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Comparison Dimensions and Similarity: 
Addressing Individual Heterogeneity

How many comparison dimensions individuals consider when they are asked to judge 

how similar two different objects are? I address individual heterogeneity in the number of 

comparison dimensions with data from a laboratory experiment. I estimate the smallest 

number of dimensions such that objects may be represented in space where distance 

corresponds to similarity. I find that the mean smallest number of dimensions in real data 

is one standard deviation smaller than in randomly simulated data. Furthermore, I find 

that individuals who find the objects relatively similar to each other are also the ones who 

implicitly consider fewer dimensions. 
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1 Introduction

This paper asks how many comparison dimensions individuals consider when they are re-

quired to judge how similar two di�erent objects are. The approach is based on multidimen-

sional scaling (MDS), a concept where objects are represented as points in space such that

similarity between objects corresponds to distance between points. I go beyond the existing

MDS literature in allowing individual heterogeneity in the number of comparison dimensions.

This approach contributes to two bodies of research. First, the existing MDS studies

consider individual heterogeneity in terms of preferences (a method known as unfolding)

and in terms of weighting of pre-determined dimensions (a method known as dimensional

weighting model). However, the existing literature does not address, to the best of my

knowledge, the possibility that individuals may consider a di�erent number of comparison

dimensions. The second related literature is search theory. Search strategies essentially

depend on the level of similarity between the alternatives. Recently, a few studies advanced

this literature by addressing search in a multidimensional environment (Chiappori et al.

(2012), Coles and Francesconi (2018)). The present paper is related to both contexts, as it

links similarity with dimensionality.

In particular, I show that dimensionality is negatively correlated with perceived similarity.

Why should we care? For example, this �nding suggests that a small number of attributes

that the consumer considers or knows about is associated with perception of the products as

similar to each other. My results are also relevant to the above-mentioned search theory. A

fundamental result in this theory is that a higher level of similarity between alternatives is

associated with a shorter duration of search. With respect to the present paper's �ndings,

dimensionality can be used to account for the level of perceived similarity in search models.
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Interpretation of similarity, one of the fundamental issues in the research of perception,

can be traced back through the seminal works of Guttman (1968) and Tversky (1977). The

question in the present paper is whether similarity is related to the number of latent di-

mensions an individual considers when she or he is asked to judge how similar two di�erent

objects are. Intuition, inspired by triangle inequality, implies that a larger number of dimen-

sions should be associated with a longer "distance" between objects. I provide evidence for

this intuition in data. I collect a data set that consists of rankings-by-similarity and direct

similarity judgments for a small set of objects. The participants of the study do not report

which and how many comparison dimensions they consider. However, I estimate the implicit

number of considered dimensions on individual level. That is, for each participant, I �nd

the smallest number of dimensions n needed to represent the objects as points in Rn, such

that the distance between the points decreases in the similarity between the corresponding

objects. The two following �ndings pose the results of this study. First, the smallest number

of dimensions is not a spurious statistic, mechanically derived from rankings of pairs of ob-

jects by similarity. By contrast, I �nd that the average smallest number of dimensions in real

data is one standard deviation smaller than in randomly simulated data. Second, individuals

who �nd the objects more similar to each other by average are also the ones who implicitly

consider fewer dimensions.

In particular, data was collected in a laboratory where each participant performed two

tasks with the same set of seven objects. In the �rst task, the participants had to order

pairs of objects by similarity. In the second task, the participants had to evaluate similarity

of each pair on a scale from �not similar at all� to �very similar.� The collected data is

utilized in three stages of analysis. First, the smallest number of dimensions is derived from
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the individual's ranking of the pairs of objects by similarity. Second, the mean estimated

number of dimensions is compared with the mean number of dimensions from randomly

simulated data. This comparison leads to a conclusion that individuals consider signi�cantly

fewer dimensions than if data are randomly simulated. Third, the estimated number of

dimensions is regressed on the average similarity between the objects, separately evaluated

by the same individuals in the second task. The result of this regression is that an increase of

one unit in the average similarity between the objects is associated with a 10 to 30 percentage

points lower probability to consider a high number of dimensions.

