, 2012; Keesing et al., 2010; Pongsiri et al., 2009; Pattanayak and Pfaff, 2009;

Patz et al., 2000; Walsh, Molyneux and Birley, 1993), this paper makes two important con-

tributions to existing work. First, this paper employs a fixed-effects approach using panel

data to estimate the effect of forest cover loss on the incidence of malaria.1 Previous work

has relied on random-effects (Bauch et al., 2015), cross-sectional analysis (e.g., Pattanayak

et al. (2010); Yasuoka and Levins (2007); see Bauhoff and Busch (2018) for a detailed re-
1Two concurrent studies, both of which cite earlier versions of this paper, use a fixed-effects approach to estimate the effect of

deforestation on malaria in Africa (Bauhoff and Busch, 2018) and specifically Nigeria (Berazneva and Byker, 2017). Relatedly Carrillo
et al. (2019) examine the impact of reductions in deforestation on infant mortality but remain agnostic to the mechanism. For other
local benefits of forest cover, see Masuda et al. (2019).

2



view) or simulations (Laporta et al., 2013; Pattanayak et al., 2009). In contrast to these prior

studies, the fixed effects specification removes time-invariant characteristics that could

confound estimates. Second, the paper makes use of data from administrative heads to

provide estimates for an entire country; previous work, with notable exceptions (Bauhoff

and Busch, 2018) has relied on a subset of geographic areas within a country, making it

difficult to generate nationwide estimates that can be directly taken to policy discussions.

In what follows, I describe the background and data (Section 2), empirical strategy

(Section 3), and results (Section 4). In Section 5, I conclude with implications of this re-

search.

2 Background and Data

2.1 Disease Ecology of Malaria

Malaria is spread only through the Anopheles mosquito and transmission occurs when

the mosquito was previously infected through a blood meal taken from an infected per-

son2. The anopheles takes up the sexually differentiated forms of the Plasmodium par-

asite, which then undergo reproduction in the mosquito’s gut, after which the resulting

sporozoite forms travel to the salivary glands and are injected into a potential host during

the mosquito’s next blood meal. The typical lifespan of the female Anopheles is 2 weeks

and they can travel distances as far as 2 kilometers. In Indonesia, malaria is widespread

with 44% of the population, or over 130 million people, at risk of contraction (Elyazar,

Hay and Baird, 2011). In any given year, 18.5% of Indonesian villages report having an

outbreak of malaria.

Pattanayak and Pfaff (2009) review potential mechanisms through which forest loss

can impact the incidence of malaria. First, post-deforestation land use change in the form

of urbanization, construction and agricultural production has been associated with in-

creased incidence of malaria (Petney, 2001). Second, forest loss could be correlated with

migration, which often increases the incidence of malaria for two reasons: (1) migrants
2See: http://www.cdc.gov/malaria/about/faqs.html
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act as latent hosts for infectious diseases, serving as transport from an infected area to a

non-infected area (Texier et al., 2013) and (2) migrants tend to have limited access to med-

ical facilities. These are socio-economic factors behind the link between deforestation and

malaria but there is also an ecological link. Forest loss also alters the disease ecology of

malaria. This occurs in two ways. First, cleared lands receive more sunlight and are more

susceptible to the formation of puddles with a more neutral pH that favors anopheline lar-

vae development. Second, deforestation adversely affects biodiversity of the region and

increases malaria incidence by reducing or eliminating species that prey on anopheline

larvae and anopheles mosquitoes (Laporta et al., 2013; Yasuoka and Levins, 2007).

2.2 Data

Disease Data: The Indonesian statistical agency, Badan Pusat Statistik (BPS) conducts a

village census Podes every 2-3 years that documents a range of village characteristics and

events including the incidence of disease outbreaks for malaria, measles, respiratory in-

fections, dengue fever and diarrheal diseases. The survey includes all of Indonesia’s over

68,000 villages. During the period of study, Podes was conducted in 2003, 2006, and 2008.

