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ABSTRACT

IZA DP No. 12257 MARCH 2019

On the Road (Again):  
Commuting and Local Employment
Elasticities in Germany*

This paper uses the quantitative spatial model with heterogeneous locations linked by costly 

goods trade, migration and commuting developed in Monte et al. (2018) to address the 

workings of local labor markets in Germany. One key contribution concerns the analysis of 

the role of the expenditure share of housing in the economy. We provide arguments that, 

in accordance with Rognlie (2015), for an economy-wide quantitative exercise, this share 

should be chosen lower than stipulated in much of the extant research. Our analyses show 

that the local general equilibrium employment and resident elasticities with respect to local 

productivity shocks are significantly higher with a lower housing share. Moreover, simple 

ex-ante observable commuting measures have very little predictive power for these general 

equilibrium elasticities when the housing share is small. The size of the housing share turns 

out to play no crucial role for two further results, however. First, employment and resident 

elasticities are very heterogeneous across German local labor markets, irrespective of the 

housing share. Second, the housing share has only little influence on the welfare effects 

and location patterns of counterfactual commuting cost reductions.  
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1 Introduction 

What once fired the imaginations of Jack Kerouac, the Canned Heat and Willie Nelson has 

become dreary reality for zillions of workers today, albeit in an altogether different vein. The 

world is on the road (again). Workers spend substantial shares of their time and budget on 

traveling from residences to workplaces and these shares have steadily risen in the last decades.1 

The decision of where to live and where to work involves tradeoffs between wages, living costs, 

amenities, and idiosyncratic factors, such as family ties, networks and personal tastes. These 

tradeoffs are affected by transport, commuting and migration costs. In a seminal article, Monte 

et al. (2018) develop a general equilibrium model which integrates these spatial linkages and 

which is amenable to analytic and quantitative investigation. They highlight the key role that 

commuting across local labor markets plays for the American economy. More specifically, they 

find that the employment responses to local productivity shocks (local employment elasticities) 

are large, very heterogeneous across local labor markets, and strongly driven by commuting.2 

This heterogeneity is of paramount importance for local and national policymakers who decide 

on infrastructure investments, taxes, subsidies and place-based policies. 

This paper explores the spatial interactions of local labor markets in Germany, a particularly 

exciting scientific laboratory for two main reasons. First, improvements in its transport 

infrastructure are desperately needed. Branded the ‘Teflon Teuton’, the strongest economy in 

Europe for the last couple of years, faces potholed roads, rotten bridges and repair-prone railway 

tracks (Economist 2017). Second, exceptionally good data are available for Germany. Special 

mention must be made of a unique data set, the traffic forecast administered by the German 

Federal Ministry of Transport and Digital Infrastructure, which allows us to obtain a detailed 

portrait of bilateral trade of manufactured goods at the county level. Since such data are usually 

not available, the extant literature has been forced to impute regional trade shares (e.g. Monte 

et al. 2018). The backside of such pragmatic approaches is that the numbers may grossly deviate 

                                                 
1 Estimates of these costs put the mean round-trip at about 40 minutes and the mean household expenditure share 
devoted to transportation at 14.6% for a cross-section of advanced economies in recent years (Redding and Turner 
2015). Monte et al. (2018) document the increasing prevalence and heterogeneity of commuting streams in the 
United States: whilst in 1960 the median US county had 91% of its residents working where they lived, this number 
is down to only 69% in 2000; there are now counties whose workforce consists of more than 80% commuters and 
still others where about the same share of residents flock to work elsewhere. 
2 The role of commuting follows from the observation that these local employment elasticities are much larger 
than the corresponding local resident elasticities (the responses of residences to the mentioned local productivity 
shocks). Monte et al. (2018) also advance independent empirical evidence which corroborates the importance of 
commuting. They show that the treatment effect of million dollar plants (as considered in Greenstone et al. 2010) 
is heterogeneously affected by locations’ openness to commuting (worker paper versions of their paper also 
advanced evidence pertaining to the local effects of Chinese imports and to Bartik-shocks). 
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from the actual values. The traffic data are a big asset for the quality of our analyses of German 

local labor markets. 

We use the quantitative spatial general equilibrium model by Monte et al. (2018) to address the 

following set of issues. First, how important is commuting for the adjustment of German local 

labor markets in response to local productivity shocks? Second, Monte et al. (2018) find that 

model-based, ex ante observable, commuting measures, are powerful predictors for the general 

equilibrium local employment and resident elasticities in the United States. Are these 

commuting measures similarly successful for Germany? Third, what are the effects of 

commuting cost reductions in Germany? Apart from being of supreme importance for 

Germany, results on these questions also allow us to put the findings of Monte et al. (2018) for 

the American economy into (an international) perspective. 

A further, and critical, issue involves the role that the share of expenditures devoted to land 

(housing) plays for the findings concerning the first three questions. By addressing this 

methodological twist our analysis provides an important addition on previous research. To 

elaborate, since land is the only generically fixed and immobile resource, it is a key parameter 

for the dispersion of residences in any spatial model.3 In new quantitative spatial models, the 

budget share devoted to land is one of the key structural parameters for which the researcher is 

assumed to have an a priori estimate.4 The choice of this parameter is not trivial, however, and 

the values used in the extant literature differ widely, ranging from 10% to 40%. We provide 

strong arguments that this parameter should be chosen at the lower end (in the range of 10%) 

when the quantitative general equilibrium model is intended to portray the aggregate economy. 

Against the backdrop of previous research, we also consider possible rationalizations for higher 

values of this parameter, and we perform quantitative analyses in order to demonstrate where, 

and how, a difference to our preferred specification matters. 

Our key findings are as follows. Regarding the first question we find that the responses of 

German local labor markets to local productivity shocks – a 5 % increase in local productivity 

– are very heterogeneous and commuting is key for this heterogeneity. At the level of counties, 

90% of local employment elasticities are in the range from 2.83 to 4.17 and the same share of 

                                                 
3 This holds true irrespective of whether the housing supply, as a short-cut, is equated with land, as in Helpman 
(1998), or whether housing space is assumed to be provided by a competitive construction industry which uses 
land in addition to other production factors to produce lots, e.g. Duranton and Puga (2015). Pflüger and Tabuchi 
(2010) highlight the role of land as ultimately the only immobile resource in a new economic geography 
framework. 
4 In models based on product differentiation (such as the one we use), the other key parameter is the elasticity of 
substitution between varieties, see Redding and Rossi-Hansberg (2017) for a lucid characterization of this 
approach. 
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local resident elasticities are in the range from 1.07 to 2.77, when the budget share spent on 

land is at 10%. When this share is at 40% these values are much lower. 90% of employment 

elasticities are then in a range from 1.67 to 2.93 and resident elasticities range from 0.38 to 

0.78. The effect of different values for the housing parameter is even more dramatic for 

commuting zones, in particular for resident elasticities. Intuitively, with a smaller expenditure 

share on housing, the role of housing as a congestion force is very strongly diminished, 

implying that more workers will choose to shift their residences (i.e. migrate) instead of 

commute to the treated labor market. These findings lead to three conclusions. First, the housing 

share matters strongly for the quantitative effect of local productivity shocks, a low share 

implies (much) higher employment and resident elasticities. Second, irrespective of the housing 

share, commuting is very important for labor market adjustment in Germany. In fact, it is a key 

mechanism which renders German local labor markets flexible to local shocks. Third, and again 

irrespective of the housing share, heterogeneity is strong, similarly to the findings recorded for 

the United States.5 This implies that seriously wrong conclusions would be drawn if some 

average elasticity across local labor markets was applied by policymakers and local planners. 

Concerning the second issue, the predictive power of simple ex-ante commuting-based 

measures, the size of the housing parameter turns out to be of paramount importance. Applying 

a housing share of 0.4 as in Monte et al. (2018), we obtain very similar results for Germany as 

they do for the United States. A location’s own commuting share – the share of residents 

working at their residence –, turns out to be a powerful inverse indicator for the general 

equilibrium local employment elasticities on the county level implied by the quantitative model, 

outperforming standard local labor market controls (e.g. wages, employment, housing) by far. 

The finding also largely carries over when we look at commuting zones rather than 

administrative counties, except that then the predictive power of the simple measures is lower. 

A key finding of our analysis is that the results are altogether different, however, when we apply 

our preferred housing share of 0.1. In this case the simple own commuting share loses almost 

all explanatory power for the heterogeneity of employment elasticities, both across counties 

and across commuting zones.6 This very important finding can be rationalized by noting that 

general equilibrium repercussions are only imperfectly captured by simple (partial equilibrium-

                                                 
5 The quantitative numbers are larger than what is found for the United States when the budget share is at 40% as 
assumed in Monte et al. (2018). There is, of course, an issue of comparability between Germany counties and the 
counties in the United States. The same holds true for local labor markets even within Germany and within the 
United States as there is typically much stronger commuting activity within big cities which are classified as 
counties (e.g. Berlin) than in more rural counties. 
6 We have focused here just on the finding for the own commuting share, the most simple measure. Our analysis 
below shows that these findings carry over to other model-based commuting measures. 
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based) measures and this holds true a fortiori, the lower is the housing share. This is intuitive 

because a reduction of the housing share weakens a key congestion force in the model. 

We consider a corridor of symmetric reductions in commuting costs between all counties in 

Germany to address the third question. These reductions range from 1% up to 20%.  Our general 

finding is that the resulting welfare and location effects are not strongly affected by the housing 

share. Focusing on the results with a housing share of 10%, on average, a one percentage point 

decrease in commuting costs raises welfare by about half a percentage point. The welfare gain 

amounts to about 4.5 percent as commuting costs are brought down to 0.90, for example. Such 

a 10% reduction of commuting costs reduces the total share of non-commuters in the German 

population from 63.1% to 52.4%. As to the location consequences, two types of effects are 

visible. At a local level, reducing commuting costs increases the number of resident workers in 

urban counties relative to those in surrounding locations. At the macro level, the reduction in 

commuting costs also increases agglomeration. 

Previous research. Our paper is related to various strands of previous research. Theoretical 

literature addressing a separation of the location of production from the location of residences 

is sparse. One exception is Borck et al. (2010), who set up a new economic geography model 

with two locations, goods trade and commuting, which exhibits demand and supply linkages as 

agglomeration forces and crowding in goods markets and congestion in housing markets as 

dispersion forces. Their analysis predicts that a simultaneous fall in distance-related frictions 

pertaining to trade and commuting leads to an increased spatial concentration of production and 

a decreased concentration of residences. Hence, an increasing role for commuting is predicted. 

The model is too stylized for quantitative analysis, however. 

Quantification has become the focus of recent research which incorporates an arbitrary number 

of locations with heterogeneous geography, productivities, amenities, and local factors, as well 

as trade and commuting costs into the models. This new quantitative spatial economics builds 

on the new economic geography (or isomorphic models) and derives its thrust from restraining 

the agglomeration forces so that multiple equilibria are excluded. The payoff is that combining, 

measuring and quantifying theoretical mechanisms and identifying key structural parameters 

becomes possible and that counterfactuals can be meaningfully addressed as outlined in the 

recent survey by Redding and Rossi-Hansberg (2017). A milestone in this research is the model 

developed by Redding (2016) which integrates the regional model of Helpman (1998) with 

various trade models, such as the Armington model (Anderson 1979; Anderson van Wincoop 

2003), the monopolistic competition model with homogeneous firms (Krugman 1980; Helpman 
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and Krugman 1985), or heterogeneous firms (Melitz 2003) and the multi-region Ricardo model 

(Eaton and Kortum 2002).  

