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ABSTRACT

IZA DP No. 12584 AUGUST 2019

Inference with Arbitrary Clustering*

Analyses of spatial or network data are now very common. Nevertheless, statistical inference 

is challenging since unobserved heterogeneity can be correlated across neighboring 

observational units. We develop an estimator for the variance-covariance matrix (VCV) of 

OLS and 2SLS that allows for arbitrary dependence of the errors across observations in space 

or network structure and across time periods. As a proof of concept, we conduct Monte 

Carlo simulations in a geospatial setting based on U.S. metropolitan areas. Tests based 

on our estimator of the VCV asymptotically correctly reject the null hypothesis, whereas 

conventional inference methods, e.g., those without clusters or with clusters based on 

administrative units, reject the null hypothesis too often. We also provide simulations in a 

network setting based on the IDEAS structure of coauthorship and real-life data on scientific 

performance. The Monte Carlo results again show that our estimator yields inference at 

the correct significance level even in moderately sized samples and that it dominates other 

commonly used approaches to inference in networks. We provide guidance to the applied 

researcher with respect to (i) whether or not to include potentially correlated regressors 

and (ii) the choice of cluster bandwidth. Finally, we provide a companion statistical package 

(acreg) enabling users to adjust the OLS and 2SLS coefficient’s standard errors to account 

for arbitrary dependence. 
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1 INTRODUCTION

Recent years have witnessed a tremendous surge of empirical studies with data endowed with

a topology, such as spatial data or network data. In these data, unobserved shocks can be cor-

related across neighboring observational units, where the neighborhood refers to the physical

space or to the network structure. In both settings, inference is challenging because the sam-

pling structure of the data and of the VCV matrix exhibits overlapping clusters–a feature that

is vastly ignored by applied econometricians.1 Indeed, a common practice with spatial data

consists of considering non-overlapping clusters (typically administrative units) defined at a

level of aggregation that encompasses the scale of the resolution of the data by several orders

of magnitude–e.g., standard errors are clustered at the region level, while observational units

typically correspond to 0.5o×0.5o grid cells.2 In addition to the loss of efficiency when it turns to

estimation, such a practice is subject to caution for observational units that are located close to

the frontier between two clusters, as shown in our analysis below. In the case of network data, the

practice is even more radical, as many studies simply do not correct for the potential correlation

of unobserved shocks across neighbors.

We propose an approach to obtain asymptotically valid inference in spatial/network settings

with any type of topological and temporal dependence between observation units. We also pro-

vide the community with a companion statistical package. Our acreg command enables Stata

users to estimate 2SLS models with panel data and an arbitrary clustering structure. Arbitrary

here refers to the way units could be correlated with each other in space/network and time. We

impose no restrictions so that our approach can be used with a wide range of data. Our estima-

tor for the variance-covariance (VCV) matrix of the estimated parameters builds on the seminal

insight by White (1980) who showed that a sandwich-type VCV can be estimated by constructing

a consistent estimator of the VCV of the parameters. Specifically, the estimator uses estimated

regression errors and knowledge of the clustering structure to reconstruct estimates of the un-

known elements of the sandwich formula. Our approach follows Conley (1999) by specifying

a circle around each unit that specifies how distance dependence is likely to reach, allowing

for decay or not. This type of clustering structure is well known in spatial data, and statistical

packages are available online for ordinary least squares (OLS) estimations. Our contribution is

twofold. First, we show how to perform inference in instrumental variables (IV) or two-stage

least squares (2SLS) settings allowing for a Conley-type clustering structure. Second, we allow

users to define the metric in a flexible way: In addition to spatial distance, our approach can

1Multiway clustering is somewhat more flexible, allowing errors to correlate, for instance, within units over time
and across time periods (Cameron et al., 2011). However, multiway clustering assumes regularity in the clustering
structure that may not hold in real-life settings with spatial/network data.

2For example, see the GAEZ v3.0 Global Agro-ecological Zones dataset of FAO: http://www.gaez.iiasa.ac.at/
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deal with travel distance, travel costs, contiguity and any concept of distance in a network.

A first example of application of our approach relates to a clustering structure allowing for

spatial and temporal decays with geocoded data. Indeed, empirical work has been fueled by

the growing availability of geocoded data and the integration of geographic information systems

(GIS) in the toolkit of economists. From development and urban economics to economic history,

big spatial data at a high level of resolution enable researchers to move the analysis within coun-

tries and to craft compelling empirical designs (e.g., RDD, DiD), for the purpose of causal anal-

ysis, as various endogeneity concerns are alleviated by exploiting fine-grained variations and

discontinuities in the variables of interest.3 A second and broader class of applications relates

to all clustering structures that are based on a metric that is not spatial distance (i.e., Euclidean

or geodesic) such as contiguity or any type of network topology. More specifically, consider a

scholar interested in studying economic outcomes at the county level in the U.S. In such a sce-

nario, it is likely that contiguous counties are affected by common shocks and this should be

reflected in the clustering structure. The issue here is that counties have different sizes (much

larger in the West; see the map in Figure 3), preventing the researcher from imposing the same

spatial kernel (Conley, 1999, as in) across the entire sample. Another setting relates to networks.

Consider a scholar interested in violence between rebel groups in Africa. These groups are af-

fected by common shocks not only in the physical space through their location but also in the

cultural/social space through their ethnic affiliations. Groups that are ethnically close tend to

be affected by similar shocks. Hence, it is important that the clustering structure accounts for

ethnic (or genetic or linguistic) relatedness.

We provide results from extensive Monte Carlo simulations based on real-life data for doc-

umenting our arbitrary clustering regression approach. A first set of simulations relates to the

clustering structure allowing for spatial and temporal decays. We construct environments where

OLS or IV regressions with robust standard errors clustered at the administrative level reject the

null hypothesis of no effect in approximately 20% of all cases when the significance level of the

test is set at 5%. Conventional inference does not improve as the sample size increases, suggest-

ing that the conventional approach produces inconsistent estimates of the variance-covariance

matrix. By adopting the arbitrary clustering estimator, we find that the null-rejection rate is ap-

proximately 10% for small samples and converges quickly to the true significance level of 5% as

the sample size increases. This pattern suggests that the arbitrary clustering correction produces

consistent estimates of the VCV, enabling applied econometricians to conduct robust inference

in the presence of spatial correlation. Our second Monte Carlo study deals with network data

based on coauthorship in Economics from IDEAS. Here, we again find that applied econome-

3For a survey, see Michalopoulos and Papaioannou (2017).
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tricians adopting conventional inference using robust standard errors that neglect the network

correlation in both regressors and outcomes would severely overstate the precision of their esti-

mates. By contrast, inference that allows for arbitrary clustering yields rejection rates close to the

correct 5% threshold. Finally, we exploit our Monte Carlo results to provide guidance to the ap-

plied researcher with respect to (i) including control variables; (ii) multiple spatially correlated

regressors; and (iii) setting the adequate (spatial/network distance) bandwidth for the estimator.