Village heads report on whether or not there was an outbreak of each of these diseases in

their village in a given year, and if so, how many people died. The survey began collect-

ing information on the number of people infected with malaria starting in 2008. Therefore,

there is panel variation in the binary indicator of whether or not there was outbreak of a

disease in a given village in a given year. In 2008, on average, 14-15 people were infected

with malaria in a village that reported an outbreak of malaria.3 This translated to just over

15 infected persons per thousand persons with a standard deviation of 26 infected persons

per 1000 persons. Descriptive statistics on disease data are provided in Appendix Tables

A.1.

3The data are collected through oral recall from village heads and is then verified at the sub-district office. The village head makes
a subjective decision on whether or not there was an outbreak in a given year. Appendix Figure A.1 shows the distribution of this
variable in 2008. The health data has been previously validated in Garg et al. (2018). In section 4.1, I discuss the validation of the
dependent variable arising from falsification tests.
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Other Variables: Podes also contains information on the availability of medical facilities

including hospitals, integrated health centers, village medicine posts and drug stores in a

given village. When such a medical facility is not present in the village, the survey docu-

ments the distance to the nearest facility (in kilometers) and how easy it is to access such

a facility on a scale of 1-4, with 1 indicating most easily accessible. These rich data also

contains information on population, area of the village, area under rice cultivation in the

village, number of families receiving health cards (that provide access to free basic health

care) or poor cards, distance to nearest district office or city, elevation of the village, domi-

nant source of income in the village and whether or not a village is inside, near or outside

the forest or located by a river. In addition, I use monthly NOAA/GPCP district-level

rainfall data mapped into annual means and standard deviations (Bazzi, 2017). Descrip-

tive statistics of these variables are provided in Appendix Table A.2.

Forest Cover Data: I use forest cover data from 2001-2008 based on satellite imagery

(MODIS - 250mX250m) from Burgess et al. (2012) in each district in a given year. I limit

the analysis to the islands of Sumatra, Kalimantan, Sulawesi and Papua. The remaining

islands are excluded since they had negligible forest cover in the baseline year of the study

(2001). The forest cover data are then classified by the type and district of the forest estate.

The resulting variable is ForestCoverzdt which measures forest cover in type of forest z

(primary or secondary forests), in district d at time t.4 The advantage of using these data

over higher resolution (for example, village level) data is the classification of primary v.

secondary forests. Appendix Figure A.2 shows the decline in percentage of land area un-

der primary and secondary forests in a district over time.

3 Estimation Strategy

The primary dependent variable of interest is a binary indicator for malaria outbreak in

a given year. I use a linear probability model in the baseline specification.5 The primary
4The average district size in Indonesia is 4,500 km2.
5In Appendix Table A.3, I show that my results are robust to choice of various non-linear estimators.
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specification is:

Pr[diseasevdt = 1] =β0 + β1 arcsinh(ForestCoverdt)

+ β2Xvdt + µd + ηit + γpt+ εvdt (1)

The dependent variable diseasevdt denotes whether or not there was a disease outbreak

in village v in district d at time t and arcsinh(ForestCoverdt) is the inverse hyperbolic sine

transformation of total primary forest cover in district d at time t.6 Xvdt is a vector of

controls including log of population, distance to cities, rainfall, dominant occupation in

village allowed to vary flexibly across provinces and time, and the inverse hyperbolic sine

transformation of non-forested area.7 µd is the district-level fixed effect, ηit is the island

- year fixed effect, γpt is the province-specific linear time trend, and εvdt is the regression

residual. Standard errors are clustered at the district level to allow for arbitrary correlation

within a district and over time accounting for spatial autocorrelation and serial correlation

within district over time.

Obtaining a consistent estimate of β1 relies on the identifying assumption that there are

no time varying omitted variables correlated with both forest cover and malarial incidence.

In theory, this assumption may be suspect. For instance, local institutional quality could

affect both forest cover loss and disease incidence through low provision of medical fa-

cilities. Absent randomization and a context-preserving natural experiment (for instance,

forest fires are an unsuitable natural experiment since they eliminate most biological life,

making it impossible to uncover an underlying ecological mechanism), I rely on panel

methods and a rich set of controls and set up two falsification tests to validate the identi-

fying assumption.

First, I test whether primary forest loss explains the incidence of four other diseases:

dengue, diarrhea, measles and respiratory infections, each of whose disease ecology dif-

fers from that of malaria.8 If there are unobserved variables correlated with both local hu-
6The transformation is: arcsinh(x) = log(x+

√
x2 + 1).