In the remainder of the paper, I �rst brie�y introduce the MDS concept and my innovation

in its implementation. I proceed with a description of the study, the method of data analysis,

and results. Finally, I provide a brief discussion of the main �nding before concluding the

paper.

2 The concept of the smallest number of dimensions

I estimate the number of comparison dimensions from the individual ranking of pairs of

objects by similarity. For many decades, the analysis of similarity has been dominated by

geometric models (Tversky (1977)). One family of such methods, called multidimensional

scaling (MDS), represents similarity between objects as distances between points in a low-

dimensional space. Objects are placed in space, such that distance between any two objects

corresponds to the level of similarity between them. An important di�erence of MDS from

other methods of dimensionality reduction is that the dimensions are not reduced from ob-

served variables.
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The classical ordinal MDS considers a set L of objects and the input is the rank order

r of similarity between objects, such that r = 1 for the most similar pair and r =
(|L|

2

)
for

the least similar one. The output is a set of points {xi} ⊂ Rn (non-real spaces and non-

Euclidean distance metrics may also be considered) that monotonically translates rank of

similarity into increasing distance between points. The solution minimizes a loss function

called �stress� given the number of dimensions.

In the classical MDS, the number of dimensions is predetermined. For example, in a

frequently cited review of pattern recognition methods, Jain et al. (2000) de�ne MDS as a

method �to represent a multidimensional data set in two or three dimensions." A similar

de�nition is given in Borg et al. (2017). The main motivation for this restriction to a low

number of dimensions is the use of MDS for visualization of similarity. As a result of the

restriction of the number of dimensions to two or three, the MDS con�guration is not perfect

and generates a positive stress.

Moreover, in the basic MDS the similarities are averaged over individuals and no individ-

ual heterogeneity in terms of the space where the objects should be located is allowed. More

complex models assume that individuals may be heterogeneous in terms of their preferences

over the objects (the unfolding method) or in terms of weights they put on the pre-determined

dimensions (dimensional weighting model). For a detailed discussion of the di�erent MDS

and unfolding models, see Carroll and Green (1997), Borg and Groenen (2005) and Borg et

al. (2017).1

1To the best of my knowledge, the most comprehensive reviews of MDS in marketing research date back
to Cooper (1983) and Carroll and Green (1997). None of the reviewed studies estimate the number of
dimensions on individual level. By contrast, they seek interpretation of pre-speci�ed dimensions (Carroll
and Green (1997)). Later literature that links similarity and marketing in general and is related to MDS is
particular includes Leftko�-Hagius and Mason (1993), Bijmolt et al. (1998), and Fuchs and Diamantopoulos
(2012). This literature is quite rare but, probably, not because of lack of interest. The problems in using MDS
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In the present study, I relax the assumption that all individuals consider the same space

when they compare the objects. This relaxation generates two di�erences from the existing

MDS models. First, MDS is implemented on individual rather than on aggregate level.

Second, the number of dimensions is not set in advance.

What is the smallest number of dimensions needed to perfectly (with zero stress) represent

the ordinal similarity data such that ||xi − xj|| < ||xk − xl|| i� rij < rkl, where i 6= j and

k 6= l? Three objects may always be represented in a single dimension. Generally, the

smallest number of dimensions for k objects is at most k − 2 (Guttman (1968)). In the

present study, I consider a set of seven objects. Thus, the smallest number of dimensions

needed to represent data perfectly is between one and �ve. I �nd evidence for variation in this

number on individual level. In my data set of 136 observations, the mean smallest number

of dimensions is 3.45 and the standard deviation is 0.58. In the core of the analysis, I seek a

behavioral interpretation of this variation.