This paper is related to several strands in the literature. First, our approach to conducting

inference is inspired by White (1980)’s seminal work on consistent estimation of the VCV. White

(1984) also proposed an estimator that allows for robust inference when data are clustered, as,

e.g., in random samples of units observed over multiple time periods. Bertrand et al. (2004)

discuss how clustering affects studies that adopt a differences-in-differences design. Cameron

et al. (2011) extended this approach to clustering in multiple dimensions. Second, a large body

of literature on spatial econometrics discusses inference approaches. Conley (1999) develops

robust inference in settings where shocks to spatial units are spatially dependent, also allowing

for decays. Kelejian and Prucha (1998, 1999) develop estimators in a spatial setting with spatial

dependence in both the dependent variable and the regressors. We complement this literature

by allowing for arbitrary forms of clustering. The recent surge in availability of data with complex

spatial dependence structures creates unprecedented demand for flexible modeling in order to

ensure unbiased inference in complex settings. We also allow users to specify outside instru-

ments, a requirement that is very important for applied papers but that seems overlooked or

not discussed in the more theory-driven spatial econometrics literature. Finally, our simulations

results, based on real data, qualify the main insights from Kelly (2019), who studies inference

problems in spatial studies using artificial data.

We discuss the econometric background that allows for arbitrary clustering in the next sec-

tion. Section 3 presents Monte Carlo evidence on placebo policy shocks for a spatial setting, the

U.S. counties. We also document how arbitrary clustering provides reliable evidence in network

settings. Section 4 concludes.

2 A MODEL WITH CROSS-SECTION AND TIME DEPENDENCE

In this section, we present the model and discuss an estimator of the variance-covariance (VCV)

matrix of the parameters. Our key focus is on inference with arbitrary dependence of error terms

across observations and over time. Arbitrary in this sense conveys that each observation’s error

term at a particular point in time may depend on other observations’ error terms with a certain

strength. All this information is collected in a matrix that we call S. In the spatial context, S is
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normally built from information on the geographic distance between spatial units, e.g., regions,

cities, and countries. In a social network context, S reflects the direct links of each person, also

called an adjacency matrix. Note that S allows for varying link strength, such that entries could

range from 0 to 1, and S may change over time t . We also always include self-links in S, so its

main diagonal contains ones. We begin with a review of the multiway clustering environment

(Cameron et al., 2011), we show the main differences between the two approaches, and we con-

clude the section by extending our setting to the 2SLS case.

Consider n observations at each t instant on time T from the following linear model:

y = Xβ+ε

where we observe each individual i several times in different periods t . y is a dependent

variable, and X is a matrix of k linearly independent components that could include a long list

of dummies for each unit, in case we are interested in the within estimates. We can write the OLS

estimator as:

bOLS = (X ′X )−1X ′y

and the theoretical VCV of the bOLS is:

V CV (bOLS) = (X ′X )−1X ′ΩX (X ′X )−1

whereΩ≡ E(εε′|X ) is the unknown VCV of ε.

Building on the seminal insight from White (1980) and following the multiway cluster-robust

estimator structure designed by Cameron et al. (2011), we propose the following sandwich esti-

mator for the VCV based on the estimated residuals e ≡ y −X bOLS :

�V CV (bOLS) = (X ′X )−1X ′(S × (ee ′))X (X ′X )−1

where S is the matrix capturing how each observation’s error term depends on other obser-

vation’s error terms. The key element of this estimator is the "meat" in the sandwich:

X ′(S × (ee ′))X =
n∑

i=1

T∑
t=1

n∑
j=1

T∑
s=1

xi t ei t e j s x j s si t j s

The Cameron et al. (2011) setting can be embedded in this framework. The peculiarity of

their environment is the presence of D dimensions of clustering with Gd non-overlapping groups

in each dimension, where each observation belongs to D groups with one in each dimension. In
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their structure, the i t j s-th observation can be zero or one. It is equal to one if observation i t and

observation j s share any cluster gd and equal to zero otherwise. They show that it is a consistent

estimator of the theoretical VCV providing that few regularity conditions hold.

Multiway clustering assumes a particular regularity condition in the clustering structure. For

example, a sufficient condition for a single entry i t j s-th of the matrix S to be one is that observa-

tions i t and j s share a cluster in at least one dimension of clustering. This means that if we want

to allow observation’s i error terms to be correlated with the error terms of both observations j

and l , then the error terms of observations j and l must also be correlated. In addition, if the

observation i depends on observation j at time t , then they must also be dependent at time s.

However, in many real-life settings, this particular clustering structure may not hold.

Conversely, our arbitrary cluster setting allows the units to be correlated with each other in

any possible way, without any kind of imposed structure. Simply, the i t j s-th component of the

matrix S can be zero, one or any other number between the two, depending on the strength of

the dependence of the error of observation i on the error of observation j . The flexibility of our

structure allows accounting for not only cross-section dependence and time dependence but

also interactions between the two, capturing changes in the strength of the correlation that can

be due to alterations in the link structure over time or any kind of decay between two moments

in time t and s. This allows our estimator to be more suitable for many applications. In a social

network context, S reflects the direct links of each person, while in the spatial context, S is built

from information on the geographic distance between spatial units.

The framework described above could also be used in the presence of endogeneity. We con-

sider the linear two-stage least squares with more instruments than endogenous regressors:

once the endogeneity is taken into account and the causal effect of the explanatory variable on

the dependent variable is uncovered through instruments, the procedure to estimate the VCV is

qualitatively equivalent to the OLS case.

We consider the same linear model as before, where we add that m of the k components of X

are endogenous and a set of o > m excluded instruments for a total of p > k exogenous variables

that form the matrix Z . We can write the first stage as:

X̂ = (Z ′Z )−1Z ′X Z

Then, the 2SLS estimator is:

b2SLS = (X̂ ′X̂ )−1X̂ ′y

Under standard regularity conditions b2SLS is asymptotically normal with the following theoret-

6



ical estimated variance matrix:

V CV (b2SLS) = (X̂ ′X̂ )−1X̂ ′ΩX̂ (X̂ ′X̂ )−1

Moreover, the core part X̂ ′ΩX̂ can be estimated as before by the following:

X̂ ′(S × (uu′))X̂ =
n∑

i=1

T∑
t=1

n∑
j=1

T∑
s=1

x̂i t ui t u j s x̂ j s si t j s

where the estimated residuals now refer to the 2SLS estimator: u ≡ y −X b2SLS .

3 SIMULATION STUDY

We conduct Monte Carlo simulations to illustrate how correlation across units within an arbi-

trary cluster, e.g., spatially close units or friends in a network, affect the rejection rate of the

null hypothesis if such correlation is not accounted for while estimating the standard errors.