7Our estimates are insensitive to the correction of inverse hyperbolic sine transformation proposed by Bellemare and Wichman
(2019).

8Different diseases have different disease ecologies and as such different mechanisms of transmission. For instance, measles is an
airborne disease, while diarrhea is a water-borne disease.

6



man health and forest cover, then forest cover would also likely have an impact on diseases

other than malaria. An absence of any discernible effect on other diseases would be con-

sistent with the forest cover and human health relationship being specific to malaria, re-

ducing the threat to identification from omitted variables correlated with forest cover and

health in general. As a corollary, I test whether socio-economic variables such as poverty

status are correlated with each of the disease outcomes. Finding a relationship between

all disease outcomes and poverty, but only malaria (and no other disease) and primary

forest loss would be consistent with a causal effect of primary forest loss on malaria.

Second, I exploit differences in the type of forests - primary and secondary. If there

are omitted variables generically relating deforestation activity with malarial incidence,

then ex-ante, the effects should be similar across forest types. However, if the effects of

forest loss on malarial incidence are specific to primary forests, then the evidence would

be consistent with an ecological response driving the relationship between forest cover

and malaria.9

4 Results

The principal finding of this paper is that a one percent decline in forest cover significantly

increases the likelihood of malarial outbreak by 0.02 percentage points (Table 1, Column

1), and that the underlying mechanism is likely an ecological as opposed to socio-economic

response. Using the sample average of the probability of malarial outbreak of 0.185, a one

percent decline in forest cover in a district increases the probability of malarial outbreak

in each village in that district by 10.8 percent. I treat this as the baseline result and find

that it is robust to the inclusion of various control variables (Table 1, Column 2), trends

(Table 1, Column 3) and excluding villages where the dominant occupation is forestry (Ta-

ble 1, Column 4) . Back-of-the-envelope calculations (Section 4.3) suggest that morbidity

associated health benefits of primary forest cover in the range of $1 - $2 per hectare.
9It is worth noting that there may also be reverse feedback loop where deforestation induced malaria reduces labor supply for

future deforestation. To the extent that such a feedback loop exists, it would downward bias these estimates making them a lower
bound. These concerns would be most prevalent in villages where the dominant occupation is forestry; excluding such villages from
the analysis doesn’t the point estimates in any meaningful way suggesting that this endogeneity concern is minimal (Table 1, Column
4).
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4.1 Falsification Tests

In order to validate the research design, I perform two falsification tests exploiting differ-

ences in disease ecology (testing effects of primary forest cover loss on other diseases) and

forest ecology (testing the effects of non-primary forests on malaria). I then argue that

these falsification tests also address potential concerns about the subjective assessment of

an outbreak (dependent variable).

Other Diseases: Different diseases have different disease ecologies and as such different

mechanisms of transmission. I use incidence data on other diseases to show that the rela-

tionship between forest cover and malaria is specific to the disease ecology of malaria and

not generically to health by considering similar measures of measles, diarrhea, respiratory

infections and dengue. As shown in Table 2, there is no statistically significant effect of

forest cover change on the incidence of the other diseases. Conversely, as expected, there

is a strong correlation between the number of poor people in a village and the incidence

of all diseases (Table 3). The presence of a correlation between poverty and all diseases

combined with the absence of any observable effect of forest loss on diseases other than

malaria is consistent with primary forest cover loss increasing the incidence of malaria

through an ecological mechanism.10

Types of Forests: Primary forests are designated as biodiversity reserves whereas sec-

ondary forests are demarcated for purposes of logging and land conversion for agricul-

ture and palm oil. However, illegal deforestation occurs in both types of forests (Burgess

et al., 2012). In Table 4, I exploit these differences and show that only primary forest loss

is associated with increased malarial incidence. This effect is statistically different from

the effect of secondary forests (opposite sign) at the 5% level, consistent with an ecological

mechanism.

