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This paper provides a novel approach to forecasting time series subject to discrete structural 
breaks. We propose a Bayesian estimation and prediction procedure that allows for the 
possibility of new breaks over the forecast horizon, taking account of the size and duration of 
past breaks (if any) by means of a hierarchical hidden Markov chain model. Predictions are 
formed by integrating over the hyper parameters from the meta distributions that characterize 
the stochastic break point process. In an application to US Treasury bill rates, we find that the 
method leads to better out-of-sample forecasts than alternative methods that ignore breaks, 
particularly at long horizons. 
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1 Introduction

Structural changes or �breaks�have been observed in many economic and
�nancial time series. In a study of a large set of macroeconomic time series,
Stock and Watson (1996) reported that the majority of the series displayed
evidence of instability.1 Such structural breaks pose a formidable challenge
to economic forecasting and have led authors such as Clements and Hendry
(1998, 1999) to view it as the main source of forecast failure.2

A key question that arises in the context of forecasting is how future values
of the time-series of interest might be a¤ected by breaks. If breaks occurred
in the past, surely they could also happen in the future. For forecasting
purposes a model of the stochastic process underlying the breaks is therefore
required to address questions such as howmany breaks are likely to occur over
the forecasting sample, how large such breaks will be and at which dates they
occur. Approaches that view breaks as being generated deterministically are
not applicable when forecasting future events unless, of course, future break
dates as well as the size of such breaks are known in advance. In most
applications this is not a plausible assumption and so a need arises to model
the stochastic process underlying the breaks.
In this paper we provide a general framework to forecasting time series

under structural breaks that is capable of handling the di¤erent scenarios
that arise once new breaks can occur over the forecast horizon. Allowing for
breaks complicates the forecasting problem considerably. To illustrate this,
consider the problem of forecasting some variable, y, h periods ahead using a
historical data sample fy1; ::::; yTg in which the conditional distribution of y
has been subject to a certain number of breaks. First suppose that it is either
known or assumed that no new break occurs between the end of the sample,
T , and the end of the forecast horizon, T+h. In this case yT+h can be forecast
based on the posterior parameter distribution from the last break segment.
Next, suppose that we allow for a single break which could occur in any one

1A small subset of the many papers that have reported evidence of breaks in economic
and �nancial time series includes Alogousko�s and Smith (1991), Ang and Bekaert (2002),
Garcia and Perron (1996), Koop and Potter (2001), Pastor and Stambaugh (2001), Pesaran
and Timmermann (2002) and Siliverstovs and van Dijk (2002).

2Clements and Hendry (1999) introduce their book as follows: �Economies evolve and
are subject to sudden shifts precipitated by legislative changes, economic policy, major
discoveries and political turmoil. Macroeconometric models are an imperfect tool for
forecasting this highly complicated and changing process. Ignoring these factors leads to
a wide discrepancy between theory and practice.�
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of the h di¤erent locations. Each scenario has a di¤erent probability assigned
to it that must be computed under the assumed breakpoint model. As the
number of potential breaks grows, the number of possible break locations
grows more than proportionally, complicating the problem even further.
Although breaks are found in most economic time-series, the likely paucity

of breaks in a given data sample means that it is important to see how much
can be learned about future breaks from the breaks that occurred in the past.
This is related to how similar the parameters are across various break seg-
ments. A narrow dispersion of the distribution of parameters across breaks
suggests that parameters from previous break segments contain considerable
information on the parameters after a subsequent break while a wider spread
suggests less commonality and more uncertainty.
To address this question we propose a hierarchical hidden Markov chain

(HMC) approach which assumes that the parameters within each break seg-
ment are drawn from some common meta distribution. Our approach pro-
vides a �exible way of using all the sample information to compute forecasts
that embody information on the size and frequency of past breaks instead
of discarding observations prior to the most recent break point. As new
regimes occur, the priors of the meta distribution are updated using Bayes�
rule. Furthermore, uncertainty about the number of break points during the
in-sample period can be integrated out by means of Bayesian model averaging
techniques.
Our breakpoint detection, model selection and estimation procedures