We implement Monte Carlo simulations using real-life data to construct arbitrary clusters, i.e.,

geocoded data on U.S. counties for the spatial setting and data on coauthors from IDEAS RePEc

for the network setting. In each Monte Carlo iteration, we generate policy shocks that are based

on variables that are randomly drawn from a normal distribution. These policy variables and

outcome variables are independent and identically distributed (iid).4 Statistical theory predicts

that the null hypothesis that two iid variables are uncorrelated will be rejected 5% of the time as

the number of Monte Carlo draws approaches infinity if the significance level is 5%. We confirm

this prediction. Then, we introduce within-cluster correlation to the randomly generated pol-

icy variables and show that the null-rejection rate exceeds 5%, indicating a higher rate of Type 1

error if within-cluster correlation is not accounted for while estimating the standard errors. We

show that our proposed estimator asymptotically reduces the null-rejection rate to the theoreti-

cal benchmark of 5% in the presence of within-cluster correlation in both OLS and 2SLS settings.

3.1 SPATIAL SETTING

To illustrate how correlation across spatial units leads to an over-rejection of the null hypothesis

if such correlation is not accounted for, we use data at the U.S. county level. We extract tabular

information on median earnings, education level, age, race, and gender aggregated at the county

4This statement is true for the simulations in the OLS setting. To introduce endogeneity to the model in the 2SLS
setting, we generate policy variables that are correlated with outcome variables.
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level for 2000 from the National Historical Geographic Information System (NHGIS) database

(Manson et al., 2017). The NHGIS is a part of the Integrated Public Use Microdata Series (IPUMS)

project of the University of Minnesota and provides tabular U.S. Census data and GIS boundary

files. There are 3,141 counties in total in our sample.

3.1.1 THE DATA GENERATING PROCESS AND HYPOTHESES

To quantify the problem induced by spatial correlation in policy variables, we generate two sets

of policy shocks: random and spatially correlated shocks. We first explain how we generate the

random policy shocks, i.e., those that affect some counties and not others in each Monte Carlo

draw. We generate a random variable from a normal distribution. Then, we select the counties

that are in the top quartile of the distribution of this random variable as counties that receive

a “placebo” policy shock. Panel (a) of Figure 1 visualizes an example of the distribution of the

policy shock variable we draw at random.

We estimate the following equation using OLS:

Yc =α1c +β1Pol i c yc +δ1X ′
c +εc (1)

where Yc is the natural log of median earnings in county c in 2000. Pol i c yc is a dummy

variable indicating whether county c receives a policy shock. Xc is a vector of county-level con-

trols, which comprises the share of population with tertiary education, share of females, share

of blacks, median age and its square, and natural log of total population in 2000. Given that Y

and Pol i c y are independent and Cor (Pol i c yc ,εc ) = 0, statistical theory predicts that the null

hypothesis that β1 = 0 will be rejected 5% of the time at a 95% confidence interval as the number

of Monte Carlo draws approaches infinity.

Next, we generate the spatially correlated policy shocks by adding spatial correlation to the

randomly drawn placebo policy shocks. Specifically, we use the coordinates of the centroid of

each county to compute the bilateral distance between counties. We define a distance cutoff

such that there are on average five counties in spatial clusters; the cutoff is 56 kms in our base-

line analysis.5 For each county, we compute the share of neighboring counties within its spatial

cluster that are affected by the policy shocks. We define the spatially correlated policy shock as

the sum of the share of neighboring counties that are affected and the dummy variable indi-

cating whether the county itself receives an idiosyncratic placebo policy shock. Therefore, the

spatially correlated policy shocks are the sum of the idiosyncratic policy shocks and the policy

shocks that are shared by all counties located within an arbitrary spatial cluster.

5Note that we adopt a uniform spatial decay kernel in our simulations. We have explored Bartlett-type kernels as
well and find that results are fairly comparable to those we present here.
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Panel (b) of Figure 1 visualizes the distribution of policy shocks that are spatially correlated

across counties within arbitrary spatial clusters. The distribution of policy shocks in panel (a) is

idiosyncratic and does not follow any spatial pattern, whereas that in panel (b) is marked with

spatial correlation across counties that are in close proximity.

Figure 2 visualizes the distribution of log median earnings in 2000 at the county level, i.e.,

the outcome variable in equation 1. The distribution of the log median earnings exhibits a de-

gree of spatial correlation across counties, i.e., spatial clustering of counties with high and low

values of earnings, that are nearby. To quantify how introduction of spatial correlation to the

main variable of interest affects the null-rejection rates (in the presence of spatial correlation

in the distribution of the outcome variable), we replace the idiosyncratic placebo policy shock

in equation 1, Pol i c yc , with the spatially correlated policy shock, Pol i c ySCc . We estimate the

following equation using OLS both correcting and not correcting for the presence of spatial cor-

relation across counties within arbitrary spatial clusters:

Yc =α2c +β2Pol i c ySCc +δ2X ′
c +εc (2)

We expect the null hypothesis thatβ2 = 0 will be rejected more than 5% of the time at the 95%

confidence interval if spatial correlation in the model is not accounted for and the null-rejection

rate to approach 5% when spatial correlation is accounted for as the number of observations

approaches infinity for a sufficiently large number of Monte Carlo draws.

ENDOGENEITY. We introduce endogeneity in the model by generating a random policy shock

that is correlated with the outcome variable. We do so by forcing the counties that receive a

placebo policy shock to be among a sample of counties that are above the median in terms of log

median earnings in 2000. To select the counties that receive an endogenous policy shock, we rely

on the same random variable used to select counties that receive an exogenous placebo policy

shock. We select, among counties that are above the median in terms of log median earnings,

those that are in the top half of the distribution of this random variable as counties that receive

an endogenous policy shock.6 Panel (a) of Figure 3 visualizes an example of the distribution

of the endogenous policy shock variable we draw at random. This endogenous random policy

shock, by construction, is correlated with the county-level distribution of log median earnings

in 2000 depicted in Figure 2.

To introduce endogeneity to the model, we replace the exogenous placebo random shock in

equation 1, Pol i c yc , with the endogenous random policy shock, Pol i c yEndc , and estimate the

6Both our exogenous and endogenous random policy shocks take the value of 1 for 25% of the counties and 0 for
the rest.
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following equation:

Yc =α3c +β3Pol i c yEndc +δ3X ′
c +µc (second − st ag e) (3)

where Yc and Xc are defined as in equation 1. Pol i c yEndc is a dummy variable indicating

whether county c receives an endogenous placebo policy shock and Cor r (Pol i c yEndc ,µc ) 6=
0. We instrument the endogenous random policy variable, Pol i c yEndc , with the exogenous

random variable Pol i c yc . Given that Cor (Pol i c yc ,µc ) = 0, the instrumental variable Pol i c y

has an impact on Y only through its impact on Pol i c yEnd . We estimate the following first-stage

equation:

Pol i c yEndc =α4c +β4Pol i c yc +δ4X ′
c +ωc ( f i r st − st ag e) (4)

We expect the null hypothesis that β3 = 0 will be rejected 5% of the time at the 95% con-

fidence interval if it is estimated with 2SLS as the number of Monte Carlo draws approaches

infinity.