3 The study

Data for this article was collected through a study conducted at the department of economics

of one of German universities.2 The focus was on similarity between fruits. Participants were

exposed to pictures of seven fruits: apple, strawberry, banana, apricot, orange, kiwi, and

cherry.3 Participants were instructed to consider the level of similarity between the fruits

in marketing research include the limited ability of MDS procedures to fully portray the structure in such
volumes of data (DeSarbo et al. (1994)) and "the problem of controllability/manipulability of the dimension"
(Carroll and Green (1997)). For an up-to-date review of MDS applications in di�erent disciplines, see Lin
and Fong (2019).

2The study took place between December 10 and December 15, 2015.
3All pictures had a white background.
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and were not restricted to any de�nition of similarity.

Setup

The participants were all students who were each given 20 Euros for their participation. The

study consisted of ten sessions, held at the same room, with up to 19 volunteers participating

in each session. The total number of participants was 138; data of two of the participants were

lost for technical reasons. Thus, the sample consists of 136 observations. The sample with

control variables of age and gender consists of 132 observations, because four participants

did not submit the personal questionnaire or did not �ll in gender and/or age. The duration

of each session was one-and-a-half hours, of which about �fteen minutes (6 minutes for the

fastest participant and 33 minutes for the slowest one) were devoted to working on the

present study. The rest of the time was devoted to listening to instructions (these included

a presentation and oral explanations), participating in a study for another research project,

and completing a personal questionnaire. Participants worked on computers, separated by

opaque barriers, and did not communicate with each other during the study. The study was

conducted using a website hosted free of charge on the somee.com server. The language of

the website and of the explanations was German.

First task

In the �rst part of the study, participants had to order the pairs of fruits from the most

similar pair to the least similar one. To this end, they were exposed to a sequence of screens,

each of which presented two pairs of fruits. When exposed to each screen, a participant had

to choose the more similar pair. For example, one had to decide which two fruits are more
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similar to each other - grapefruit and apple or grapefruit and banana (see a screenshot in

Figure 1). The order of screens followed the bubble sort algorithm (Clapham and Nicholson

(2009); see Appendix for the algorithm). This is a classical algorithm for sorting a vector.

The algorithm avoids repeated comparisons, does not allow ties, and does not generate loops

that would make further analysis impossible. For a short vector of
(
7
2

)
= 21 elements, the

bubble sort is a relatively fast algorithm (requires a low number of comparisons). The output

for each participant is a full and strictly sorted-by-similarity vector of 21 pairs of fruits. The

algorithm is adaptive, and participants had to go over a di�erent number of screens. It

varied between 39 and 159, with both the median and the mean being 103 screens. After

every 10 screens, there was a ten-second break during which an unrelated to the study picture

appeared. This was done to break the monotony of the procedure.
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Figure 1: A screenshot of part 1 of the study

Second task

In the second part of the study, participants were sequentially exposed to 21 screens (in the

same order for all participants), each of which presented pictures of one of the pairs of fruits.

For each pair, participants had to choose the level of similarity between the two fruits: not

similar at all, not similar, somewhat similar, similar, very similar (see a screenshot in Figure

2).

To summarize, for each participant, the output of the study consists of the 21 pairs

of fruits ordered by similarity and the direct evaluation of the similarity of each pair. In

addition, for each participant, the website recorded her working time and the number of
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screens she was exposed to.

Figure 2: A screenshot of part 2 of the study

4 Deriving the smallest number of dimensions

The use of the collected data is as follows. For each participant, I calculate the smallest

number of dimensions n needed to represent in Rn his ranking of pairs by similarity. Formally,

for each of the participants, I �nd the smallest n, such that one can �nd {xi} ⊂ Rn such that

||xi − xj|| < ||xk − xl|| i� rij < rkl for each 1 6 i, j, k, l 6 7 where i 6= j and k 6= l.