Our analysis is most closely related to the framework developed in Monte et al (2018), who 

extend the quantitative spatial model developed by Redding (2016) to include commuting 

between local labor markets, and who perform a quantitative analysis of local labor market 

shocks for the United States. 

The structure of the remainder of the paper is as follows. Section 2 provides descriptive 

evidence on German local labor markets. Section 3 introduces the model. Section 4 provides an 

overview of our data, an extensive discussion of the choice of the housing parameter, and a 

description of the quantification of the model and the derivation of model-consistent trade costs 

and local productivities. Sections 5 and 6 cover the quantitative analysis of the network of 

German local labor markets. Section 5 derives and analyzes the local employment and resident 

elasticities associated with counterfactual local productivity shocks both on the county level 

and on the level of commuting zones. Section 6 addresses the effects of a reduction of 

commuting costs. Section 7 provides concluding remarks. 

2 Descriptive Evidence 

Commuting across local labor markets is pervasive in Germany, irrespective of whether we 

look at the administrative classification which divides Germany into 402 counties (Kreisfreie 

Städte and Landkreise), or at the 141 commuting zones which are aggregated up from the 402 

counties (Kosfeld and Werner 2012; Eckey, Kosfeld and Türck 2006). 

Commuter shares. To give a perspective on German local labor markets, the left panel of 

figure 1 shows the share of total workers that commute to work in German counties whilst the 

right panel shows the share of residents that commute to other workplaces. The counties with 

the largest shares of inflows of workers are Schweinfurt (city), Munich (county) and 

Aschaffenburg, the ones with the largest shares of outflows of workers are Ludwigshafen 

(county), Fürth (county) and Schweinfurt (county).7 A visual inspection of the two maps 

immediately reveals that the intensity of outflows exceeds the intensity of inflows.8 

                                                 
7 The largest nominal inflows can be found in Frankfurt, Munich, Hamburg and Berlin, the largest nominal 
outflows in Berlin, Munich, Rhein-Sieg-Kreis and Rhein-Neckar-Kreis. 
8 Repeating this exercise for the 141 German commuting zones almost halves the numbers, but leaves the 
general pattern documented in figure 1 intact. 
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Distribution of commuters. To bring out this point more clearly, and to have a basis for a 

casual comparison with the United States, table 1 documents statistics for the distribution of 

commuters. Across German counties, the unweighted average share of a county’s residents that 

work at other locations is 40% and that of a county’s total workforce that lives in a different 

location is 36%. These numbers are almost twice the numbers reported by Monte et al. (2018) 

for the 3111 counties in the United States. When commuting zones rather than (administrative) 

counties are looked at, the numbers are less than half (such a halving is also reported by Monte 

et al. 2018). Table 1 also provides the ratio between workers and residents at various percentiles. 

As one would expect from the construction of commuting zones, the comparison of the numbers 

for counties with the numbers for commuting zones reveals that the latter are very much 

stronger centered around 1. 

 

Figure 1: Share of total workers who commute into counties (panel a) and share of residents who commute 
  out of counties (panel b). See section 4 for the data. 

Table 1:  Unweighted average commuting statistics across German counties and commuting zones. 
  See section 4 for the data. 
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The message conveyed by table 1 is reinforced by the kernel densities of the share of non-

commuters in residents depicted in figure 2. This figure reveals that the peak of the distribution 

is at a share of non-commuters in residents of slightly higher than 60% which is comparable in 

range to what has been established for the United States (see Monte et al. 2018). 

     
Figure 2:  Kernel densities for the share of non-commuters in residents, German counties. 95% confidence 

 interval shaded. See section 4 for the data. 

Two-way commuting. Grubel-Lloyd indices for two-way commuting in and out of German 

local labor markets provide another piece of evidence, see Figure 3.9 Panel (a) depicts this index 

for administrative local labor markets and panel (b) for commuting zones. Panel (a) reveals that 

two-way commuting is pervasive in Germany and strongest in large cities and regions in the 

West and Southwest. The mean and median of the GL-index at the county level are both at 0.69. 

The distribution of the Grubel-Lloyd index shown in table 2 is similar to what is found for the 

United States (cf. Monte et al. 2018). 

It should be noted that Germany also has a number of counties where one-way commuting is 

extremely strong. These are visualized by the few bright areas in panel (a), the most prominent 

one is Wolfsburg, home to the largest VW production plant, followed by Frankfurt, Germany’s 

financial center, and a number of mid-size Bavarian cities such as Regensburg, where BMW 

has a large plant, Bamberg, Erlangen, Schweinfurt and their surrounding counties. With 

commuting zones, two way commuting is more prominent as they combine counties with strong 

worker inflows with counties with strong worker outflows, see panel (b) in figure 3. Yet the 

overall heterogeneity remains strong with values ranging from 0.45 to just below 1. 

                                                 
9 Following the use in international trade, these indices are defined as ܮܩ௜ ൌ 1 െ

ห∑ ௅೔
೙

೙ಯ೔ ି∑ ௅೙
೔

೙ಯ೔ ห

∑ ௅೔
೙

೙ಯ೔ ା∑ ௅೙
೔

೙ಯ೔
. The subscript 

indicates the place of residence and the superscript the workplace, so that ∑ ௜ܮ
௡

௡ஷ௜  are location ݅’s total ‘exports’ 
of commuters and ∑ ௡௜௡ஷ௜ܮ  are location ݅’s total ‘imports’ of commuters from other residences. The index takes on 
values between ܮܩ௜ ൌ 0 if there is only one way commuting and ܮܩ௜ ൌ 1 if there is perfect two-way commuting.  
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Figure 3:  Grubel-Lloyd indices for commuting in and out of German local labor markets, panel (a) for 

 counties, panel (b) for commuting zones. See section 4 for the data. 

Table 2:  Percentiles of the distribution of the Grubel-Lloyd index. See section 4 for the data. 

3 The Model 

The Setup. We consider a version of the multi-location spatial general equilibrium model 

developed by Monte et al. (2018) as an extension of Redding (2016) who builds on Helpman 

(1998), in turn. Locations are linked in goods markets through trade and in factor markets 

through migration and commuting. Households consume land and a compound good which 

consists of a basket of differentiated varieties. Production of any variety takes place under 

increasing returns and with labor as the only factor. Space is divided into a set of locations Ω ൌ

ሼ1, . . , ܰሽ which serve as workplaces and residences. Each location ݊ ∈ Ω is endowed with an 

exogenous supply of land ܪ௡ which is owned by local immobile landlords who earn rents from 

the residential use of land by consumers. To allow for external and internal geographies we 

assume that the set of locations Ω ൌ ሼ1, . . , ܰሽ is exhaustively divided into disjoint subsets 

(territorial entities) Ω௚ ⊆ Ω. Each subset is populated by an exogenous measure ܮത௚ of workers 

who supply 1 unit of labor, each. Workers are mobile and can commute to work within these 

subsets but not across them. 
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Preferences. A consumer ߱ who lives in location ݊ ∈ Ω and works in location ݅	 ∈ Ω has 

preferences characterized by an upper-tier utility of the Cobb-Douglas-type over a final goods 

basket ܥ௡௜ఠ and land ܪ௡௜ఠ, 

    ܷ௡௜ఠ ൌ ௕೙೔ഘ
఑೙೔

ቀ஼೙೔ഘ
ఈ
ቁ
ఈ
ቀு೙೔ഘ
ଵିఈ

ቁ
ଵିఈ

, 0 ൏ ߙ ൏ 1  (1) 

where ߢ௡௜ ∈ ሾ1,∞ሻ is a parameter of iceberg commuting costs in terms of utility and ܾ௡௜ఠ is a 

consumer specific work-residence amenity pair drawn from the Fréchet-distribution: 

௡௜ሺܾሻܩ     ൌ ݁ି஻೙೔௕
షച

௡௜ܤ  , ൐ 0, ߳ ൐ 1  (2) 

The scale parameter ܤ௡௜ indicates the average amenity level of the work-residence amenity pair 

and ߳ ൐ 1 parameterizes the dispersion of these amenities.  

The goods basket is itself a CES-bundle of differentiated varieties ݆: 

௡௜ఠܥ    ൌ ቂ∑ ׬ ܿ௡௜ఠሺ݆ሻ
഑షభ
഑ ݆݀

ெ೔

଴௜∈ே ቃ
഑

഑షభ
ߪ  , ൐ 1   (3) 

where ܿ௡௜ఠሺ݆ሻ is consumption of a specific variety ݆, ܯ௜ is the mass of varieties, and ߪ is the 

constant elasticity of substitution between any two varieties. The price indices dual to (1) and 

(3) are respectively given by 

     ௡ܲ ൌ ௡݌   ௡ଵିఈ,    andݍ௡ఈ݌ ൌ ቂ∑ ׬ ௡௜ሺ݆ሻଵିఙ݆݀݌
ெ೔

଴௜∈ே ቃ
భ

భష഑	,   (4) 

where ݍ௡ is the price of housing in ݊, ݌௡௜ሺ݆ሻ the price of variety ݆ produced in ݅ paid by 

consumers in ݊ and consumer ߱’s indirect utility is 

     ௡ܸ௜ఠ ൌ ௕೙೔ഘ
఑೙೔

	௘೙೔
௉೙

     (5) 

and where ݁௡௜ denotes the total expenditure of any consumer choosing to commute from ݊ to ݅. 

Since indirect utility is a monotonic function of the amenity draw ܾ ௡௜ఠ, it also follows a Fréchet-

distribution, ࣡௡௜ሺܷሻ ൌ ݁ି஍೙೔	௎ష∈, where Φ௡௜ ൌ ௡௜ܤ ቀ
௘೙೔
఑೙೔௉೙

ቁ
∈
. 

Production. Producers in each location ݅ produce varieties under increasing returns and 

monopolistic competition according to the total cost function Υ௜ሺ݆ሻ ൌ ቀܨ௜ ൅
௬೔ሺ௝ሻ

஺೔
ቁݓ௜ where 

-௜ is the locationܣ ,௜ is a location-specific fixed input of laborܨ ,݆ ௜ሺ݆ሻ is output of varietyݕ

specific productivity level and ݓ௜ is the location-specific wage.  