We introduce spatial correlation to the 2SLS model by generating a spatially correlated en-

dogenous policy shock, Pol i c yEndS, in the same way we generate spatially correlated exoge-

nous policy shocks. Then, we estimate the following sets of equations with 2SLS both correcting

and not correcting for the fact that the dependent variable and regressor are spatially correlated

across observations within arbitrary spatial clusters:

Yc =α5c +β5Pol i c yEndSCc +δ5X ′
c +µc (second − st ag e) (5)

Pol i c yEndSCc =α6c +β6Pol i c ySCc +δ6X ′
c +ωc ( f i r st − st ag e) (6)

We expect the null hypothesis thatβ5 = 0 will be rejected more than 5% of the time at the 95%

confidence interval if spatial correlation in the model is not accounted for even if it is estimated

with 2SLS. Moreover, we expect the null-rejection rate to approach 5% if spatial correlation is

accounted for while estimated with 2SLS, as number of observations approaches infinity for a

sufficiently large number of Monte Carlo draws.

3.1.2 RESULTS

In this subsection, we describe the Monte Carlo simulations we performed and report the results

we obtained. We consider four scenarios:
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1) a spatial setting without endogeneity or spatial correlation (equation 1) ;

2) a spatial setting with endogeneity and without spatial correlation (equation 3);

3) a spatial setting without endogeneity but with spatial correlation (equation 2);

4) a spatial setting with endogeneity and spatial correlation (equation 5).

We perform Monte Carlo simulations with 10,000 iterations. In each Monte Carlo draw, we

generate random policy variables for these four scenarios as described in subsection 3.1.1. As

a benchmark, we estimate equation 1 (scenario 1) using OLS and equation 3 (scenario 3) using

2SLS with heteroskedasticity-robust standard errors. Then, we estimate equation 2 (scenario 3)

and equation 5 (scenario 4) without taking into account spatial correlation using OLS and 2SLS,

respectively. Finally, we estimate equation 2 (scenario 3) and equation 5 (scenario 4) using the

estimator we propose that corrects for arbitrary within-cluster correlation in both OLS and 2SLS

settings.

Table 1 displays the simulation results. Each cell reports, for a different scenario-estimation

pair, the average null-rejection rate for the randomly generated policy variables over 10,000

draws. We start, in column 1, with the simulation results obtained using the full sample of coun-

ties (N=3,141). We expect to reject the null hypothesis 5% of the time at the 95% confidence

interval in the absence of spatial correlation. Consistent with the theoretical prediction, the

null-rejection rate for the policy variables without spatial correlation is 5.2% for OLS estimates

without endogeneity and 5.1% for 2SLS estimates with endogeneity at the 95% confidence in-

terval (lines (1) and (2)). Then, we impose spatial correlation within spatial clusters. If we do

not correct for it, the null-rejection rate increases to 9.1% and 9.0% in the case of OLS estimates

without endogeneity and that of 2SLS estimates with endogeneity, respectively (lines (3) and (4)).

Clustering the standard errors at the state level performs better than heteroskedasticity-robust

standard errors, reducing the null-rejection rates to 6.8% in OLS and 6.6% in 2SLS with endo-

geneity (lines (5) and (6)). Many of the counties that are in the same spatial cluster are also in

the same state; therefore, clustering at the state level approximates the existing spatial correla-

tion structure to a certain extent. Finally, we correct for the presence of spatial correlation across

counties using our acreg estimator.7 We obtain a null-rejection rate of 5.5% in OLS and 5.3% in

2SLS with endogeneity, very close to the theoretical prediction of 5% (lines (7) and (8)).

Next, we replicate the analysis by splitting the sample into two in terms of whether coun-

ties in a given spatial cluster are all in the same state (within-state clusters in column 2S) or

whether they cross state boundaries (cross-state clusters in column 3). Our proposed estimator

7Our estimator requires as input either a distance cutoff value or an adjacency matrix showing which observa-
tions are within the same spatial clusters. While correcting for spatial correlation across counties within arbitrary
clusters, we use as input the distance cutoff that we use while generating spatial correlation across counties, which
ensures that there are five observations in each spatial cluster on average.
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performs equally well in both samples, producing null-rejection rates of approximately 5.5% to

5.8% for the spatially correlated random shocks. By contrast, there is a substantial difference in

the null-rejection rates we obtain from clustering the standard errors at the state level across two

samples. Null-rejection rates are lower if all the counties in a given spatial cluster are in the same

state (within-state clusters) compared to the case where they cross a state boundary (cross-state

clusters). This is expected as clustering at the state level in the former case approximates the ex-

isting spatial correlation structure much better than it does in the latter case. However, even in a

sample of counties that are a part of within-state clusters, our proposed estimator performs bet-

ter than clustering at the state level. As seen in Figure 2, the outcome variable is not uniformly

correlated across all counties within the same state. The correlation is greater across counties

that are closer to one another within the same state. Therefore, taking into account the physical

distance between counties (spatial units) performs much better than treating all units within the

same state (the greater administrative unit).

We next assess whether the arbitrary clustering estimator is affected by sample size. To do so,

in each Monte Carlo simulation we keep the n largest counties in each state (excluding Wash-

ington D.C.) in the sample, where n = {3,4, ...,20}, and the sample size is approximately 50 states

times n selected counties. We introduce spatial correlation to the model as before. Figure 4

presents the null-rejection rates in the presence of spatial correlation by sample size. Panel (a)

and (b) present the results for the OLS and 2SLS settings, respectively. Each connected point

in the figures represents the average null-rejection rates for a different scenario-estimation pair

separately ∀n = {3,4, ...,20}.8 The performance of our proposed estimator improves as the sam-

ple size increases and the null-rejection rate converges toward the theoretical benchmark 5%.

Kelly (2019) recently argued that spatial studies suffer from strong inference problems us-

ing artificial data. Figure A.1 in Appendix presents the null-rejection rates we obtain when we

regress a randomly generated variable on another randomly generated variable as done in Kelly

(2019).9 Regressing a spatially correlated random outcome variable on a spatially correlated ran-

dom variable of interest leads to average null-rejection rates of approximately 40% – much larger

than what we observe when we regress an observed outcome variable on a randomly generated

8To ensure that the first stage has enough predictive power even in the case of small sample sizes, we run 10,000
Monte Carlo simulations in each iteration but report the average null-rejection rates for the top half of the Monte
Carlo draws in terms of F-statistics of the first stage.