The calculation of the smallest number of dimensions is numeric. The algorithm, im-

plemented in MATLAB, solves a system of 20 strict inequalities corresponding to the 21

monotonically increasing distances between 7 points in Rn. First, the program tries to locate

the objects in a single dimension (n=1). If the program fails to �nd a solution after trying 50

di�erent random initial guesses, it proceeds to two dimensions and starts over with 50 new

initial guesses and so on until the system of inequalities is solved. Conditional on �nding a
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solution in n dimensions, the solution is achieved with probability 0.86 at the �rst random

guess. Moreover, conditional on �nding a solution in n dimensions, none of the observations

requires more than 5 initial guesses. Thus, giving the algorithm a chance to �nd a solution

with 50 initial guesses is a safe way to avoid a situation when a possible solution is not found.

Table 1 presents the descriptive statistics of the participants, their similarity judgments,

and the derived smallest number of dimensions.

Table 1: Summary statistics

Variable N Mean S.D.
Smallest number of dimensions 136 3.45 0.58

Average similarity 136 2.63 0.49
Male 133 0.54 0.50
Age 132 23.19 3.14

Seconds per click 136 6.23 2.36

Figure 3: The smallest number of dimensions: data versus simulated spurious rankings
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5 Results

The smallest number of dimensions

The above-described procedure that derives the smallest number of dimensions is fully agnos-

tic with regard to any underlying behavioral structure. Hence, the �rst question is whether

the smallest number of dimension, derived on the individual level, is not a spurious statistic.

A spurious smallest number of dimensions should not be statistically di�erent from the one

derived from a random ranking of pairs of objects. I perform this test by comparing the

smallest number of dimensions derived from data and the smallest number of dimensions

derived from simulated random rankings. I simulate 1000 random permutations of numbers

from 1 to 21. For each permutation, I derive the smallest number of dimensions similarly

to how it is done with real data. Figure 3 shows the histograms of the smallest number of

dimensions derived from data and of the smallest number of dimensions derived from the

simulated random rankings. The modes of the two distributions are 3 and 4, respectfully.

The mean smallest number of dimensions in data is 3.45 (0.58) versus 3.92 (0.49) in the simu-

lated random rankings (the �gures in parentheses are the standard deviations). It means that

the smallest number of dimensions in data is almost one standard deviation smaller than in

spurious rankings. The t-statistic of the di�erence is as high as 9. Thus, the null hypothesis

that data and spurious permutations generate the same mean smallest number of dimensions

is rejected at any level of statistical signi�cance. Moreover, two out of the 136 observations

require only two dimensions, whereas none of the 1000 simulated rankings do. This result

justi�es the inquiry for a behavioral interpretation of the smallest number of dimensions.
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The smallest number of dimensions and similarity

In order to interpret the smallest number of dimensions, I explore the correlation between

this number and the average perceived similarity between the objects. Because for 95% of

the observations the smallest number of dimensions is either 3 or 4, I estimate a Probit

regression where the dependent variable is one for 4 or 5 dimensions and zero otherwise (i.e.,

for 2 or 3 dimensions).4 I name this binary dependent variable "a high smallest number of

dimensions." The main explanatory variable is the average similarity between the objects on

individual level (the similarity between each pair of objects is evaluated on a scale from 1

[not similar at all] to 5 [very similar]). Thus, the dependent variable is derived from data

collected in the �rst task, while the main explanatory variable is derived from data collected

in the second task.

Table 2 presents the average marginal e�ects of Probit regressions with robust standard

errors. Column 1 considers the whole sample, column 2 considers participants with time per

click above the median, and column 3 considers the same sample as column 2 but with age

and gender controls added to the regression. As the estimates show, the average similarity

is negatively correlated with the smallest number of dimensions. The results are stronger

and statistically signi�cant when only thoughtful participants are considered (columns 2 and

3). The average marginal e�ect is -0.10 in the full sample without controls and it is -0.25

and -0.3 in the subsample of thoughtful participants, without and with controls, respectfully.