Profit maximization implies that prices are constant markups on marginal cost. Consumers in 

location ݊ pay ݌௡௜ሺ݆ሻ ൌ ௡௜݌ ൌ ݀௡௜ ቀ
ఙ

ఙିଵ
ቁ ௪೔

஺೔
 for any variety ݆ produced in location ݅, with ݀௡௜ ൒
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1 denoting iceberg type transport costs for shipments from ݅ to ݊ . Profit maximization and zero-

profits imply the break-even output ݕ௜ሺ݆ሻ ൌ ௜ݕ ൌ ߪ௜ሺܣ െ 1ሻ	ܨ௜ for any firm. Total costs can 

then be rewritten as Υ௜ሺ݆ሻ ൌ Υ௜ ൌ  ௜. Labor demand can be recovered from the costݓ	௜ܨ	ߪ

function by application of Shepard’s lemma. The aggregate use of labor in location ݅, ܮ௜, can 

then be used to express the equilibrium number of firms as: 

௜ܯ      ൌ
௪೔௅೔
	஌೔

      (6) 

Goods trade and price indices. Goods trade between any two locations is characterized by a 

gravity equation in this model. Using the CES-structure of demand on the part of consumers as 

well as the pricing rule, the measure of firms (6) and total costs Υ௜ ൌ  ௜, the share ofݓ	௜ܨ	ߪ

location ݊’s expenditure on varieties produced in ݅ (relative to location ݊’s total spending on 

goods) is derived as: 

௡௜ߨ    ൌ
ெ೔	௣೙೔భష഑

∑ 	ெ೘	௣೙೘భష഑
೘∈ಿ

ൌ
ಽ೔
		ಷ೔	

	൬	
೏೙೔
ಲ೔
൰
భష഑

	௪೔
భష഑

∑ ಽ೘
	ಷ೘	

	ቀ	೏೙೘
ಲ೘

ቁ
భష഑

	௪೘భష഑
೘∈ಿ

   (7) 

Making use of optimal pricing, the firm number (6), and assuming ݀௡௡ ൌ 1 price indices can 

be calculated as: 

௡݌     ൌ ቀ ఙ

ఙିଵ
	ቁ ߪ

షభ
భష഑ ቀ	௪೙

஺೙
ቁ ቂ ௅೙

గ೙೙ி೙	
	ቃ

భ
భష഑

    (8) 

Market clearing. In each location ݅ it must hold true that total sales equal the production costs. 

Hence we can write: 

     ∑ ௡௜ܺ௡௡∈ேߨ ൌ  ௜     (9)ܮ௜ݓ

We follow Monte et al. (2018) in assuming that local landlords spend all their rental income on 

goods and that they also bear their location’s trade deficit ܦ௡. Location ݊’s total spending on 

goods, ܺ௡, is then given by: 

       ܺ௡ ൌ ܴ௡	ഥ௡ݓ	 ൅	ܦ௡        (10) 

The expression combines the expenses of consumers in ݊  on goods, ߙ	ݓഥ௡	ܴ௡	, with the spending 

of local landlords, ሺ1 െ ܴ௡	ഥ௡ݓ	ሻߙ ൅  ݊ ഥ௡ is the average wage in locationݓ ௡ , whereܦ

(characterized below) and ܴ௡ is the measure of residents in location ݊.  
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In the housing market land is used for consumption by residents with an associated spending of 

ሺ1 െ  :ഥ௡ܴ௡. Housing market clearing in location ݊ thus commandsݓሻߙ

௡ܪ௡ݍ     ൌ ሺ1 െ  ഥ௡ܴ௡     (11)ݓ	ሻߙ

Labor mobility and commuting. Each worker chooses the commute from the subset of 

locations available to her that offers her the highest utility taking into account her idiosyncratic 

preferences (5). With the Fréchet distribution of indirect utility, the probability that a worker 

chooses to live in location ݊ and to work in location ݅ is (where we now use that under the 

assumptions that we have imposed, ݁௡௜ ൌ  :௜ሻݓ

௡௜|ஐ೒ߣ     ൌ
஻೙೔൬

ೢ೔
ഉ೙೔ು೙

	൰
∈

∑ ∑ ஻೘೗൬
ೢ೗

ഉ೘೗ౌౣ
൰
∈

೗ചಈ೒೘∈ಈ೒

≡ ஍೙೔

஍೒
   (12) 

The number of workers employed by all firms in location ݊ must match the overall probability 

that a worker chooses to work in this location:  

௡௅ߣ      ≡
௅೙
௅ത೒
ൌ ∑ ௜௡|ஐ೒௜ఢஐ೒ߣ     (13) 

Moreover, the number of residents in location ݊ must match the overall probability that a 

worker chooses to live in this location:  

௡ோߣ       ≡
ோ೙
௅ത೒
ൌ ∑ ௡௜|ஐ೒௜ఢஐ೒ߣ     (14) 

The expected wage conditional on living in location ݊ equals the wages that can be obtained in 

all possible workplaces weighted with the probabilities of commuting to those workplaces from 

location ݊, hence: 

ഥ௡ݓ      ൌ ∑ ஻೙೔఑೙೔ష∈௪೔
∈

∑ ஻೙೗఑೙೗ష∈௪೗
∈

೗∈ಈ೒

௜௜∈ஐ೒ݓ    (15) 

The expected utility of a worker is the same for all pairs of residence and workplace within the 

relevant subset of locations because of population mobility. It can be calculated as: 

   ഥܷ ൌ ॱሾܷ௡௜ఠሿ ൌ Γ ቀ ఢ

ఢିଵ
ቁ ൤∑ ∑ ௠௟ܤ ቀ

௪೘
఑೘೗௉೗

ቁ
∈

௟∈ே௠∈ே ൨

భ
ച
  (16) 

where ॱ is the expectations operator and Γሺ∙ሻ is the Gamma function. 

General equilibrium. The general equilibrium system involves the set ݓ௡, ߨ௡௜, ܺ௡, ݓഥ௡, ܮ௡, ݍ௡, 

ܴ௡, ݌௡ of endogenous variables which are simultaneously determined by the set of equations 

(7), (8), (9), (10), (11), (14), (15) and (16) after substitution of ߣ௡௜|ஐ೒. 
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4 Data and Measurement 

In this chapter we first describe the data sources and the initial data preparation (subsection 

4.1). We then turn to the calibration of the model in subsection 4.2. A key part concerns the 

choice of the expenditure share devoted to land (housing) which plays a critical role in the 

quantitative analysis. We explain in detail, why this parameter should be chosen in the range of 

10% when the quantitative model is intended to cover the aggregate economy. Subsection 4.3 

applies model inversion to derive model consistent structural fundamentals. 

4.1 Data Sources 

Commuting data. Our commuting data stem from the German Federal Employment Agency 

(‘Pendlerstatistik’). They contain bilateral flows between all 412 German counties in existence 

in 2010 of all workers with social security whose workplace differs from the registered 

residence.10 We complement this data with information on total local employment from the 

German Institute for Labor Market Research (IAB) to derive the number of non-commuters in 

each county. Both data sets are based on social security accounts which exclude self-employed 

workers and other workers without social security. 

Preparing the final commuting data on which the figures and tables in section 3 and the 

quantitative analyses performed below are based, we faced two challenges. First, in the raw 

data all bilateral commuting flows between two counties with less than 10 commuters are 

censored and, hence, indistinguishable from county pairs with no commuters. Second, the raw 

data exhibit commuting distances that are implausibly long for a daily commute. We take this 

as indicative of misreporting which, then, of course, also concerns the data for plausible 

commutes. Indeed, such misreporting is quite likely because the data are based on the accounts 

of companies which may report the wrong workplace of a worker (by mixing their headquarter 

or main plant with the actual plant, where the worker is employed) and/or a wrong residence 

address of the worker (because workers in Germany may be registered as residents at a main 

address (‘Hauptwohnsitz‘) and a secondary address (‘Nebenwohnsitz’)). We mend these 

problems of censoring and misreporting with the help of further, aggregate data, and with the 

help of gravity estimates, as we explain in section D of the appendix. Our final data set contains 

commutes up to a threshold of 120 km and/or a travel time of less than 1:45 hours by train.  

                                                 
10 In 2011 an administrative reform reduced the number of counties in Germany to 402. Since some data sets are 
only available for this specification we work with it below. 



13 
 

Trade data. Our trade data are based on a unique data set, the traffic forecast 

(‘Verkehrsverflechtungsprognose 2030’) administered by the German Federal Ministry of 

Transport and Digital Infrastructure. They contain the weight of goods shipped between 

German counties and their trade partners by ship, train or truck, disaggregated across 25 product 

categories. Sources for the construction of the data set stem mainly from the respective agencies 

for rail- and waterways and from a representative weekly sample of truck shipments in 

Germany.11 An in-depth description and analysis of this data set as well as a detailed picture of 

the implied German interregional trade and production network is provided by Krebs (2018). 

More specifically, he derives an interregional input output table at the level of 17 sectors for all 

German counties and 26 foreign countries which replicates observed German county level 

sectoral revenues, value added, and intermediate demand reported by the regional statistical 

offices, and whose aggregates for Germany are cell-by-cell compatible with the national and 

international data from the World Input Output Database (WIOD).12 We use this interregional 

input-output table which is strongly rooted in observable data and which provides us a detailed 

portrait of bilateral trade of goods between German counties. 

Further Data. Total wage sums (‘totales Arbeitnehmerentgelt’) for German counties as well 

as the number of flats by county, which we use as a control in our empirical section, are 

available from the Regional and Federal Statistical Offices (‘Statistische Ämter des Bundes und 

der Länder’). 

4.2 Calibration 

Strategy. In order to calibrate the model we need estimates of three exogenous parameters, the 

share of expenditures devoted to housing (ߙ), the elasticity of substitution in consumer’s 

preferences (ߪ), and the commuting elasticity (߳), as well as initial values of wages at the 

country level (ݓ௡), bilateral trade shares (ߨ௡௜), bilateral commuting shares (ߣ௡௜|ஐ೒	ሻ, the number 

of residents (ܴ௡ሻ and workers (ܮ௡	) in each county, as well as the average wage (income) on 

the county level (ݓഥ௡). It is important to stress at the outset that taking the model to the data 

requires a number of choices as any model involves simplifications and, possibly even more 

critical, as the available data are typically not comprehensive.  

                                                 
11 Air transport is not included in the data set. However, air transport only makes up about 0.1 percent of total 
transported weight in Germany (4.2 million tons compared to 3.7 billion tons, see Schubert et al. (2014), and only 
about 1 percent of the value of total foreign trade (Source: ‘Bundesverband der Deutschen 
Luftverkehrswirtschaft’). 
12 See appendix C for a summary of the approach used in Krebs (2018). 
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The key aim of this paper is to obtain a detailed picture of the workings of the network of 

German local markets. In addition, we view it as desirable to gain a perspective on the findings 

concerning American local labor markets provided by Monte et al. (2018). Hence, to ease the 

comparison, we keep many of our choices in line with that study. One issue involves the non-

availability of original data on service trade at the local level which is the case both in Germany 

and the United States. Faced with the choices to assume that all services are non-tradable, to 

impute service trade, or to ignore the production of services altogether, we follow Monte et al. 

(2018) and adopt this final option.13 

Initial values of endogenous variables. Using our final set of commuting flows we can 

immediately calculate all ߣ௡௜|ஐ೒	 and aggregate flows to find total labor available in Germany 

 It should be remembered that this number is based on social security data and thus .(ത௚ܮ)

excludes any self-employed workers and workers without social security. Wages at the county 

level ݓ௡ are obtained by dividing county level total wage bills (‘totales Arbeitnehmerentgelt’) 

as reported by the German Federal and Regional Statistical Offices (‘Statistische Ämter des 

Bundes und der Länder’) by the local working population. Using the values for ܮത௚, ߣ௡௜|ஐ೒	 and 

 ௡ can immediately beܮ ௡, the total number of residents ܴ௡ and the total number of workersݓ

calculated from (13) and (14), respectively, and the average wage of residents follows as ݓഥ௡ ൌ

ቀ∑ ஐౝ	୧∈	௡௜|ஐ೒ߣ ௜ቁݓത௚ܮ /ܴ௡	. 