10The lack of a discernible effect of forest cover on dengue may appear inconsistent with the core result since dengue is also spread
via disease carrying vectors, particularly the Aedes Aegypti and Aedes Albopictus mosquitoes. However, this remains a valid falsification
test since the disease ecology of malaria differs from that of dengue considerably. The Aedes Aegypti and Aedes Albopictus mosquitoes,
unlike the female Anopheles mosquito that carries malaria are almost stationary and prevalent mostly in urban areas. Since most urban
areas have negligible forest cover, we should not expect to see an effect of forest cover on incidence of dengue.
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Validation of Dependent Variable: The subjectivity in the assessment of an outbreak

could, in theory, be correlated with omitted variables or be in response to strategic in-

centives of the village head. I address this concern in three ways. First, the falsification

tests using other diseases indicate that forest cover relates only to malaria but not to other

disease outbreaks whereas indicators of poverty relate strongly to all disease outbreaks

captured in the data. If the subjectivity in disease reporting was correlated with forest

cover but not measures of poverty, this would likely be true for at least one other dis-

ease. The absence of a relationship between primary forest cover loss and diseases other

than malaria is inconsistent with such a concern. Second, to the extent that subjectivity

is correlated with omitted variables affecting only malaria and not to other diseases, such

correlations would have to be specific to primary forests and not secondary forests. Fi-

nally, primary forest cover seems unrelated to indicators such as poor cards and health

cards suggesting that concerns of strategic behavior in reporting malaria to gain access to

social programs seem minimal.

4.2 Alternative Explanations

In this section, I consider three alternative explanations, other than an ecological response,

that could, in theory, explain a statistical association between primary forest loss and

malaria. In each case, I find evidence inconsistent with these hypothesis.

Social Programs: I address the possibility of spurious correlation between anti-malaria

or other social programs and forest cover (e.g. less remote places with low baseline forest

cover and therefore lower forest loss could be more likely to receive anti-malarial services

and programs) in two ways. First, I show that forest cover, conditional on observables and

fixed effects, has no effect on the number of beneficiaries of the health and anti-poverty

pro-social programs (Table 5). As such it doesn’t appear that there is any systematic rela-

tionship between primary forest cover loss and the take-up of social programs. Second, I

disaggregate results by proximity of villages to forests (Appendix Table A.4).11 When con-
11I separate villages that are classified as “inside” and “on the border” of forests from villages classified as being “away” from

forests. This characterization of the location of the village relative to the forest is provided by village heads and then verified at the
district or sub-district office.
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sidering only the set of villages inside or near forests, the effects of primary forest loss are

almost twice as large in magnitude (Appendix Table A.4, Column 1) than in villages away

from forests (Appendix Table A.4, Column 2), although this difference is not statistically

significant at conventional levels.12

Migration: A threat to internal validity would be if increased migration correlated with

deforestation leads to higher incidence of malaria because migrants can potentially act as

latent hosts of malaria (Texier et al., 2013).13 I find two pieces of evidence inconsistent with

this hypothesis. First, I show that decreases in primary and secondary forest cover are not

associated with increases in overall population (Appendix Table A.5).14 If anything, for-

est cover loss is associated with a decrease in population and this effect is similar across

primary and secondary forests but the effect of forest cover loss on malaria is specific to

primary forests (Table 4). Second, the placebo tests demonstrate that the effect is specific

to malaria; migrants working in forestry sector would have to be carrying malaria and no

other disease. This would be in contrast to work in public health documenting several in-

stances where migratory behavior has been associated with the outbreak of other diseases

such as diarrhea and dengue in addition to malaria (Eisenberg et al., 2006).

Agricultural Land Use: Keesing et al. (2010) note that the agricultural use of cleared land

could drive the increased incidence of malaria (e.g. paddy cultivation that involves main-

taining standing water in fields) rather than the clearing of forests themselves. I test ex-

plicitly for paddy cultivation and show that forest cover change has negligible effects on

rice cultivation and including this area as a control variable doesn’t affect the main re-

sults (Appendix Table A.6, Columns 1 and 2 respectively). Second, if agricultural activity

correlated with forest cover changes were driving the relationship between forest cover

and malarial incidence, we would expect to observe this effect regardless of forest types

since the driving factor would be the use of the land post-clearing rather than what was
12The difference has a p-value of 0.22.
13Recent work has shown, for example, the causal link between some road construction activity and deforestation (Asher, Garg

and Novosad, Forthcoming).
14Population changes, in theory, occur through births, deaths and migration. Unless, forest cover changes are associated with

changes in births and deaths through a channel other than malaria, population for the purposes of this test, serves as a reasonable
proxy. For instance, see Lucas (2013); McCord, Conley and Sachs (2017) for the effects of malaria on fertility.
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cleared; results specific to primary forests (Table 4) are therefore inconsistent with such a

mechanism.