Thus, each increase by one in average similarity (scaled from one to �ve) is associated with

a decrease of 10-30 percentage points in the probability to have a high smallest number of

4The standard deviation of the smallest number of dimensions decreases only by 14% as a result of grouping
the values.
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dimensions.

Table 2: Probit regression results

Average marginal e�ects from Probit regressions
(1) (2) (3)

Variable All participants
Participants with working

time above median

Average similarity
-0.107 -0.248** -0.299***
(0.084) (0.102) (0.341)

Male
0.173
(0.122)

Age
-0.018
(0.015)

N 136 68 65

Dependent variable: Dummy for more than 3 dimensions. Robust standard errors are re-
ported in parentheses.
Statistical signi�cance: * for 0.1, ** for 0.05, *** for 0.01.

6 Discussion

Regressions in Table 2 show a clear relationship between the smallest number of dimensions

and similarity, but they cannot show the direction of the causal link. Does an individual �nd

the objects more similar to each other because she considers fewer attributes or is it another

way around?

It is easy to explain the causal e�ect of the number of considered attributes on the

average subjective similarity. Let us assume that similarity can be indeed approximated

by Euclidean distance between points that represent objects. When one considers fewer

comparison dimensions, by triangle inequality the average distance between every two points

is shorter.
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However, also the causal e�ect in the opposite direction may be explained. Let us assume

that an individual �nds all objects quite similar to each other. In the context of the present

study, she �nds all fruits similar. For instance, she does not eat fruits at all and is indi�erent

about them. Because all fruits seem to her similar (and/or irrelevant), she considers only

few attributes when she compares them. For example, she takes into account only color and

size.

It may be the case that both directions exist in data. Given the results of the present

study, which is the �rst one to estimate the number of dimensions on individual level and to

document its association with similarity, the natural next step is to design a study that can

illuminate the direction of the causal link.

7 Conclusions

This paper presents new evidence contributing to the literature on the geometric represen-

tation of similarity data. The novelty is in deriving the smallest number of dimensions on

individual level, comparing the mean smallest number of dimensions in data to the one de-

rived from a random simulation, and in regressing the smallest number of dimensions on

the average similarity between the objects, separately evaluated by the same individuals. I

�nd that the smallest number of dimensions is one standard deviation smaller in data than

when similarity rankings are randomly simulated. For a set of seven objects, the mode of

the smallest number of dimensions in real data is 3, while for randomly simulated data it

is 4. Furthermore, when subjective similarity is scaled between one and �ve, each unit of

average subjective similarity is associated with a 10-30 percentage points lower probability

15



to consider a high number of dimensions. These results support a behavioral interpretation

of the smallest number of dimensions, even though this number is implicit and is not reduced

from observed variables. However, the direction of the causal link between the number of

considered attributes and similarity is let to be identi�ed in further research.
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Appendix: The Bubble Sort Algorithm

In the �rst part of the study, participants had to order pairs of fruits by similarity. At each

click, they were exposed to a screen with two pairs of pictures of fruits and they must choose

the more similar pair (see a screenshot in Figure 1). The output of the procedure is a strictly

ordered-by-similarity list of all pairs of fruits. The order of the screens follows the bubble

sort algorithm:

Given vector X of length n, we sort X in ascending (without loss of generality) order.

1. Set i to be n.

2. Is i = 1 ?

2.1 If yes, proceed to 3.

2.2 Set j to be 1.

2.3 Is j = i?

2.3.1 If yes, proceed to 2.4.

2.3.2 Is X[j] < X[j + 1] ?

2.3.2.1 If yes, proceed to 2.3.3.

2.3.2.2 Replace X[j] and X[j + 1].

2.3.3 Increase j by 1 and proceed to 2.3.

2.4 Decrease i by 1 and proceed to 2.

3. Finish.
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