We derive the exogenous deficit transfers ܦ௡ and the trade shares 	ߨ௡௜ from the interregional 

input table provided by Krebs (2018) by aggregating trade flows across all manufacturing 

sectors and across all foreign countries and scaling all values such that German county level 

production equals county level wage sums.14 Specifically, deficit transfers are obtained as ܦ௡ ൌ

∑ ௡௜ܺ௡௜∈ேߨ െ ܴ௡	ݓഥ௡.15 Having calculated trade deficits we obtain total expenditure ܺ௡ in ݊ as 

ܴ௡ݓഥ௡ ൅  .௡௜ܺ௡ߨ ௡௜ from trade flowsߨ ௡ and we can calculate import sharesܦ

Exogenous parameters. We follow Monte et al. (2018) in choosing a substitution elasticity for 

the CES goods bundle of ߪ ൌ 4. Our estimate of the commuting elasticity is based on the 

                                                 
13 The interregional input-output table provided in Krebs (2018) includes both goods trade and service trade. Unlike 
the bilateral shares in goods trade which are rooted in observable data, the bilateral trade shares in service trade 
provided in Krebs (2018) are imputed based on a gravity estimate. 
14 Monte et al. (2018) scale trade values from the Commodity Flow Survey to match the total wage bill in each 
county. We follow them as close as possible and therefore also use the total wage bill despite the fact that this sum 
includes the service sector whereas trade flows from the Commodity Flow Survey and our shipment data do not. 
15 Note that due to commuting the value of total sales ݓ௡ܮ௡ in ݊  differs from total income ܴ௡	ݓഥ௡. Therefore, deficit 
transfers can differ (in absolute terms) from trade imbalances ∑ ௜௡ߨ ௜ܺ௜∈ே െ ∑ ௡௜ܺ௡௜∈ேߨ . 



15 
 

probability ߣ௡௜|ஐ೒. We follow the approach laid out by Monte et al. (2018) to arrive at a 

regression which we estimate with a 2SLS approach to account for endogeneity of wages and 

commuting as explained in appendix D. We obtain a highly significant coefficient ߳ ൌ 4.24 

which exceeds the estimate obtained for the United States. This is in line with our observation 

of stronger commuting flows in Germany. 

Housing share. As pointed out in the introduction, the choice of the budget share devoted to 

land (housing) is far from trivial. The values selected in the extant literature exhibit a wide 

variation, differing by a factor of 4. The considerations behind these divergent choices are 

usually not made explicit. Closer inspection reveals that they reflect different stances on two 

issues. The first is whether the quantitative model is meant to involve only a segment or the 

whole of an economy, the second concerns what to count as expenditures on ‘land/housing’. 

One prominent estimate reflects the share of housing by renting households relative to their 

wage and salary income, as calculated from microeconomic census data such as the Decennial 

Census of Housing files (Davis and Ortalo-Magné 2011). This yields a median budget share of 

24% and is used by Redding (2016), for example.16 However, Davis and Ortalo-Magné (2014) 

also report, that the housing share comes down to 18% when only the pure contract rent is 

counted, the other 6% reflect the expenditure share for utilities. Furthermore, they report that 

these shares come further down to 15% and 3%, respectively, when macroeconomic data from 

national accounting are used. These numbers reflect shares in gross consumer income. 

Larger values for the housing share are obtained when housing expenditures are related to 

household’s net income and also when broader measures for housing expenditures are used. 

The typical value drawn from the Consumer Expenditure Survey released by the BLS amounts 

to roughly 1/3 (Duranton and Puga 2014; BLS 2017). Monte et al. (2018) come up with an even 

higher value of 40% with reference to data from the Bureau of Economic Analysis. A close 

inspection of that data reveals that in order to arrive at such a high value, not only a very broad 

concept of housing expenditures (including utilities) must be applied, but also further expenses 

would need to be included.17 

                                                 
16 Davis and Ortalo-Magné (2011) also document strong empirical evidence in favor of a constant expenditure 
share. This justifies the Cobb-Douglas utility typically used in new quantitative models. 
17 For the year 2016 the BEA lists total personal consumption expenditure for the US at $12,816,386 million and 
personal consumption expenditure in the category ‘housing and utilities’, which includes imputed rents for owner 
occupied housing, at $2,331,526 million. These numbers imply a spending share of 18.2% including utilities, 
which should not be included in spending on the non-traded factor housing or land for housing. The corresponding 
values for 2010 are $10,196,850 million for personal consumption and $1,908,992 million for ‘housing and 
utilities’, resulting in a share of 18.7%. In the tables released by the BLS the category ‘housing’ includes further 
expenses such as, for example, ‘laundry and cleaning supplies’, ‘postage’, ‘furniture’ or ‘household textiles’. 



16 
 

It should be noted that the values discussed so far are based on concepts that reflect a segment 

of the economy only, not the whole aggregate economy, and that very wide concepts of housing 

expenditure are used which include utilities and other expenditure items. Unsurprisingly, 

housing shares take on large values, if a small denominator (gross consumer income; household 

net income) and a large numerator (a very broad measure of housing expenditures) is chosen. 

From the viewpoint of the whole (aggregate) economy, total final expenditure is relevant. This 

comprehends spending by the government and investments in addition to spending by 

consumers (gross consumer income and household net income reflect only 

consumers/households). A quantitative analysis which is targeted at the whole economy should 

therefore draw on total final expenditure. Furthermore, it is important to note that the conceptual 

role that land plays as dispersion force in the model of section 3, and that is captured by the 

share parameter ߙ, could in general not be achieved by the broader concept of non-traded goods, 

because land is the only ultimately fixed and immobile resource.18 For this reason a narrow 

concept of land/housing expenditures is warranted. Building on information from the World 

Input Output Database (WIOD) with its Socioeconomic Accounts (SEA’s) and on EU-KLEMS 

data, Krebs and Pflüger (2018) arrive at economy-wide expenditure shares for land of around 

10% both for Germany and for the United States.19 Importantly, this value is strongly supported 

by the well-known study by Rognlie (2015) which addresses the evolution of the net capital 

share in national income of which housing income is a part. Rognlie reports a share of housing 

in net value added at factor cost of around 10% for the United States which supports the 

estimated 10% in Krebs and Pflüger (2018) from the factor cost side. It should also be noted 

that this (low) value is also in the ballpark of the numbers reported by Ortalo-Magné (2014), 

and would be even more so if the denominator was broadened from gross consumer income to 

net value added.  

Since our goal is to portray the aggregate economy with our quantitative analysis, these 

arguments lead us to use an estimate of 10% for the housing share. However, it is instructive to 

check how the results are affected when this share is chosen at 40% as assumed in Monte et al. 

(2018) and we also report the results for an intermediate value of 25% (see appendices E and 

F).  

                                                 
18 The argument is the following. Unless non-traded goods are produced with decreasing returns, they cannot play 
a role as dispersion force. With constant returns, the supply of non-traded goods can be tuned up to any scale. With 
increasing returns, non-traded goods even become an agglomeration force as in the canonical model of Abdel-
Rahman and Fujita (1990) which is heavily used in urban economics (e.g. Duranton and Puga 2014). If non-traded 
goods are produced with decreasing returns this necessitates a fixed factor, which, ultimately, must be land. 
19 See Timmer et al. (2015) on the WIOD and on its SEA’s and O’Mahony and Timmer (2009) on EU-KLEMS. 
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4.3 Model Consistent Structural Fundamentals 

Given the model and the German data, the general equilibrium can be inverted to identify model 

consistent values for bilateral trade costs and local productivities as we now show in turn. 

Assuming that the fixed input of labor is the same across locations (ܨ௜ ൌ 	݉,݅	∀ ௠ܨ ∈ ܰ) and 

using equation (7) trade flows from location ݅ to ݊ can be written as  

௡௜ܺ௡ߨ ൌ
௜ݓ௜ܮ

ଵିఙ 	ቀ	
݀௡௜
௜ܣ
ቁ
ଵିఙ

∑ ௠ଵିఙݓ௠ܮ 	ቀ	
݀௡௠
௠ܣ

ቁ
ଵିఙ

௠∈ே

	ሺܴ௡ݓഥ௡ ൅  .	௡ሻܦ

Together with a simple parameterization of trade barriers given by ݀௡௜ ൌ ௡௜ݐݏ݅݀
ట 	݁̃௡௜, where 

 ௡௜ is the physical distance between locations ݊ and ݅, and ݁̃௡௜ a stochastic error term, thisݐݏ݅݀

equation can be estimated, controlling for labor and wages with exporter fixed effects, and for 

the denominator and expenditure with importer fixed effects (see appendix C). Using a Poisson 

Pseudo Maximum Likelihood (PPML) estimator, we obtain a composite parameter ߰ ሺ1 െ ሻߪ ൌ

	െ1.56.20 Making use of our assumption that ߪ ൌ 4 yields ߰ ൌ 0.52 and trade barriers can now 

directly be calculated using our parameterization. Once we have identified these bilateral trade 

barriers, the county level technology parameters ܣ௜ can also be recovered up to a proportionality 

factor from the ratio of bilateral trade shares and own share, 
గ೙೔
గ೙೙

ൌ
௅೔௪೔

భష഑	൬	
೏೙೔
ಲ೔
൰
భష഑

௅೙௪೙
భష഑	ቀ	 భ

ಲ೙
ቁ
భష഑. After 

imposing the normalization ܣ௡ ൌ 1, we obtain productivities of any location ݅ relative to 

location ݊ as ܣ௜ ൌ
ௗ೙೔	௪೔	

௪೙	
ቀగ೙೙	௅೔	
గ೙೔	௅೙	

ቁ
భ

భష഑. 

Bilateral trade barriers. Figure 4 displays the relationship between our calculated barriers and 

observable distances between counties. We expect distance to be strongly correlated with our 

measure of iceberg trading costs and indeed this is what figure 4 shows. 

We can also look at county level barriers with respect to a specific location. The left-hand panel 

of figure 5 depicts the implied barriers between all German counties exporting to Hamburg 

relative to barriers in Hamburg’s trade with itself. It is seen that trade barriers increase with 

distance to Hamburg, in general. However, barriers between far-away locations may effectively 

be low when locations are connected by railway lines or waterways or when there are 

                                                 
20 Using OLS instead of PPML and estimating our regression in log-linear form after dropping zero trade flows 
leads to a much higher coefficient of -2.04. This estimate, however, is biased in the presence of heteroskedasticity 
and zero trade flows. Moreover, it is also substantially larger than what is generally found in the literature. For this 
reason we deviate from Monte et al. (2018) and rely on PPML (rather than OLS) estimates in the following. 
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established personal, firm or cultural ties. The figure shows that there are some cities in the 

middle and south of Germany – Nuremberg, the bright small spot in the Southeast is a case in 

point – that feature very low trade frictions with Hamburg despite their considerable distance. 

Moreover, barriers with respect to cities are typically lower than with respect to rural areas. 

   
   Figure 4: Model consistent trade barriers and distance 

Local productivities. To look at the technology levels implied by the model we normalize 

productivity in Hamburg at 1 and depict all productivities relative to that in Hamburg in the 

right-hand panel of figure 5. Strikingly, with data from 2010 and thus almost 20 years after 

reunification, productivity levels in the east of Germany are – with the exception of some 

emerging cities – still considerably lower than in the rest of the country. In line with 

expectations, given observable trade flows, our model implies that cities in the south and west 

of Germany, as well as their surrounding areas are the most productive locations in the country. 