4.3 Valuing the Malaria Reducing Benefits of Primary Forest Cover in

Indonesia

In this section, I describe the assumptions used in making back of the envelope calcu-

lations. First, I derive level estimates of the effect of forest cover on reducing malarial

outbreaks. I then make data driven assumptions to translate the increased probability of

malarial outbreaks to generate an estimate of the number of malarial infections reduced

per unit of forest cover. Next, I use estimates from the literature to compute the number of

days of lost work. Finally, I use the minimum wage to compute the dollar value associated

with morbidity-reducing malaria-related benefits of local forest cover.

4.3.1 Forest Cover and Malaria (Level Effects)

I re-estimate equation (1) using (1000s of) hectares of forest cover as the independent vari-

able instead of the inverse hyperbolic sine transformation. These results are reported in

Appendix Table A.7. The results here are similar to those in table 1 and allow for more

mechanical back-of-the-envelope calculations. I employ the most conservative estimate, in

column (1). Against a baseline malarial incidence of 0.185, a 1000 hectares of forest cover

reduces malarial incidence by 0.2%.

4.3.2 Probability of Outbreak to Infected Individuals

The above section shows that 1000 hectares of forest cover reduces malarial outbreak by

0.2% in every village in that district. An outbreak, on average, means that 15 individuals

are infected. There are 250 villages, on average, in each district. That means 1000 hectares

of forest cover results in 0.002x15x250 = 7.5 reduced infected individuals in each district.

11



4.3.3 Morbidity Cost of Deforestation based on Per Capita Income

A single bout of malaria results in 10-20 sick days.15 Therefore, 1000 hectares of primary

forest cover saves about 75-150 lost working days in a year per district. The average 2017

minimum wage in Indonesia is USD 252 per month16 and assuming 20 working days in a

month, is USD 12.6 per day. Thus, 1000 hectares of primary forest cover generates USD 945

- USD 1890 in morbidity-related malaria reducing ecosystem services. This is equivalent

to estimates of USD 1 - USD 2 per hectare.

5 Conclusion

Ecosystem degradation poses a fundamental threat to lives and livelihoods, especially

in the poorest parts of the world. In this paper, I provide evidence on the effect of sus-

tained primary forest cover on reducing malarial incidence in Indonesia. Specifically, a

1% increase in primary forest cover reduces the probability of malarial outbreak by ap-

proximately 10%, generating malaria-related morbidity-reducing benefits of at least $1-$2

per hectare of primary forest. The effects are specific to malaria and specific to primary

forests implying an ecological mechanism underpinning the relationship between forest

cover and malaria.

Importantly, these estimates present the short-run benefits of sustained forest cover.

Future work should examine how more permanent and sustained changes in ecosystems

affect the incidence of infectious diseases to uncover a key missing ingredient in willing-

ness to pay for natural capital (Fenichel and Abbott, 2014). Together, this body of research

should not only inform conservation programs, but also provide new evidence on imme-

diate and localized benefits of ecosystems that have been previously understudied, es-

pecially in poor communities where feedback between ecological and economic systems

maybe pervasive (Barrett, Garg and McBride, 2016; Frank and Schlenker, 2016).