9We generate random variables, Y and X , that are independent and identically distributed (iid): Y , X = ~N (0,1).
To introduce spatial correlation to these variables, we impose a Bartlett kernel decay across observations within the
same cluster. In other words, we spread the random variables across observations within the cluster as an inverse
function of the distance between them. Then, we sum them up. Formally: Yi ,sc = ∑N

j 6=i [1− (di sti j /di stcut )]×Y j

and Xi ,sc = ∑N
j 6=i [1− (di sti j /di stcut )]× X j , where N is the number of observations in the cluster of observation i ,

di sti j is the distance between observations i and j , and di stcut is the distance cuttoff. To introduce endogeneity
to the model, we define an endogenous variable, End , as a function of Y , X , and IV . IV is a random variable and
iid to Y and X : IV = ~N (0,1). Then, we instrument End with IV .
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policy variable. However, our proposed estimator reduces the null-rejection rates by taking into

account the spatial correlation across observations within the same cluster. As is the case with

observed data, the performance of our proposed estimator improves as the sample size increases

and the null-rejection rate converges toward the theoretical benchmark 5%. For a sample size of

3,141 counties, our proposed estimator reduces the null-rejection rates in the presence of spa-

tial correlation from 27.4% (heteroskedasticity-robust standard errors) to 6.5% in the OLS setting

and from 27.1% to 5.4% in the 2SLS setting.

3.1.3 UNDERSTANDING SPATIAL CORRELATION: A PRACTITIONER’S GUIDE

We conduct further Monte Carlo simulations to shed light on the way that spatial correlation

affects the likelihood of Type 1 error. First, we focus on whether presence or lack of spatial corre-

lation in the outcome variable affects the null-rejection rates. Then, we investigate how presence

of controls affects them. Last, we document how to set the optimal correction threshold.

Spatial correlation in the outcome variable. The results presented previously show that in the

absence of spatial correlation in the treatment variable, Pol i c y , the null-rejection rates are close

to the theoretical 5% despite the presence of spatial correlation in the outcome variable. This

implies that the presence of spatial correlation leads to an increase in the likelihood of making

a Type 1 error if unaccounted for, only if both the outcome variable and the variable of interest

exhibit spatial autocorrelation. We test whether this is the case by randomizing the outcome

variable by reshuffling observed log median incomes across counties without imposing any re-

striction.

Table 2 presents the average null-rejection rates obtained from 10,000 Monte Carlo simu-

lations with the data generating process as described in section 3.1.1. Column 1 presents the

baseline results obtained using observed log median income as the outcome variable, whereas

column 2 presents those obtained using the randomized outcome variable, i.e., reshuffled across

counties. In the absence of spatial correlation in the outcome variable, neither introduction of

spatial correlation in the treatment variable nor correction for it considerably affects the null-

rejection rates, which remain in the vicinity of the theoretical 5%. Next, we reintroduce spatial

correlation to the outcome variable. We take the randomized outcome variable and impose a

Bartlett kernel decay across observations within the same cluster. In other words, we spread the

randomized outcome variable across observations within the cluster as an inverse function of

the distance between them. Column 3 shows that reintroduction of spatial correlation to the

outcome variable leads to an increase in the null-rejection rates when the treatment variable

also exhibits spatial correlation.

Our findings indicate that spatial correlation has to be present in both the outcome variable
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and variable of interest for an increase in the likelihood of Type 1 error if spatial correlation in

the model is not accounted for. This implies that presence of spatial correlation in residuals of a

model is not enough to identify whether the model would suffer from an inflation of t-statistics.

This insight contradicts the procedure proposed by Kelly (2019).

Presence of controls. Next, in Table 3, we investigate how inclusion of covariates in the model

affects null-rejection rates. In column 1, as before, we present the baseline null-rejection rates.

Column 2 shows that the average null-rejection rate obtained when spatial correlation is not cor-

rected for increases from 9.1% to 12.8% in the OLS setting (and from 9.0% to 12.7% in the 2SLS

setting) when we do not include covariates in the vector Xc presented in equation 1. Column 3

shows that when we control for state fixed effects in addition to the covariates in baseline speci-

fication, it decreases to 8.4% and 8.3% in the OLS and 2SLS settings, respectively. Our proposed

estimator performs as well in both of these specifications as it does in the baseline specification.

These results suggest that the magnitude of the inflation in the likelihood of Type 1 error due to

the presence of spatial correlation in the model depends on the degree of spatial autocorrelation

in the residual variation left in the outcome variable and variable of interest, conditional on the

set of covariates.

Optimal correction threshold. Finally, we investigate the presence of the optimal correction

threshold. This time, we define a distance cutoff such that there are on average 50 counties

in spatial clusters, corresponding to 168 kilometers. Then, using our proposed estimator, we

correct for the spatial correlation in the model using different distance thresholds, namely: 56

kms (one-third of the true threshold, 5 counties on average), 82 kms (~half of the threshold,

12 counties on average), 117 kms (~two-thirds of the threshold, 25 counties on average), 168

kms (the true threshold), 242 kms (~1.5 times the threshold, 100 counties on average), 327 kms

(~twice the threshold, 175 counties on average), and 478 kms (~three times the threshold, 350

counties on average).

Figure 5 presents the average null-rejection rates obtained from using each of these different

thresholds for error correction over 10,000 draws. Panel (a) considers the case of a single policy

treatment. When spatial correlation is not corrected for, we obtain a null-rejection rate of 11.9%.

Even correcting for spatial correlation using very small correction thresholds such as 56 kms and

82 kms or very large thresholds such as 478 kms performs better than using heteroskedasticity-

robust standard errors, producing average null-rejection rates of 10.5%, 9.1%, and 9.1%, respec-

tively. However, they perform worse than clustering the standard errors at the state level, which

reduces the average null-rejection rate from 11.9% to 7.5%. Correcting for spatial correlation us-

ing correction thresholds 117 kms, 168 kms, 242 kms, and 327 kms yields average null-rejection

rates of 7.5%, 5.9%, 6.3%, and 7.3%, respectively–all of which are equal to or below the average
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null-rejection rejection rate we obtain from clustering the standard errors at the state level. Im-

portantly, correcting for spatial correlation using the (true) threshold that matches the data gen-

erating process leads to the lowest null-rejection rate, close to the theoretical benchmark of 5%.

Correcting for spatial correlation using thresholds both larger and smaller than the one match-

ing the data generating process yields greater null-rejection rates, which suggests that there is an

optimal distance threshold to use while correcting for spatial correlation in a model.