 
 

Trade barriers with respect to Hamburg Technologies with respect to Hamburg 

Figure 5:  Model consistent trade costs and technologies relative to Hamburg 
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5 Productivity Shocks and Local Employment Elasticities 

We now explore the workings of the German network of local labor markets by exposing the 

general equilibrium system to counterfactual local productivity shocks. We use the ‘exact hat’-

algebra popularized by Dekle et al. (2007).21 

5.1 County level analysis 

General equilibrium elasticities. We calculate 402 counterfactual equilibria, each 

representing a 5% productivity shock in one of the 402 German counties. Figure 6 shows the 

kernel densities of the resulting general equilibrium employment and resident elasticities in the 

counterfactually treated counties, with the 95% confidence intervals given by the shaded 

areas.22 The darker curves in the foreground show the results for a housing share of 10%; the 

lighter curves in the background show the results for a housing share of 40%.  

 
Figure 6:  Kernel densities of general equilibrium elasticities of employment and residents; the darker 

curves and confidence bands show the results for a housing share of 10%; the lighter curves in 
the background show the results for a housing share of 40%.  

An inspection of figure 6 shows that the general equilibrium employment elasticities across 

German counties are very heterogeneous, irrespective of the value of the budget share for land. 

Whilst 90% of employment elasticities are in a range from 1.67 to 2.93 when the housing share 

is at 0.4, the main range of this elasticities dramatically shifts up to 2.83 to 4.17 when the 

                                                 
21 Appendices A and B document the equilibrium system in changes well as the algorithm we use to obtain 
counterfactual equilibrium values. 
22 Given our counterfactual equilibrium these model consistent general equilibrium elasticities can be calculated 
as ൫ܮ෠௜ െ 1൯ ൫ܣመ௜ െ 1൯ൗ  and ൫ ෠ܴ௜ െ 1൯ ൫ܣመ௜ െ 1൯ൗ , respectively, where the relative change of a variable is denoted by 
a hat, ݔො ≡ ᇱݔ ⁄ݔ , and ݔᇱ is the value of a variable in the counterfactual equilibrium. Note that these counterfactual 
general equilibrium elasticities follow in a deterministic manner from the model, the depicted confidence bands 
relate to the estimation of the kernel density. 
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housing share is at 10%, our preferred parameter choice as we explained in section 4.2.23 Figure 

6 also shows that resident elasticities are higher with a lower housing share. 90% of the density 

mass lies in the range from 1.07 to 2.77 when the housing share is at 10% compared to a range 

from 0.37 to 0.78 for a housing share of 40%. These higher local employment and resident 

elasticities are in line with the intuition that the dispersion force in the model is much weaker 

with a lower housing share. A second finding is that, using a housing share of 40% for 

comparison with the United States, we find that almost no county in Germany has an 

employment elasticity below 1, in contrast to Monte et al. (2018). This points towards much 

stronger home market and commuting effects in Germany. Third, irrespective of the budget 

share devoted to housing, local employment and resident elasticities exhibit a very strong 

heterogeneity in Germany (similarly to the United States). This implies that seriously wrong 

conclusions would be drawn if some average elasticity across local labor markets were to be 

applied by (local) planners and policymakers. 

Explaining the general equilibrium elasticities. Obviously, differences in the elasticities of 

employment and residents can only stem from commuting. In the general equilibrium several 

mechanisms simultaneously drive the reaction of workers. Firstly, workers are attracted to the 

location that experiences a positive productivity shock because of the implied higher wages. 

When changing their workplace decision some workers, depending on their bilateral amenity 

draws, will prefer to move to the new location whereas others will commute to it. Secondly, 

lower prices due to the increased productivity will attract additional residents, some of which 

will also change their workplace whereas others, based on their amenity draws, will prefer to 

commute outwards. Thirdly, an increased number of residents drives up housing costs, a 

congestion effect. Fourthly, the general equilibrium is driven by spillover effects through 

commuting, that is, through changes in the number of workers and residents in untreated 

counties, and through trade linkages with untreated counties. 

We now enquire whether the employment and resident elasticities which reflect these complex 

general equilibrium repercussions can be predicted by the ex-ante observable measures that are 

suggested in Monte et al. (2018) and that work so powerfully in their analysis of the American 

economy. Table 3 presents the results of our regressions when the housing share is at 0.4 and 

table 4 reports the results when this share is at our preferred value of 0.1. The structure of the 

two tables is the same to ease comparison.  

                                                 
23 The average employment elasticity of 2.30 for a housing share of 0.4 is much above the average employment 
elasticity across US counties of 1.52 reported in Monte et al. (2018). 
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Column 1 regresses the employment elasticities on a constant capturing the mean across the 

402 German counties. Column 2 uses the log of the location’s employment as a measure for the 

size of the local labor market, in addition. Column 3 further adds the local wage and, as a 

measure of the local housing stock, ܪ௜, the number of flats in the county. Column 4 

complements these standard controls by adding the total workforce and the average wage which 

prevails in surrounding labor markets. We define these surrounding labor markets following 

Monte et al. (2018) as all counties with a distance of less than 120km from the county that is 

exposed to the productivity shock. For a housing share of 0.4, these standard controls explain 

up to 35% of the variation of employment elasticities, as indicated by the values of the R-

squared in table 3. Table 4 shows that the explanatory power of these standard controls only 

reaches about 8% when the housing parameter is at 0.1. 

The regressions reported in columns (5), (6) and (7) turn to explanatory variables which are 

model-based. Column (5) considers the share of a county's residents that also work in that 

county, ߣ௜௜|௜
ோ , as a baseline measure for commuting suggested by the model, where the definition 

௡௜|௡ߣ
ோ ≡

ఒ೙೔|ಈ೒
ఒ೙
ೃ  is used. The lower the own share ߣ௜௜|௜

ோ , the more open is a local labor market to 

commuting, hence, the higher is the expected elasticity of employment. Table 3 shows that this 

variable alone – along with the constant – explains over 87.9% of the variation in employment 

elasticities. An inspection of column 5 in table 4 shows that this inverse measure of commuting 

loses its explanatory power almost entirely when the housing share is at 0.1, however. 

Column 6 includes measures which build on three partial equilibrium elasticities of the model, 

the partial equilibrium elasticities of employment and residents with respect to wages, and the 

partial equilibrium elasticity of wages with respect to productivity.24 These partial equilibrium 

elasticities imply a measure of commuting linkages, ∑ ൫1 െ ௡௜|௡ߣ
ோ ൯ߴ௡௜௡∈ே , where ߴ௡௜ ≡

௡௜|௡ߣ
ோ ܴ௡/ܮ௜ indicates the fraction of the workforce in location ݅ that resides in ݊ and commutes 

to work in ݅, a measure of migration linkages ߴ௜௜ ൬
ఒ೔೔|ಈ೒
ఒ೔
ೃ െ ௜ߣ

௅൰, and as a measure of what Monte 

et al. (2018) call ‘trade linkages’, the partial equilibrium elasticity of wages with respect to 

productivity, 
డ௪೔

డ஺೔

஺೔
௪೔

. In column 7 the three measures of linkages are interacted by multiplying 

the previous commuting and migration linkage with the partial equilibrium elasticity of wages 

with respect to productivity. The explanatory power of the three measures considered in column 

                                                 
24 These partial equilibrium elasticities are derived from total differentiation of equations (9), (13) and (14) along 
with (7) and evaluating the result for a productivity change in one county. The values of all other endogenous 
variables, including productivities in other counties are held constant. 
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6 is similarly strong as the explanatory power of the own share ߣ௜௜|௜
ோ  when the housing share is 

at 0.4. Table 3 also shows that the explanatory power of the two combined measures in column 

7 is lower compared to the three mentioned measures from which they were formed, but the 

explanatory power still by far exceeds that of standard controls. Strikingly, the explanatory 

power of the model-based simple measures considered in columns 6 and 7 is much reduced 

when the housing share is at our preferred value of 0.1 (see table 4). In fact these measures now 

perform only little better than the set of standard controls considered in regression 4 (cf. the R-

squared of 0.08 compared to 0.25 in column 6). 

 
Table 3:  Analysis of the general equilibrium local employment elasticities in response to 5 percent 

 productivity shocks at the local level (counties) with an expenditure share of 40% for housing. 

In columns 8 and 9 we combine the standard controls with the measures inspired by the model. 

With a housing share of 0.4 this does slightly improve the R-squared in both cases, but even the 

specification which performs best, (8), only marginally surpasses the simple measure of own 

commuting. The R-squared also increases when the housing share is at 0.1. Specifications (8) 

and (9) have the highest explanatory power, although the R-squared is only around 0.3. 
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The upshot of our analysis is that the housing share dramatically affects the results. When a 

very high housing share is chosen as in Monte et al. (2018), model-based partial equilibrium 

measures, the simple inverse measure of openness, ߣ௜௜|௜
ோ , in particular, perform very well in 

explaining the heterogeneity of employment elasticities across counties, and these measures 

outperform standard controls by far. When the housing share is at our preferred value of 0.1, 

the simplest measure, the own commuting share, loses its explanatory power, however. The 

simple model-based partial equilibrium measures retain some explanatory power, but it is much 

lower. The best performance is achieved when the model-based partial equilibrium elasticities 

are combined with standard labor market controls. These findings can be rationalized by noting 

that the general equilibrium repercussions are far stronger with a low housing share, because 

the congestion force in the model is then much weaker. Simple partial equilibrium-based 

measures, however, capture these general equilibrium repercussions only imperfectly. This 

explains why the simple ex-ante measures work so powerfully in Monte et al. (2018) and so 

poorly in our preferred model. 

 
Table 4:  Analysis of the general equilibrium local employment elasticities in response to 5% 

 productivity shocks at the local level (counties) with an expenditure share of 10% for housing. 
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6.2 Commuting Zones 

General equilibrium elasticities. We now turn to the analysis of local productivity shocks for 

the 141 German commuting zones. Figure 7 depicts the kernel densities of the general 

equilibrium elasticities of employment and residents for commuting zones. The darker curves 

in the foreground show the results for a housing share of 0.1, the lighter curves in the 

background show the results for a housing share of 0.4. Figure 7 reveals that, similarly to the 

results with counties, general equilibrium employment and resident elasticities are substantially 

higher, when the housing parameter is 10% rather than 40%. With the lower housing share, 

90% of employment elasticities are in a range between 1.33 to 2.80, whereas this range is 1.30 

to 1.64 with a housing share of 40%. The intuition is as before: with a smaller expenditure share 

for housing, the role of housing costs as a congestion force is strongly diminished, implying 

that more workers will choose to migrate instead of commute to the treated labor market. 

A comparison of figure 6 for counties and figure 7 for commuting zones reveals that resident 

and employment elasticities are more similar for commuting zones. This captures the fact that 

commuting is more costly across commuting zones than across counties. Therefore, commuting 

to the treated location is more costly and fewer workers will choose to do so. Instead, when 

workers are attracted to the commuting zone which experiences a positive productivity shock 

they are more likely to completely relocate to the treated location instead of choosing to 

commute to it. Yet there still is a significant amount of commuting even across commuting 

zones, which explains the strong remaining heterogeneity in employment elasticities. 