15See: http://malaria.jhsph.edu/about_malaria/
16The average minimum wage for Indonesia in 2017 is IDR 3.5 million per month which translates to USD 252 based on exchange

rates on January 12, 2017.
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Tables and Figures

Table 1: Forest Cover and Malarial Incidence

(1) (2) (3) (4)
Was there an outbreak of malaria? FE Add Controls Quadratic Trends No Forestry

Forest Cover (IHS) -0.0201*** -0.0185*** -0.0207*** -0.0202***
(0.00649) (0.00650) (0.00683) (0.00652)

Observations 45,104 45,104 45,104 44,762
R-squared 0.128 0.136 0.137 0.128
District FE Yes Yes Yes Yes

Island-Year FE Yes Yes Yes Yes
Controls No Yes Yes No

Province-Trends Linear Linear Quadratic Linear

Mean Incidence 0.185 0.185 0.185 0.184

Standard errors clustered at the district level in parentheses. Statistical significance is denoted as *** p <0.01, ** p <0.05, * p <0.1.
Control variables include climate variables, dominant occupation flexibly interacted with year and province fixed effects, distance
from nearest capital, and log of population and the inverse hyperbolic sine of non-forested area. In column (4), the sample is limited
to villages where the dominant occupation is not forestry. The full regression output with coefficients on covariates is provided in
Appendix Table A.8.
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Table 2: Forest Cover and Outbreak of Different Diseases

(1) (2) (3) (4) (5)
Was there an outbreak of disease? Malaria Dengue Diarrhea Respiratory Measles

Forest Cover (IHS) -0.0185*** 0.00386 -0.00555 -0.00936 -0.00283
(0.00650) (0.00412) (0.00768) (0.00607) (0.00416)

Observations 45,104 45,104 45,104 45,104 45,104
Districts 240 240 240 240 240

R-squared 0.136 0.148 0.080 0.076 0.069

Mean Incidence 0.185 0.064 0.174 0.104 0.075

Standard errors clustered at the district level in parentheses. Statistical significance is denoted as *** p <0.01, ** p <0.05, * p <0.1.
Control variables include climate variables, dominant occupation flexibly interacted with year and province fixed effects, distance
from nearest capital, and log of population and the inverse hyperbolic since of non-forested area. All specifications control for
district fixed effects, island-year fixed effects and province specific linear time trends.
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Table 3: Poverty and Outbreak of Different Diseases

(1) (2) (3) (4) (5)
Was there an outbreak of disease? Malaria Dengue Diarrhea Respiratory Measles

Log(Number of Poor Cards) 0.0101*** 0.0112*** 0.00926*** 0.00591** 0.00466**
(0.00319) (0.00196) (0.00323) (0.00272) (0.00210)

Observations 37,111 37,111 37,111 37,111 37,111
Districts 232 232 232 232 232

R-squared 0.137 0.161 0.084 0.078 0.068

Mean Incidence 0.185 0.064 0.174 0.104 0.075

Standard errors clustered at the district level in parentheses. Statistical significance is denoted as *** p <0.01, ** p <0.05, * p <0.1.
Control variables include climate variables, dominant occupation flexibly interacted with year and province fixed effects, distance
from nearest capital, and log of population and the inverse hyperbolic since of non-forested area. All specifications control for
district fixed effects, island-year fixed effects and province specific linear time trends.

18



Table 4: Forest Cover and Malaria by Type of Forest

(1) (2)
Was there an outbreak of malaria? Primary Forest Secondary Forest

Forest Cover (IHS) -0.0185*** 0.00423
(0.00650) (0.00884)

Observations 45,104 37,231
Districts 240 233

R-squared 0.136 0.159
Standard errors clustered at the district level in parentheses. Statistical significance is denoted as
*** p<0.01, ** p<0.05, * p<0.1. Control variables include climate variables, dominant occupation
flexibly interacted with year and province fixed effects, distance from nearest capital, and log of
population and the inverse hyperbolic since of non-forested area. All specifications control for
district fixed effects, island-year fixed effects and province specific linear time trends.
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Table 5: Forest Cover and Log Enrollment in
Pro-Social Programs

(1) (2)
Poor Cards Health Cards

Forest Cover (IHS) -0.0145 -0.0194
(0.0263) (0.0241)

Observations 37,111 31,107
R-squared 0.278 0.469

Standard errors clustered at the district level in parentheses. Sta-
tistical significance is denoted as *** p <0.01, ** p <0.05, * p <0.1.
Control variables include climate variables, dominant occupation
flexibly interacted with year and province fixed effects, distance
from nearest capital, and log of population and the inverse hy-
perbolic since of non-forested area. All specifications control for
district fixed effects, island-year fixed effects and province specific
linear time trends. “Poor Cards” and “Health Cards” are defined
as the log of number of people in the village who have benefited
from those social programs.
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A Appendix
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A.1 Additional Figures and Tables