It is often the case that researchers are interested in the inference of more than one parame-

ter in their model. What is the optimal distance threshold to use in the presence of two treatment

variables? We investigate this question by performing the same analysis as above but including

in the model a second random policy variable that is spatially correlated across counties within

arbitrary clusters of 242 kilometers in radius. This simulation is interesting because the spatial

neighbors for the second policy are not the same as that for the first policy, as is reasonable in

real-life applications. Panel (b) of Figure 5 presents the average null-rejection rates in the case

of two policy treatments. If we do not take into account the presence of spatial correlation, we

estimate a null-rejection rate of 11.4% and 10.5% for the first and second policy treatments, re-

spectively. For both policy treatments, we obtain the lowest null-rejection rates when we correct

for spatial correlation using the distance threshold that matches the data generating process of

each treatment, namely, 6.2% and 6.5%. This implies that there is no universal distance thresh-

old that minimizes the likelihood of Type 1 error for all treatments (or covariates) in a model.

Moreover, the difference in null-rejection rates between the two treatments when the spatial

correlation is not accounted for suggests that the degree of inflation in t-statistics and the likeli-

hood of Type 1 error depends on the joint distribution of the outcome variable and the variable

of interest in question.10

Implications. As our simulations have shown, only the presence of spatial correlation in both

the outcome variable and variable of interest in a model leads to a greater likelihood of Type

1 errors if such spatial correlations are not accounted for. Controlling for covariates (that have

spatial dimension) and clustering standard errors at a greater administrative unit can help with

addressing the inflation in t-statistics due to spatial correlation in the model. However, a better

approach is to explicitly model the spatial correlation structure in the model with our proposed

estimator. When deciding on how to model the spatial correlation in your model, as Cameron

and Miller (2015) put it: "You need to think carefully about the potential for correlations in your

model errors, and how that interacts with correlations in your covariates." Our Monte Carlo sim-

ulations in a controlled environment suggest that an optimal correction threshold exists for each

10the t-statistic for the mean difference between the null-rejection rates with heteroskedasticity-robust standard
errors (11.4% – 10.5% = 0) is 1.92 (p-value = 0.0547). The t-statistic for the mean difference between the null-rejection
rates without robust standard errors (13.7% – 11.7% = 0) is 3.99 (p-value = 0.0001).
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parameter.

In practice, however, it is possible that the correlation structure in the data cannot be approx-

imated by spatial clusters defined as circles with a given radius. For example, topographic fea-

tures such as mountain ranges could generate variations in the distribution of the outcome vari-

able and covariates across spatial units that are in close proximity in terms of Euclidean distance.

To help address this issue, our proposed estimator’s companion statistical package (acreg) al-

lows users to provide a bilateral-distance matrix of any metric between observations. Then, the

distance threshold used for error correction can be defined as effective distance between obser-

vations in terms of time or cost of travel (flight, road, or walking) distance. Moreover, for a given

model and variable of interest, the optimal distance threshold could vary depending on the out-

come of interest and its spatial distribution.

The existing measures of spatial correlation, i.e., Moran’s I and Geary’s C, allow researchers to

test the existence of spatial autocorrelation in a variable. Therefore, they can be used to identify

whether an outcome variable and a variable of interest are spatially autocorrelated and thus

whether inference for a given outcome of interest in a model is likely to suffer from inflation

of t-statistics. However, they fall short on providing insights on the optimal threshold for error

correction, as they do not provide any metrics on the joint spatial distribution of two variables

(or of the residuals left in them conditional on controls) and on the degree of spatial correlation

between them in a given sample. As a result, no clear-cut procedure currently exists to define

the potential optimal threshold using observational data.

We suggest that researchers correct standard errors with varying distance thresholds (and

potentially using different distance metrics) and select as the baseline the threshold that pro-

vides the largest standard errors for a given model. In the presence of multiple outcomes of

interest, we advise selecting a correction threshold that provides the largest standard errors for

most of the variables of interest as the baseline. Overall, we recommend that researchers, as a

healthy practice, be transparent about their choice of baseline distance threshold and report the

robustness of their findings to correcting the standard errors in their models using a wide range

of distance thresholds.

3.2 NETWORK

To illustrate how correlation across units linked in networks leads to an overrejection of the null

hypothesis if such correlation is not accounted for, we use data on coauthorship networks. We

extract information on coauthorship links between researchers from IDEAS RePEc. We identify

the researchers with the highest number of coauthors. Then, for each of these authors, we col-

lect data on their research profile, i.e., the number of articles they have indexed on IDEAS RePEc
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and the total number of citations these articles have received (from Google citations), and com-

plement them with basic demographic information such as age and gender obtained from their

CVs.

3.2.1 THE DATA GENERATING PROCESS AND HYPOTHESES

To quantify the problem induced by correlation within networks, we randomly generate produc-

tivity shocks that affect some authors and not others in each Monte Carlo draw. Similar to the

approach we employ in the spatial setting, we first generate a random variable from a normal

distribution. Then, we select the authors who are in the top quartile of the distribution of this

random variable as authors that receive a “placebo” productivity shock. Panel (a) of Figure 6 vi-

sualizes our coauthorship network links and an example of the distribution of the productivity

shock variable we draw at random.

We estimate the following equation using OLS:

Ya =α1a +β1Pr oducti vi t ya +δ1X ′
a +εa74 (7)

where Ya is the log number of citations author a receives. Pr oducti vi t ya is a dummy vari-

able indicating whether author a receives a productivity shock. Xa is a vector of author-level

controls, which comprises the log number of articles they have authored, their gender, their age

and its squared value. Given that Y and Pr oducti vi t y are independent and Cor (Pr oducti vi t ya ,εa) =
0, statistical theory predicts that the null hypothesis that β1 = 0 will be rejected 5% of the time at

the 95% confidence interval as the number of Monte Carlo draws approaches infinity.

Next, we impose within-network correlation to the productivity shocks we draw at random.

For each author, we compute the share of their first degree coauthors who are affected by the

productivity shocks.11 We define productivity shocks that are correlated within coauthorship

networks as the sum of this share and a dummy variable indicating whether the author herself

receives an idiosyncratic placebo productivity shock. Therefore, the productivity shocks that are

correlated within coauthorship networks are the sum of the idiosyncratic productivity shocks

and the productivity shocks that are shared by all authors who are part of a coauthorship net-

work. Panel (b) of Figure 6 visualizes the distribution of productivity shocks that are correlated

within coauthorship networks.

To quantify how introduction of within-network correlation to the main variable of inter-

est affects the null-rejection rates, we replace the idiosyncratic placebo productivity shock in

equation 7, Pr oducti vi t ya , with the productivity shock that is correlated within coauthorship

11We adopt a setting where shocks are correlated in coauthor neighborhoods of degree 1. Larger neighborhoods
and decay in shocks can be accommodated in our estimator as well.
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networks, Pr oducti vi t y NCa . We estimate the following equation using OLS both correcting

and not correcting for the presence of within-network correlation across coauthors:

Ya =α2a +β2Pr oducti vi t y NCa +δ2X ′
a +εa (8)

We expect the null hypothesis that β2 = 0 will be rejected more than 5% of the time at the

95% confidence interval if within-network correlation in the model is not accounted for and the

null-rejection rate to approach 5% when within-network correlation is accounted for, as number

of observations approaches infinity for a sufficiently large number of Monte Carlo draws.