   
Figure 7:  Kernel densities of general equilibrium elasticities of employment and residents (commuting 

zones): The darker curves and confidence bands show the results for a housing share of 10%; the 
lighter curves in the background show the results for a housing share of 40%.  
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Explaining general equilibrium elasticities. We now perform similar regressions for 

commuting zones as we did for counties in the previous sections. The results for a housing share 

of 0.4 are documented in table 5 in appendix E and table 6 in appendix E shows our regression 

results for a housing share of 0.1, our preferred value. Here we summarize our key findings. As 

with counties, when the housing share is at 0.4, standard controls perform much worse than the 

simple own commuting share or model based partial equilibrium elasticities. Furthermore, the 

best prediction of employment elasticities is still achieved by a combination of standard controls 

and model based partial equilibrium elasticities, although these outperform the simple own 

commuting share only marginally. 

Central to our analysis, the lower housing share again has a dramatic effect on the explanatory 

power of different specifications. The simple measure of own commuting which alone explains 

91% of the variation in employment elasticities with a high housing share now becomes an 

insignificant estimator altogether, with the R-squared marginally different from 0. Standard 

controls also perform extremely poorly and even the best specification, i.e. the combination of 

standard controls and partial equilibrium elasticities, can only explain slightly less than 40% of 

the observed variation in employment elasticities. Hence, while the effects of commuting are 

somewhat reduced in a scenario with commuting zones the central result remains unchanged: 

using our preferred specification of 0.1 for the housing share leads to stronger general 

equilibrium repercussions that are much more difficult to predict by ex-ante observable partial 

equilibrium estimators. 

6 Commuting Cost Reduction 

This section turns to an analysis of the economic effects of commuting cost reductions. For 

Germany, this is an important issue, because its transport infrastructure is in a miserable state, 

as we noted in the introduction. The counterfactual experiment that we pursue involves a 

corridor of symmetric reductions in commuting costs between all counties in Germany ranging 

from a reduction of 1% up to a reduction of 20%.25 Technically speaking, we set the change in 

the commuting costs ̂ߢ௡௜ equal to values from 0.99 to 0.8 for all pairs ݊ ് ݅. 

                                                 
25 Of course, other types of community reductions, in particular asymmetric ones which focus on county pairs 
where deficiencies in the transport infrastructure are biggest, could be easily dealt with. 
It should also be pointed out that we are unable to run the counterfactual highlighted in Monte et al. (2018), i.e. an 
analysis of the effects of empirically-observed reductions of commuting costs, since our commuting data do not 
have a time series dimension. 



26 
 

Figure 8 depicts the relative changes in expected welfare ෡ܷ in Germany which result from this 

corridor of shocks. The red curve presents welfare gains for a housing share of 10%, the blue 

curve the respective gains for a housing share of 40%. The gains with a smaller housing share 

are larger but only modestly so. Focusing on the case with a housing share of 10%, it can be 

seen that, on average, a one percentage point decrease in commuting costs raises welfare by 

about half a percentage point. The welfare gain amounts to about 4.5 percent as commuting 

costs are brought down to 0.90, for example. 

 

Figure 8:  Welfare effects of a symmetric commuting cost reduction: red: 10% housing share, blue: 40% 
housing share. 

Turning to the changes in commuting patterns induced by commuting cost reductions, we focus 

on the results for a 10% symmetric reduction in commuting costs. This change reduces the total 

share of non-commuters in the German population from 63.1% to 52.4% when the housing 

share is 10%, and to 53.1% when the housing share is 40%. Figure 9 depicts kernel densities 

for commuting distances before (black) and after the shock both with a housing share of 10% 

(red scenario) and a housing share in the blue scenario of 40%, where the area under the curves 

equals the share of commuters in all workers in each scenario. As expected the share of long 

commutes increases slightly while that of shorter commutes is reduced. 

Figure 10 focuses on the location effects of a symmetrical 10% reduction in commuting costs. 

The left panel depicts the relative change in employment, ܮ෠௡, and the right panel the relative 

changes in residencies, ෠ܴ௡, in each county. Two types of effects are visible. At a local level, the 

left-hand panel shows that the reduced commuting costs increase the number of workers in 

urban counties relative to those in surrounding locations because the reduction in commuting 

costs makes it cheaper to benefit from high wages due to agglomeration effects in cities while 

also profiting from lower housing costs in suburban locations. 
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Figure 9:  Kernel densities for commuting distances before (black) and after a 10% reduction in costs with 
a housing share of 10% (red curve) or a housing share of 40% (blue curve). 

At the macro level, the reduction in commuting costs also increases agglomeration of workers 

and residents. It is seen that several clustered groups of counties experience increases in both 

workers and residents (e.g. the wider area of Munich in South-Germany; the wider area of 

Frankfurt in the middle west part of Germany) while other such spatial groups see population 

outflows (e.g. the North-East). Intuitively, these patterns accord with our finding that 

agglomeration forces in Germany are quite strong because, under these circumstances, already 

large locations gain despite the fact that commuting costs are reduced in a symmetric fashion 

in our counterfactual.  

  

                    Relative change in workers, ܮ෠௡                    Relative change in residents, ෠ܴ௡ 

Figure 10:  Effects of a 10% symmetric reduction of between county commuting costs, housing share 0.1. 
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7 Conclusion 

This paper uses a quantitative spatial model with heterogeneous locations linked by costly 

goods trade, migration and commuting to shed light on the spatial fabrics and interactions of 

local labor markets in Germany. Unique data, a traffic forecast, in particular, allow us to put 

our analyses on a much more solid footing than extant work which had to impute bilateral trade 

shares among locations.  

One key contribution of this paper concerns the analysis of the role of the expenditure share of 

housing. We provide arguments that, for an economy-wide quantitative analysis, this share 

should be chosen lower than stipulated in much of the extant research.  

Our quantitative and empirical analyses show that the local employment and resident elasticities 

with respect to local productivity shocks are significantly higher, with a low housing share. This 

corresponds to the intuition, that under these circumstances, dispersion forces are much weaker. 

Moreover, simple ex-ante observable commuting measures turn out to have very little 

predictive power for these general equilibrium elasticities when the housing share is low. Quite 

intuitively, simple partial equilibrium based measures fail to capture the full general equilibrium 

effects that become stronger as the congestion force in the model becomes weaker. 

The housing share, in contrast, has little effect on the strong heterogeneity of employment and 

resident elasticities in response to local productivity shocks that we find for German local labor 

markets. Given this strong heterogeneity, seriously wrong conclusions would be drawn if some 

average elasticity across local labor markets were to be applied by policymakers and local 

planners. The housing share plays little role for the welfare and location effects of the 

counterfactual commuting cost reductions that we undertake for the German economy. 

Counterfactually reducing commuting costs our quantitative model predicts an increase in the 

number of resident workers in urban counties relative to those in surrounding locations and, at 

the macro level, increasing agglomeration. 
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Appendix 

A Equilibrium in changes 

We rewrite our equilibrium system in terms of changes. Following the literature, we use a prime 

to denote variables from a counterfactual scenario and a hat to denote the relative change of a 

variable, i.e. ݔො ൌ ௫ᇲ

௫
. The equilibrium system of equations (7) through (15), together with the 

price index of consumption and commuting shares thus becomes: 

ො௡௜ߨ ’(7) ൌ
ಽ෡೔
		ಷ෡೔	

	൬	
೏෡೙೔
ಲ෡೔
൰
భష഑

	௪ෝ೔
భష഑

∑ 	గ೙೘
ಽ෡೘
ಷ෡೘	

	൬	
೏෡೙೘
ಲ෡೘

൰
భష഑

	௪೘
భష഑

೘∈ಿ

 

௡̂݌ ’(8) ൌ 	
௪ෝ೙
஺෠೙	

ቂ 	௅෠೙
గෝ೙೙	ி෠೙	

	ቃ
భ

భష഑
 

(9)’ ∑ ො௡௜௡∈ேߨ 	௡௜ߨ ෠ܺ௡ܺ௡ ൌ  ௜ܮ௜ݓ෠௜ܮ	ෝ௜ݓ

 (10)’ ෠ܺ௡ܺ௡ ൌ 	ഥ෡௡ݓ ෠ܴ௡	ݓഥ௡	ܴ௡ ൅  ෡௡ܦ௡ܦ

ො௡ݍ ’(11) 	ൌ 	ഥ෡௡ݓ ෠ܴ௡ 

መ௡௜หஐ೒ߣ ’(12) 
ൌ

஻෠೙೔	୔෡౤
షച
	఑ෝ೙೔

షച௪ෝ೔
∈

∑ ∑ ఒ೘೗|ಈ೒஻෠೘೗	୔෡ౣ
షച
	఑ෝ೘೗

షച௪ෝ೗
∈

೗ചಈ೒೘∈ಈ೒

 

(13)’ 
௅෠೙	௅೙
௅ത೒

ൌ ∑ ௜௡|ஐ೒௜ఢஐ೒ߣመ௜௡|ஐ೒ߣ  

(14)’ 
ோ෠೙	ோ೙
௅ത೒

ൌ ∑ ௡௜|ஐ೒௜ఢஐ೒ߣመ௡௜|ஐ೒ߣ  

ഥ௡ݓഥ෡௡ݓ ’(15) ൌ ∑
஻෠೙೔఑ෝ೙೔

ష∈௪ෝ೔
∈
ఒ೙೔|ಈ೒

∑ ஻෠೙೘఑ෝ೙೘
ష∈௪ෝ೘

∈
೘ചಈ೒ ఒ೙೘|ಈ೒

௜ఢஐ೒ ∙ ෝ௜ݓ ∙  ௜ݓ

where P෡௡ 	ൌ ௡̂݌
ఈݍො௡

ଵିఈ 

B Algorithm 

For any shock defined by ܤ෠௡௜, ̂ߢ௡௜, ܨ෠௡, ܣመ௡, መ݀௡௜ for all ݊, ݅, and initial guesses for ݓෝ௜ and ߣመ௡௜|ஐ೒ 

we use our data for ݓഥ௡, ݓ௡, ܮ௡, ܴ௡, ߨ௡௜ and ߣ௡௜|ஐ೒ to solve the equilibrium in changes using 

the following algorithm. 

Step 1: We calculate new values for ܮ෠௡, ෠ܴ௡ and ݓഥ෡௡ using equations (13)’ through (15)’. 
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Step 2: Using the obtained values we derive changes in housing costs as ݍො௡ ൌ ෠ܴ௡ݓഥ෡௡ via 

 equation (11)’ and in trade shares as ߨො௡௜ ൌ
ಽ෡೔
ಷ෡೔
൬
೏෡೙೔
ಲ෡೔
௪ෝ೔൰

భష഑	

∑ గ೙೘
ಽ෡೘
ಷ෡೘

൬೏
෡೙೘
ಲ෡೘

௪ෝ೘൰
భష഑	

೘∈ಈ೒

. 

Step 3: Given the changes in trade shares we solve for changes in the consumer goods price 

 index via  ̂݌௡ ൌ
௪ෝ೙
஺෠೙
ቂ ௅෠೙
గෝ೙೙ி෠೙

ቃ
భ

భష഑	. 