Figure A.1: Kernel Density Distribution of Infections conditional on reported outbreak in
2008
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Figure A.2: Percentage Area (District Level) Under Primary and Secondary Forests in In-
donesia
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Table A.1: Fraction of Villages with Disease Outbreaks (Vil-
lage Level)

(1) (2)
Was there an outbreak of Primary Forests Secondary Forests

Malaria 0.185 0.210
(0.388) (0.407)

Dengue 0.0645 0.0553
(0.246) (0.229)

Diarrhea 0.174 0.186
(0.379) (0.389)

Respiratory 0.104 0.105
(0.305) (0.307)

Measles 0.0748 0.0849
(0.263) (0.279)

Observations 45,104 37,234
Standard deviations in parentheses. Column 1 shows mean and standard deviation for
the sub-sample of villages with primary forests. Column 2 shows mean and standard
deviation for the sub-sample of villages with secondary forests.
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Table A.2: Key Independent Variables (Village Level)

(1) (2) (3)
Full Sample Primary Forests Secondary Forests

100’s of Families Receiving Poor Status Papers 0.325 0.313 0.302
(0.759) (0.698) (0.758)

100’s of Families Receiving Health Cards 0.774 0.758 0.721
(1.386) (1.411) (1.249)

Hospital (Yes = 1; No = 0) 0.635 0.629 0.649
(0.928) (0.926) (0.934)

Ease of Access to Nearest Hospitala 2.590 2.577 2.671
(0.881) (0.874) (0.881)

Population Density 0.00641 0.00454 0.00439
1000’s of persons per hectare (0.0341) (0.0227) (0.0207)

Rice Field Area (1000 Ha) 0.251 0.231 0.291
(1.215) (1.027) (1.511)

Is the village by a river? (Yes = 1, No = 0) 0.709 0.706 0.723
(0.454) (0.456) (0.447)

Elevation Above Sea Level (100 meters) 2.120 2.194 2.264
(4.968) (5.675) (4.693)

Mean Annual Rainfall (1000mm) 0.0698 0.0691 0.0706
(0.0177) (0.0169) (0.0186)

Annual Variation in Rainfall (1000mm) 0.0319 0.0313 0.0323
(0.00987) (0.00959) (0.0103)

Observations 100,572 40,938 33,753
Standard deviations in parentheses. Column 2 shows mean and standard deviation for the sub-sample of villages inside or on the border
of the forest area. Column 3 shows mean and standard deviation for the sub-sample of villages. These characterizations are made by
the village head and verified at the sub-district office.

a Ease of access defined as follows. 0 = hospital in village, 1 = very easy, 2 = easy, 3 = difficult and 4 = very difficult. These delineations
are made by the village head and verified at the district/sub-district office.

b Rainfall variables calculated over the sample range of 2001-2008.
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Table A.3: Comparison of Results from LPM, Logit and Probit

(1) (2) (3)
Was there an outbreak of malaria in the previous year? LPM Logit Probit

Forest Cover (IHS) -0.0201*** -0.0191*** -0.0210***
(0.00649) (0.00645) (0.00693)

Observations 45,104 44,728 44,728
Standard errors clustered at the district level in parentheses. Statistical significance is denoted as *** p <0.01, ** p <0.05, * p
<0.1.
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Table A.4: Forest Cover and Malaria by Distance from Forest

(1) (2)
Was there an outbreak of malaria? Outside Forest Inside/Near Forest

Forest Cover (IHS) -0.0156** -0.0273***
(0.00640) (0.0102)

Observations 32,222 12,882
Districts 234 220

R-squared 0.133 0.180
Standard errors clustered at the district level in parentheses. Statistical significance is denoted as
*** p <0.01, ** p <0.05, * p <0.1. Control variables include climate variables, dominant occupa-
tion flexibly interacted with year and province fixed effects, distance from nearest capital, and log
of population and the inverse hyperbolic since of non-forested area. All specifications control for
district fixed effects, island-year fixed effects and province specific linear time trends. The coeffi-
cients of Forest Cover (IHS) for Outside Forest and Inside/Near Forest are not statistically different
at conventional levels (p-value = 0.22).
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Table A.5: Population and Forest Cover by Type of Forest