ENDOGENEITY. We introduce endogeneity to the model by generating a random productivity

shock that is correlated with the outcome variable. We do so by forcing the authors who receive

a placebo productivity shock to be among a sample of authors who are above median in terms

of log number of citations. To select the authors that receive an endogenous productivity shock,

we use the same random variable from a normal distribution that we use to select authors who

receive an exogenous placebo productivity shock. We select among authors who are above the

median in terms of the log number of citations earnings, those who are in the top half of the

distribution of this random variable as authors who receive an endogenous productivity shock.12

By construction, this endogenous random productivity shock is correlated with the distribution

of the log number of citations.

To introduce endogeneity to the model, we replace the exogenous random productivity shock

in equation 7, Pol i c yc , with the endogenous random productivity shock, Pol i c yEndc , and es-

timate the following equation:

Ya =α3a +β3Pr oducti vi t yEnda +δ3X ′
a +µa (second − st ag e) (9)

where Ya and Xa are defined as in equation 7. Pr oducti vi t yEnda is a dummy variable in-

dicating whether author a receives an endogenous placebo productivity shock and

Cor r (Pr oducti vi t yEnda ,µa) 6= 0. We instrument the endogenous random productivity vari-

able, Pr oducti vi t yEnda , with the exogenous random variable Pr oducti vi t ya . Given that

Cor (Pr oducti vi t ya ,µa) = 0, the instrumental variable Pr oducti vi t y has an impact on Y only

through its impact on Pr oducti vi t yEnd . We estimate the following first-stage equation:

Pr oducti vi t yEnda =α4a +β4Pr oducti vi t ya +δ4X ′
a +ωa ( f i r st − st ag e) (10)

12Both our exogenous and endogenous random productivity shocks take the value of 1 for 25% of the counties
and 0 for the rest.
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We expect the null hypothesis that β3 = 0 will be rejected 5% of the time at the 95% con-

fidence interval if it is estimated with 2SLS as the number of Monte Carlo draws approaches

infinity.

We introduce spatial correlation to the 2SLS model by generating an endogenous productiv-

ity shock that is correlated within coauthorship networks, Pr oducti vi t yEnd , in the same way

we generate an exogenous productivity that is correlated within coauthorship networks. Then,

we estimate the following sets of equations with 2SLS both correcting and not correcting for the

fact that the dependent variable and regressor are correlated across authors that are in a coau-

thorship relationship:

Ya =α5a +β5Pr oducti vi t yEnd NCa +δ5X ′
a +µa (second − st ag e) (11)

Pr oducti vi t yEnd NCc =α6a +β6Pr oducti vi t y NCa +δ6X ′
a +ωa ( f i r st − st ag e) (12)

We expect the null hypothesis thatβ5 = 0 will be rejected more than 5% of the time at the 95%

confidence interval if within-network correlation in the model is not accounted for even if it is es-

timated with 2SLS. Moreover, we expect the null-rejection rate to approach 5% if within-network

correlation is accounted for while estimated with 2SLS, as number of observations approaches

infinity for a sufficiently large number of Monte Carlo draws.

3.2.2 RESULTS

In this subsection, we briefly describe the Monte Carlo simulations and then discuss the results.

As was the case with the spatial setting, we consider four scenarios:

1) a network setting without endogeneity or within-network correlation (equation 7) ;

2) a network setting with endogeneity and without within-network correlation (equation 9);

3) a network setting without endogeneity but with within-network correlation (equation 8);

4) a network setting with endogeneity and within-network correlation (equation 11).

We perform Monte Carlo simulations with 10,000 iterations. In each Monte Carlo draw, we

generate random productivity shock variables for these four scenarios as described in subsection

3.2.1. As the benchmark, we estimate equation 7 (scenario 1) using OLS and equation 9 (scenario

3) using 2SLS with heteroskedasticity-robust standard errors. Then, we estimate equation 8 (sce-

nario 3) and equation 11 (scenario 4) without taking into account spatial correlation using OLS

and 2SLS, respectively. Finally, we estimate equation 8 (scenario 3) and equation 11 (scenario 4)

using the estimator we propose that corrects for arbitrary within-cluster correlation in both OLS

and 2SLS settings.
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Figure 7 presents the null-rejection rates in the presence of within-network correlation by

sample size.13 Panel (a) and (b) present the results for the OLS and 2SLS settings, respectively.

Each connected point in the figures represents the average null-rejection rates for a different

scenario-estimation pair and a sample size separately.14 In the absence of within-network cor-

relations, we can reject the null hypothesis that random productivity shocks have a statistically

significant effect on the log number of citations at the 5% level approximately 5% of the time,

consistent with the predictions of the statistical theory.

However, when we impose the random productivity shocks to be correlated within coauthor-

ship networks, we obtain average null-rejection rates of approximately 8% if we do not take into

account the existence of within-network correlations. Our proposed estimator that takes into

account the network links to correct for standard errors significantly reduces the null-rejection

rates. Its performance improves as the sample size increases and the null-rejection rate con-

verges toward the theoretical benchmark 5%. For a sample size of 1,000 observations, we obtain

average null-rejection rates of 5.5% in the OLS setting and 6.2% in the 2SLS setting.

4 CONCLUSION

We implement a procedural approach to obtain an asymptotically valid inference in settings with

spatial or network topology, allowing for any type of dependence between observation units. Our

proposed variance-covariance matrix (VCV) estimator, accompanied by a companion statistical

package acreg for Stata, allows researchers to obtain cluster-robust inference in OLS and 2SLS

settings with arbitrary dependence across observations and over time. Arbitrary here refers to

the way units could be correlated with each other in space and time. Our approach allows units

to be correlated with each other in any possible way: the estimator can account for indirect links

in the cross-sectional dependence, time dependence and alteration in the correlation structure

over time. This allows our estimator to be suitable for many applications. Choosing the right

spatial bandwidth or distance in the network is a central practical challenge. We provide simu-

lation results that suggest that inference is reasonably precise when standard errors are largest.

While not conclusive, these simulations can offer some practical guidance for implementation.

We also discuss other implementation issues such as including control variables or multiple spa-

tially correlated regressors.

13To ensure that the first stage has enough predictive power even in the case of small sample sizes, we run 10,000
Monte Carlo simulations in each iteration but report the average null-rejection rates for the top half of the Monte
Carlo draws in terms of F-statistics of the first stage.