Step 4: Given all new variables we solve for temporary values of ݓෝ௜
௧௠௣ and ߣመ௡௜

௧௠௣ using 

equations (9)’ and (10)’ in combined form, i.e. ݓෝ௜ ൌ
ଵ

௅෠೔
∑ ො௡௜ሺܴ௡ߨ௡௜ߨ ෠ܴ௡ݓഥ௡ݓഥ෡௡ ൅௡∈ே

 .’෡݊ሻ as well as equation (12)ܦ݊ܦ

Step 5: We update our guess for ݓෝ௜ to  ݓෝ௜ ൅ ෝ௜ݓ൫ߞ
௧௠௣ െ  መ௡௜|ஐ೒ toߣ ෝ௜൯ and our guess forݓ

መ௡௜|ஐ೒ߣ   ൅ ߞ ቀߣመ௡௜|ஐ೒
௧௠௣ െ መ௡௜|ஐ೒ቁ where 0ߣ ൏ ߞ ൏ 1 represents a dampening factor.26 

We repeat these steps until the equilibrium is reached with a sufficiently small tolerance, that 

is, until ݓෝ௜
௧௠௣ െ መ௡௜|ஐ೒ߣ ෝ௜ andݓ

௧௠௣ െ  .መ௡௜|ஐ೒ converge to 0ߣ

C Goods Trade 

Trade data. Trade data are based on a unique data set, the traffic forecast 

(‘Verkehrsverflechtungsprognose 2030’) administered by the German Federal Ministry of 

Transport and Digital Infrastructure. They contain the weight of goods shipped between 

German counties and their trade partners by ship, train or truck disaggregated across 25 product 

categories. Sources for the construction of the data set stem mainly from the respective agencies 

for rail- and waterways and from a representative weekly sample of truck shipments in 

Germany. Krebs (2018) provides an in-depth analysis of this data set, as well as the implied 

German interregional trade and production network.  

The main challenge in the initial data preparation is to move from shipments in terms of weight 

to trade in terms of value. The traditional approach to this type of problem uses unit values for 

shipped tons. At the broad level of product categories for which shipment data is available this 

                                                 
26 Throughout a broad range of counterfactuals ߞ ൌ 0.3 has proven to be an acceptable compromise between speed 
of convergence and preventing and overshooting of the algorithm. 
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implies, for example, that a ton of ‘transport equipment’ exports from a county that hosts car 

seat manufactures would be valued at the same price as exports from a county with engine 

producers. Hence, this assumption implies trade flow values that do not make sense to someone 

who is familiar with the German regional production structure. 

To avoid this problem, we follow the approach of Krebs (2018). Specifically, this paper uses 

further regional revenue data from the regional statistical offices and county sector level 

employment data from the Federal Institute of Labor Market Research (IAB) to calculate county 

sector level production values. 18 of the 25 product categories in the shipment data can be 

directly matched to the 12 agriculture, mining and manufacturing sectors for which county level 

revenue data can be calculated. Weight flows are then used to derive export shares at the county 

sector level and multiplied with the county sector revenues to derive trade values. To integrate 

world trade, all trade flows are rescaled to match the aggregate German exports to foreign 

locations given in the WIOD. Compared to the mentioned traditional approach of using national 

unit values to translate weight flows into value flows, this method has the key advantage that it 

accounts for the fact that goods in the same sector but from different counties can have very 

different values per ton. 

Krebs (2018) uses this trade matrix as a constraint in a multidimensional extension of the 

iterative proportionate fitting (also known as RAS) method and imputes service sector trade by 

gravity estimation to derive at a full interregional input output table at the level of 17 sectors 

for all German counties and 26 foreign countries.27 This input output table replicates observed 

German county level sectoral revenues, value added, and intermediate demand reported by the 

regional statistical offices and its aggregates for Germany are cell-by-cell compatible with the 

national and international data from the World Input Output Database (WIOD). It is hence 

strongly rooted in observable data and simultaneously allows us to obtain a detailed portrait of 

bilateral trade of goods between German counties. 

To ease the comparison with the study by Monte et al. (2018) we follow their specifications as 

closely as possible. Faced with the choice to include the imputed service trade flows into total 

trade values, to assume that all services are non-tradable, or to ignore the production of services 

altogether, we follow Monte et al. (2018) and adopt this final option. Hence, we make use of 

the regional input output table from Krebs (2018) but drop all service sector trade data before 

                                                 
27 Given an initial matrix, the RAS method finds a new matrix that, according to a valuation function, deviates as 
little as possible from the original matrix while satisfying given target values for row and column sums (see 
Bacharach (1970) for a detailed description). The multidimensional version extends this approach to 
multidimensional arrays while also allowing for more complex constraints on the target array. 
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aggregating trade flows to a single sector and all foreign countries to a single artificial rest of 

the world (ROW). 

Trade elasticity. Our county level shipment data allow us to directly calibrate our model 

instead of relying on estimates based on distance. In order to compare differences in the 

connection between trade barriers and distance in Germany with the US case studied in Monte 

et al. (2018) we do follow their analysis here and estimate the correlation based on our gravity 

equation. Assuming that the fixed input of labor is the same across locations (ܨ௜ ൌ ,݅	∀ ௠ܨ ݉	 ∈

ܰ) equation (7) becomes ߨ௡௜ ൌ
௅೔௪೔

భష഑	ሺ	ௗ೙೔ ஺೔⁄ ሻభష഑

∑ ௅೘௪೘
భష഑	ሺ		ௗ೙೘ ஺೘⁄ ሻభష഑೘∈ಿ

, so that trade flows from location ݅  to 

݊ can be written as  

௡௜ܺ௡ߨ ൌ
௜ݓ௜ܮ

ଵିఙ 	ቀ	
݀௡௜
௜ܣ
ቁ
ଵିఙ

∑ ௠ଵିఙݓ௠ܮ 	ቀ	
݀௡௠
௠ܣ

ቁ
ଵିఙ

௠∈ே

	ሺܴ௡ݓഥ௡ ൅  ,	௡ሻܦ

which in turn can be decomposed into exporter and importer specific effects as well bilateral 

barriers. Parameterizing trade barriers by ݀ ௡௜ ൌ ௡௜ݐݏ݅݀
ట ݁̃௡௜, where ݀  ௡௜ is the physical distanceݐݏ݅

between locations ݊ and ݅, ߰ ൐ 0 a parameter and ݁̃௡௜ a stochastic error term, we can write the 

above equation in its stochastic version as  

௡௜ܺ௡ߨ ൌ ௜ܵܯ௡݀݅ݐݏ௡௜
ሺଵିఙሻట݁௡௜	, 

where ܯ௡ and ܵ ௜ are importer and exporter fixed effects capturing their respective variables and 

݁௡௜ ≡ ݁̃௡௜
ሺଵିఙሻ is the adapted multiplicative error term. In figure C.1 we depict the conditional 

relationship between log trade flows and log distance, i.e. the correlation after cleaning importer 

fixed effects ܯ௡ and exporter fixed effects ௜ܵ from both variables.28  

Log linearizing the gravity equation to estimate via OLS commands that we have to drop all 

observations with zero trade flows biasing the results. Moreover, the figure indicates 

heteroscedasticity in the data leading to OLS becoming a biased estimator for our sought 

distance elasticity. While we report the results of this OLS estimation we therefore prefer to 

keep the gravity equation in its multiplicative form using PPML (see Santos Silva and Tenreyro 

2006 for a discussion of the problem and the PPML method) to estimate ሺ1 െ  .ሻ߰ߪ

                                                 
28 Specifically, for this figure we separately regress log ௡௜ܺ௡ and logߨ  ௡௜ on importer and exporter dummiesݐݏ݅݀
using OLS and dropping observations with 0 trade flows and then regress the residuals of the first regression on 
those of the latter. 
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Figure C.1: (Log) relationship between trade flows and distance after removing importer and exporter fixed 
  effects. 

The table shown below demonstrates that with ሺ1 െ ሻ߰ߪ ൌ െ1.56, in absolute terms, we obtain 

a slightly larger elasticity of trade flows with respect to barriers in Germany compared to the 

US. Given our assumption of ߪ ൌ 4 the effect of distance on barriers measured by ߰ is equal 

to 0.52 and thus slightly larger than in the US. 

 

D Commuting 

Our commuting data stem from the German Federal Employment Agency (‘Pendlerstatistik’) 

and are based on social security data. They contain bilateral flows between all 412 German 

counties in existence in 2010 of all workers with social security whose workplace differs from 

the registered residence. The commuting data excludes any self-employed workers or other 

workers without social security.  

Initial data preparation faces two challenges. Firstly, all commuting flows between two counties 

with less than 10 commuters are censored and indistinguishable from county pairs with no 

commuters, an issue that we tackle by imputing censored flows based on gravity estimates as 

explained below. Secondly, the raw data set is generated based on company reports of each 

worker's registered residence address as well as the county of the plant where she is employed. 
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This process is prone to reporting errors. Firms may wrongly report their headquarter or main 

plant instead of the actual plant of the worker's employment. Moreover, workers can be 

registered as residents at a main (‘Haupt-‘) and a secondary (‘Nebenwohnsitz’) address 

potentially introducing "fake" commuters to the data. Together, these issues lead to implausibly 

long commutes in the data and introduce systematic error. In response to this problem we 

assume that (very) long distance commutes in the data must consist exclusively of misreported 

values and use the information contained in the size of these flows to clean our data from 

misreporting as we explain below. 

Distance Threshold. Figure D.1 depicts the relationship between the log of uncensored 

commuting flows and the log of distance in the raw commuting data, where all flows are larger 

or equal to 10 and where implausible flows are reported for very long distances (for a commute 

on a daily basis). There is a strong sign of discontinuity at a commuting distance of 120 km, 

similar to the one found in Monte et al. (2018), which we interpret as a threshold for possible 

daily commutes.29 The OLS regression lines for all commuting flows below and above 120 km 

respectively have slopes of -2.89 and -0.07 and we take the low dependence on distance above 

120km as a sign of the data being (mostly) driven by misreporting instead of true commutes. 

    
Figure D.1: Commuting flows and distance between counties in the raw commuting data (log scale). 

                                                 
29 The easiest way to measure the distance between two counties is to take the great circle distance of their 
geometric centroids. This is problematic for German counties which often consist of a free city (‘Kreisfreie Stadt’) 
which is a county of its own, surrounded by a (roughly) ring shaped county. In this case the centroids of both 
counties can fall extremly close together leading to a misrepresentation of the average distance that commuters 
between those two locations face. For this reason we establish the bilateral distance between locations by 
calculating the mean of 10,000 pairwise distances between 100 random points in each of the counties. 
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We verify that this change in the slope of the regression persists after controlling for county 

size and further workplace and residence specific effects using origin and destination county 

fixed effects and we substantiate the threshold of 120 kilometers by running the following 

gravity specification for close and far commutes.30 

ሚ௡௜ߣ	      ൌ ௡௘௔௥൫ܫൣ ௜ܵ,௡௘௔௥ܯ௡,௡௘௔௥݀݅ݐݏఉ೙೐ೌೝ	൯ ൅ ሺ1 െ ௡௘௔௥ሻ൫ܫ ௜ܵ,௙௔௥ܯ௡,௙௔௥݀݅ݐݏ
ఉ೑ೌೝ	൯൧	݁௡௜    (D.1) 

where ߣሚ௡௜ is the flow of commuters who work in ݅ and live in ݊ in the raw data, ௜ܵ and ܯ௡ are 

workplace and residence fixed effects and ݁ ௡௜ is a multiplicative error term. ܫ௡௘௔௥ is an indicator 

variable that takes the value 1 if the distance ݀݅ݐݏ௡௜ between the two counties is smaller than 

some threshold. We estimate specification D.1 in its multiplicative form using PPML to account 

for a potential bias from heteroscedasticity (see Santos Silva and Tenreyro 2006 for a discussion 

of the problem and the PPML method). Figure D.2 reports the resulting coefficients ߚ௡௘௔௥ and 

 ௙௔௥ as well as their difference for threshold values ranging from 60 to 250 km (in steps ofߚ

5km). For very low threshold values both coefficients are strongly negative but with a rising 

threshold ߚ௙௔௥is quickly reduced in magnitude whereas ߚ௡௘௔௥ remains large and negative. For 

a threshold above 120km the difference remains relatively constant as both ߚ௙௔௥ and ߚ௡௘௔௥ 

shrink slightly in magnitude reassuring our choice of 120km as kink point. 