(1) (2)
Dependent Variable: Log (Population) Primary Forest Secondary Forest

Forest Cover (IHS) 0.0508** 0.0261***
(0.0207) (0.00706)

Observations 45,104 37,231
R-squared 0.585 0.578

Standard errors clustered at the district level in parentheses. Statistical significance is denoted as *** p
<0.01, ** p <0.05, * p <0.1. Control variables include climate variables, dominant occupation flexibly
interacted with year and province fixed effects, distance from nearest capital, and the inverse hyperbolic
since of non-forested area. All specifications control for district fixed effects, island-year fixed effects
and province specific linear time trends.
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Table A.6: Agricultural Activity, Forest Cover, Malaria

(1) (2)
Rice Area Percentage Malaria Outbreak

Forest Cover (IHS) -0.000154 -0.0178***
(0.000229) (0.00549)

Rice Field Area (IHS) 0.0321**
(0.0157)

Observations 41,332 41,332
R-squared 0.275 0.124

Standard errors clustered at the district level in parentheses. Statistical significance is de-
noted as *** p <0.01, ** p <0.05, * p <0.1. Control variables include climate variables,
dominant occupation flexibly interacted with year and province fixed effects, distance
from nearest capital, and log of population and the inverse hyperbolic since of non-
forested area. All specifications control for district fixed effects, island-year fixed effects
and province specific linear time trends.
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Table A.7: Forest Cover and Malarial Incidence (Levels)

(1) (2) (3)
Was there an outbreak of malaria? FE Add Controls Add Lags

Forest Cover (1000 Ha) -0.000376*** -0.000386** -0.0175***
(0.000143) (0.000149) (0.00341)

Forest Cover One Year Before (1000 Ha) 0.0712***
(0.0202)

Forest Cover Two Years Before (1000 Ha) -0.0539***
(0.0179)

Observations 45,104 45,104 45,104
R-squared 0.130 0.137 0.139
District FE Yes Yes Yes

Island-Year FE Yes Yes Yes
Controls No Yes Yes

Lags No No Yes

Mean Incidence 0.185 0.185 0.185

Standard errors clustered at the district level in parentheses. Statistical significance is denoted as *** p <0.01, **
p <0.05, * p <0.1. The full set of controls include geographic variables, climate variables, dominant occupation
flexibly interacted with year and province fixed effects, distance from nearest capital, and population density. All
specifications control for province specific linear time trends.
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Table A.8: Forest Cover and Malarial Incidence (Full Regression Output)

(1) (2) (3)
Was there an outbreak of malaria? FE Add Controls Quadratic Trends

Forest Cover (IHS) -0.0201*** -0.0185*** -0.0207***
(0.00649) (0.00650) (0.00683)

Village Near Forest 0.0341*** 0.0334***
(0.0100) (0.0101)

Village Inside Forest 0.0635** 0.0635**
(0.0301) (0.0302)

Distance to Kabupaten Office (100Km) -0.000511 -0.000329
(0.00921) (0.00927)

Height Above Sea Level (100 meters) -0.000442 -0.000523
(0.00128) (0.00131)

Mean Annual Rainfall (1000mm) -0.851 -0.611
(0.986) (0.942)

Annual Variation in Rainfall (1000mm) 2.112 2.408
(1.702) (1.900)

Log(Population) 0.00677 0.00678
(0.00721) (0.00731)

Non-Forest Area (IHS) 0.00386 0.00384
(0.00255) (0.00251)

Observations 45,104 45,104 45,104
Districts 240 240 240

R-squared 0.128 0.136 0.137
District FE Yes Yes Yes

Island-Year FE Yes Yes Yes
Controls No Yes Yes

Province-Trends Linear Linear Quadratic

Mean Incidence 0.185 0.185 0.185

Standard errors clustered at the district level in parentheses. Statistical significance is denoted as *** p <0.01, ** p <0.05,
* p <0.1. Control variables include climate variables, dominant occupation flexibly interacted with year and province
fixed effects, distance from nearest capital, and log of population and the inverse hyperbolic sine of non-forested area.
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