14To ensure that the number of coauthors per author (links per node) and the network metrics are constant across
different sample sizes, we start with a sample of 50 authors with the highest number of coauthors and increase the
sample size by generating duplicates of observations in this sample.
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Figure 1: Illustration of data generation process: exogenous shocks in U.S. counties

(a) Random policy shock
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Notes: Data source for the county boundaries: NHGIS (Manson et al., 2017). The values

of the exogenous policy shocks represented are randomly generated with the algorithm de-

scribed in section 3.1.1.
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Figure 2: Log median earnings across US counties in 2000
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Notes: Data source for the county boundaries and log median earnings in 2000: NHGIS

(Manson et al., 2017).
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Figure 3: Illustration of data generation process: endogenous shocks in U.S. counties

(a) Random endogenous policy shock

Policy, endogenous
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(b) Spatially correlated endogenous policy shock
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Notes: Data source for the county boundaries: NHGIS (Manson et al., 2017). The values

of the endogenous policy shocks represented are randomly generated with the algorithm

described in section 3.1.1.
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Figure 4: Null-rejection rate in the presence of spatial correlation: U.S. counties

(a) OLS
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(b) 2SLS
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Notes: The red vertical line represents the benchmark null-rejection rate of 5%.

The vertical axis represents the rejection rate of the average null-rejection over

10,000 Monte Carlo simulations. Each point in the figure represents a different

Monte Carlo simulation × estimation pair. The horizontal axis represents the

sample size.
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Figure 5: Spatial setting: Optimal distance threshold and null-rejection rates

(a) Single policy treatment
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threshold used for error correction.
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Figure 6: Illustration of data generation process: exogenous shocks in coauthorship networks

(a) Productivity shocks

Shock = 0 Shock = 1

(b) Productivity shocks with within-network correlation

Shock = 0 Shock = (0, 0.66] Shock = (0.66, 1.33] Shock = (1.33, 2]

Notes: The figure maps the coauthorship links between authors. The sample

consists of the top 50 researchers listed in the IDEAS RePEc in terms of the num-

ber of coauthors. The values of the exogenous productivity shocks represented

are randomly generated with the algorithm described in section 3.2.1.
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Figure 7: Null-rejection rate in the presence of within-network correlation: Top-cited authors

(a) OLS
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(b) 2SLS
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Notes: The red vertical line represents the benchmark null-rejection rate of 5%.

The vertical axis represents the rejection rate of the average null-rejection over

10,000 Monte Carlo simulations. Each point in the figure represents a different

Monte Carlo simulation × estimation pair. The horizontal axis represents the

sample size.
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Table 1: Null-rejection rates in the spatial setting

Unit: U.S. counties

Sample: All Within-state Cross-state

Sample size: N=3,141 N=2,126 N=1,015

(1) (2) (3)

Spatial corr. Endogeneity Estimator Correction Null-rejection rate

(1) OLS robust 5.2% 5.1% 5.1%

(2) X 2SLS robust 5.1% 5.1% 5.0%

(3) X OLS robust 9.1% 8.2% 10.4%

(4) X X 2SLS robust 9.0% 8.2% 10.1%

(5) X OLS cluster 6.8% 6.9% 9.2%

(6) X X 2SLS cluster 6.6% 6.9% 8.8%

(7) X OLS acreg 5.5% 5.8% 5.6%

(8) X X 2SLS acreg 5.3% 5.5% 5.6%

Note: This table reports the average null-rejection at the 5% level for Monte Carlo simulation ex-

periments for different environments and sample sizes. The number of replications is 10,000 for

each simulation. Each column-row pair represents a different environment (data generating pro-

cess and error correction) and sample pair. The data generating process simulates two different

models: a baseline model without any spatial correlation in the policy treatment variable across

units and another model imposing a spatial correlation in the policy treatment variable among the

units within an arbitrary cluster. Each row indicates the model and the way we estimate it. Unit of

observation is U.S. counties. The outcome variable is log median earnings.
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Table 2: Null-rejection rates in the spatial setting: Presence of spatial correlation in the outcome
variable

Unit: U.S. counties, N=3,141

Baseline Fake spatial

Spatial correlation in the outcome: observed Random correlation

(1) (2) (3)

Spatial corr. Correction Null-rejection rate

(1) robust 5.2% 5.5% 4.7%

(2) X robust 9.1% 5.1% 8.8%

(3) X cluster 6.8% 6.1% 6.2%

(4) X acreg 5.5% 5.2% 5.1%

Note: This table reports the average null-rejection at the 5% level for

Monte Carlo simulation experiments for different environments and

sample sizes. The number of replications is 10,000 for each simula-

tion. Each column-row pair represents a different environment (data

generating process and error correction) and different outcome. The

outcome variable in column 1 is the observed log median earnings. In

column 2, the outcome variable is the observed log median earnings

randomly reshuffled across counties. In column 3, we impose spatial

correlation to the randomly shuffled log median earnings used in col-

umn 2. The data generating process simulates two different models: a

baseline model without any spatial correlation in the policy treatment

variable across units and another model imposing a spatial correlation

in the policy treatment variable among the units within an arbitrary

cluster. Each row indicates the model and the way we estimate it. Unit

of observation is U.S. counties.
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Table 3: Null-rejection rates in the spatial setting: Controls

Unit: U.S. counties, N=3,141

Controls: Baseline No controls State FEs

(1) (2) (3)

Spatial corr. Endogeneity Estimator Correction Null-rejection rate

(1) OLS robust 5.2% 4.9% 5.1%

(2) X 2SLS robust 5.1% 4.9% 5.0%

(3) X OLS robust 9.1% 12.8% 8.4%

(4) X X 2SLS robust 9.0% 12.7% 8.3%

(5) X OLS cluster 6.8% 7.2% 6.2%

(6) X X 2SLS cluster 6.6% 6.8% 5.8%

(7) X OLS acreg 5.5% 5.7% 5.6%

(8) X X 2SLS acreg 5.3% 5.6% 5.5%

Note: This table reports the average null-rejection at the 5% level for Monte Carlo simulation

experiments for different environments and sample sizes. The number of replications is 10,000

for each simulation. Each column-row pair represents a different environment (data generating

process and error correction) and sample pair. The data generating process simulates two dif-

ferent models: a baseline model without any spatial correlation in the policy treatment variable

across units and another model imposing a spatial correlation in the policy treatment variable

among the units within an arbitrary cluster. Each row indicates the model and the way we esti-

mate it. Unit of observation is U.S. counties. The outcome variable is log median earnings.

31



A APPENDIX

Figure A.1: Null-rejection rate in the presence of spatial correlation: U.S. counties with fake data

(a) OLS
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(b) 2SLS
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Notes: The red vertical line represents the benchmark null-rejection rate of 5%.

The vertical axis represents the rejection rate of the average null-rejection over

10,000 Monte Carlo simulations. Each point in the figure represents a different

Monte Carlo simulation × estimation pair. The horizontal axis represents the

sample size.

32


	Introduction
	A Model with cross-section and time dependence
	Simulation Study
	Spatial Setting
	The Data Generating Process and Hypotheses
	Results
	Understanding Spatial Correlation: A Practitioner's Guide

	Network
	The Data Generating Process and Hypotheses
	Results


	Conclusion
	Appendix