   
Figure D.2:  Coefficients for different commuting thresholds 

Censored Data. Next to commuting flows equal to or larger than 10 commuters our data set 

also provides aggregate commuter inflows to each workplace county originating in larger 

administrative areas (‘Regierungsbezirke’) or states that include flows censored on a county by 

                                                 
30 We also experiment with including quadratic logarithmic terms in this estimation to allow for a nonlinear effects 
of log distance. While we find significant coefficients for these terms, fitted values remain almost linear over the 
range in question and very little explanatory power is gained. 
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county level. These aggregate inflows allow us to calculate that for 2.78% of all commuters the 

residence county is censored in the data. However, while the number of affected commuters is 

small a large share of county pairs is affected. Specifically, 78% of all county pairs (24% of all 

county pairs with a distance of less than 120km) list no commuting flows in the data, implying 

that the flow is either truly 0 or censored for being below 10. Simply setting all unknown flows 

to 0, counting censored commuters as non-commuters or dropping them from the total number 

of workers, would thus vastly overstate the role of zero trade flows in our gravity estimations. 

Instead, for each workplace, we split the aggregate worker inflow with censored residence 

county contained in inflows from larger administrative areas across potential residence counties 

relying on the estimates from regression D.1. In particular, we begin by calculating fitted values 

 ሚመ௡௜ for commuting flows between censored county pairs based on our two part estimation fromߣ

above. As explained, the data set also allows to derive ∑ ሚ௡௜௜∈௠ߣ , the aggregate commuters to a 

destination county ݊ from a group ݉ of censored counties and we scale our fitted values to 

match these observations setting31 

ሚ௡௜|௜∈௠ߣ ൌ
መ௡௜ߣ

∑ መ௡௜௜∈௠ߣ
෍ߣሚ௡௜
௜∈௠

 

Figure D.3 again depicts the relationship between log commuters and log distances including 

our imputed values for censored flows.32 

  
Figure D.3: (Log) relationship between commuters and distance with imputed data for censored flows.  

                                                 
31 We ignore integer constraints for commuters in this procedure. 
32 Despite using fitted values from our initial estimations, flows for large distances lie on average far below the 
average of uncensored values. This can occur - and indeed is the main reason for – our rescaling to observed 
aggregate inflows. 
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Having derived all commuting flows, we combine our data set with information on total local 

employment from the German Institute for Labor Market Research (IAB) to derive the number 

of noncommuters in each county as the difference between local employment and total 

commuter inflow. 

Misreporting. As explained above, one interpretation of the observed discontinuity is that 

commuting flows above 120km are unlikely to be true commuting flows but instead originate 

from misreporting. Misreporting is independent from distance and hence the slope of the 

regression line beyond 120km is strongly reduced in magnitude. However, misreporting is not 

random, as, for example, counties that have many headquarters such as Munich or Berlin will 

more likely be wrongly attributed to commuters as workplace. While any such county specific 

effects are unproblematic for the estimation of a distance coefficient in our gravity equation 

with county fixed effects they do matter for the calibration of the model that takes commuting 

flows as inputs. Since misreporting also occurs for commutes below 120km distance, we make 

use of the information contained in misreported long distance commutes to clean the raw 

commuting data. Specifically, we split the raw data, as well as imputed flows into commutable 

and non-commutable county pairs. To that end, we assume that commuting can only occur for 

distances below 120km or if there exists a public transportation connection with less than 1 

hour and 45 minutes travel time between the largest cities in the two counties. Our main reason 

for including the latter criterion is that several important commutes between large cities occur 

via Germany's high speed rail network that often connects specific locations much faster than 

the highway system. A case in point is the commute between Germany's largest cities Hamburg 

and Berlin with a distance of about 290km and a road travel time of more than three hours but 

with a regular high speed train connection that only takes 1 hour and 45 minutes. We chose the 

travel time threshold such that this commute is still included also because it is similar to the 

expected road travel time for 120kms. 

Further, we assume that an equal share ߞ of all true commuting flows ߣ௡௜ is being misreported 

and that all flows among non-commutable county pairs consist purely of misreported 

commuters that are driven only by county specific factors such as the number of firm 

headquarters in the county. 

Our observed number of commuters in the raw data ߣሚ௡௜ can hence be decomposed as 

ሚ௡௜ߣ     ൌ ௡௜ߣ௖௢௠௠ሺܫ െ ௡௜ሻߣߞ ൅ ෩௡ܯ ሚܵ௜݁̃௡௜	,   (D.2) 

where ܫ௖௢௠௠ is a dummy that takes the value 1 if a flow is commutable and 0 otherwise, ܯ෩௡ 

and ܵ ሚ௜ are the origin and destination county specific effects determining the size of misreporting 
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and ݁̃௡௜ is a multiplicative error term. The first term on the left hand side is the number of true 

commuters reduced by the share ߞ that is wrongly attributed to some different county pair. The 

second term then adds commuters wrongly attributed to the county pair ݊݅ from somewhere 

else. 

We make use of the assumption that non-commutable flows consist only of misreporting to 

estimate  

ሚ௡௜|௡௢௡௖௢௠௠௨௧௔௕௟௘ߣ ൌ ෩௡ܯ ሚܵ௜݁̃௡௜ 

on the subsample of non-commutable flows, determining which counties are more likely to be 

miss specified as residence ܯ෩௡ or workplace ܵ ሚ௜ of a commuter. We can then calculate estimated 

(fitted) sizes of misreporting for commutable flows as ܯ෩෡௡ ሚܵ
መ
௜ and derive the “true” commuting 

flows from equation (D.2) as 

௡௜ߣ ൌ
ሚ௡௜|௖௢௠௠௨௧௔௕௟௘ߣ െ ෩௡ܯ ሚܵ௜݁̃௡௜

1 െ ߞ
		, 

where ߞ ൌ
∑ ெ෩೙ௌሚ೔௘̃೙೔೙,೔

∑ ఒ෩೙೔೙,೔
 is directly obtained as the share of all misreported flows in all observed 

flows and where we use the estimate of misreported flows ܯ෩෡௡ ሚܵ
መ
௜ instead of ܯ෩௡ ሚܵ௜݁̃௡௜ for all 

commutable county pairs.  

Figure D.3 depicts the tight (log) relationship between commuters and distance in our final 

cleaned commuting data after removing residence and workplace fixed effects. 

   
Figure D.3: Log commuting and log distance (residuals after removing county fixed effects) final data  

Commuting elasticity. Similar to the gravity estimation of goods trade above, we can use the 

commuting equation (12) to derive a gravity equation of commuter flows. We follow Monte et 

al. (2018) in defining the composite parameter ࣜ௡௜ ≡ ௡௜ߢ௡௜ܤ
ିఢ as a measure for the ease and 
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average attractivity of commuting between locations ݊ and ݅ and in assuming that, for the 

purpose of estimation, ࣜ௡௜ can be decomposed in the following way: ࣜ௡௜ ൌ ९௡९௜݀݅ݐݏ௡௜
టഊ९௡௜. 

The first and second term on the right hand side of this equation capture residence and 

workplace fixed effects respectively, distance is used to parameterize bilateral effects and ९௡௜ 

captures the residual. Taken together we can rewrite the gravity equation for commuting flows 

in its stochastic version as 

௡௜|ஐ೒ߣ ൌ ఒܵ,௜ܯఒ,௡݀݅ݐݏ௡௜
టഊ९௡௜	, 

where ఒܵ,௜ and ܯఒ,௡ capture all residence (exporter) and workplace (importer) specific effects. 

Log linearizing this specification, dropping observations with 0 commuters and estimating with 

OLS yields a coefficient of ߰ఒ ൌ െ3.86. However, both, dropping zeros and potential 

heteroscedasticity in the data, can bias the OLS results.  In contrast to goods trade there is no 

clear indication of heteroscedasticity in the data and the bias from estimation via OLS turns out 

to be small as estimating the gravity in commuting equation in its multiplicative form using 

PPML leads to a similar coefficient of -3.69. 

Finally we can extract the commuting elasticity ߳ by using the fact that from equation (12) 

residence fixed effects are given by ܵ ఒ,௜ ൌ ߳ logݓ௜. Fixing the estimate of ߰ ఒ ൌ െ3.69 we rerun 

our gravity in commuting equation, explicity specifiying the residence fixed effect this time. 

To further account for the potential endogeneity problem between wages and commuting 

inflows we follow Monte et al. (2018) and instrument wages ݓ௜ with the technology levels ܣ௜ 

obtained from our model inversion in section 5. Unfortunately, there is currently no consistent 

estimator that allows to estimate the gravity equation with an instrument variable specification 

and using fixed effects. However, our previous results showed that the bias introduced from the 

OLS estimator is small for our specific problem and we therefore feel confident in following 

Monte et al. (2018) in the estimation of the following log linearized version of our gravity 

equation with 2SLS after dropping observations with zero commuters. 

logߣ௡௜|ஐ೒ ൌ ߳ logݓ௜ ൅ logܯఒ,௡ ൅ ߰ఒ log ௡௜ݐݏ݅݀ ൅ log९௡௜	 

Our highly significant 2SLS estimate for ߳ is 4.24 with a clustered standard error of 0.224.33 

The fact that our estimate is substantially larger than for the US case is in line with our 

observation of stronger commuting flows in Germany.  

                                                 
33The validity of the instrument is underscored by an F-statistic of 358.5 in the first stage. 
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E Additional Tables 

 
Table 5:  Analysis of the general equilibrium local employment elasticities in response to 5 percent 

 productivity shocks at the local level (commuting zones) with an expenditure share of 40% for 
 housing. 
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Table 6:  Analysis of the general equilibrium local employment elasticities in response to 5% 

 productivity shocks at the local level (commuting zones) with an expenditure share of 10% for 
 housing. 
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Table 7:  Analysis of the general equilibrium local employment elasticities in response to 5% 
 productivity shocks at the local level (counties) with an expenditure share of 25% for 
 housing. 
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Table 8:  Analysis of the general equilibrium local employment elasticities in response to 5% 
 productivity shocks at the local level (commuting zones) with an expenditure share of 25% for 
 housing. 
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F Additional Figures 

    

Figure F.1:  Kernel densities of general equilibrium elasticities of employment and residents (counties) for a 
  housing share of 25% 

    

Figure F.2:  Kernel densities of general equilibrium elasticities of employment and residents (commuting 
  zones) for a housing share of 25%. 

 

 