build on existing work in the Bayesian literature including Gelman et al
(2002), Inclan (1994), Kim, Nelson and Piger (2004), Koop (2003), McCul-
loch and Tsay (1993) and�most notably�Chib (1998). However, to handle
forecasting outside the data sample we extend existing papers by allowing
for the occurrence of random breaks drawn from the meta distribution. We
apply the proposed method in an empirical exercise that forecasts US Trea-
sury Bill rates out-of-sample. The results show the success of the Bayesian
hierarchical HMC method that accounts for the possibility of breaks over the
forecast horizon vis-a-vis procedures that ignore future breaks, particularly
at long forecast horizons.
The paper is organized as follows: Section 2 generalizes the hiddenMarkov

chain model of Chib (1998) by extending it with a hierarchical structure to
account for estimation of the parameters of the meta distribution. Section 3
explains how to forecast future realizations under di¤erent break point sce-
narios. Section 4 provides the empirical application and Section 5 concludes.
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2 Modeling the Break Process

Our break point model builds on the Hidden Markov Chain (HMC) for-
mulation of the multiple change point problem proposed by Chib (1998).
Breaks are captured through a state variable, St, that takes integer values
(1; 2; :::; K + 1) tracking the regime from which a particular observation, yt,
of some underlying stochastic process is drawn. Thus, st = l indicates that
yt has been drawn from f (ytj Yt�1;�l) ; where Yt = fy1; :::; ytg is the current
information set, �l = [�l; �

2
l ] represents the location and scale parameters

in regime l, i.e. �t = �l if � l�1 � t � � l and �K = f� 0; ::::; �K+1g is the
collection of break points.3

The state variable St is modeled as a discrete state �rst order Markov
process with the transition probability matrix constrained to re�ect a mul-
tiple change point model. At each point in time, St can either remain in
the current state or jump to the next state. Conditional on the presence of
K breaks in the in-sample period, the one-step-ahead transition probability
matrix takes the form

P =

0BBBBB@
p11 p12 0 : : : 0
0 p22 p23 : : : 0
...

...
...

...
...

0 : : : 0 pKK pK;K+1
0 0 : : : 0 1

1CCCCCA ; (1)

where pj�1;j = Pr (st = jj st�1 = j � 1) is the probability of moving to regime
j at time t given that the state at time t�1 is j�1. Note that pii+pi;i+1 = 1
and pK+1;K+1 = 1 due to the assumption of K breaks which means that -
conditional on K breaks occurring in the data sample - the process termi-
nates in state K + 1.4 Once we turn to out-of-sample forecasting, we show
how to relax this condition and integrate out uncertainty about the number
of breaks.
The regime switching model proposed by Hamilton (1988) arises as a

special case of this setup when the parameters after a break are drawn from
a discrete distribution with a �nite number of states. If identical states are

3Throughout the paper we assume that �0 = 0.
4Strictly speaking the transition probability matrix�and the other model parameters�

should be indexed by the number of breaks, K, i.e. PK . However, to keep the notation as
simple as possible we do not use this notation.
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known to recur, imposing this structure on the transition probability matrix
can lead to e¢ ciency gains as it can lower the number of parameters that need
to be estimated. Conversely, wrongly imposing the assumption of recurring
states will lead to inconsistent parameter estimates.
We assume that the non-zero elements of (1), pii, are independent of pjj,

j 6= i; and are drawn from a beta distribution,5

pii � Beta (a; b) , for i = 1; 2:::; K: (2)

The joint density of p = (p11; :::; pKK)0 is then given by

� (p) = cK

KY
i=1

p
(a�1)
ii (1� pii)(b�1) ; (3)

where cK = f� (a+ b) =� (a) � (b)gK . The parameters a and b can be speci-
�ed to re�ect any prior beliefs about the mean duration of each regime.6

Since we are interested in forecasting values of the time-series outside
the estimation sample, we extend this set up to a hierarchical break point
formulation (see Carlin et al. (1992)) by making use of meta distributions for
the unknown parameters. We do so by assuming that the coe¢ cient vector,
�j, and error term precision, ��2j , in each regime are drawn from common
distributions, �j � (b0;B0) and ��2j � (v0; d0), respectively, where b0 and v0
are the location and B0 and d0 the scale parameters of the two distributions.7

The assumption that the parameters are drawn from a meta distribution is
not very restrictive. For example, the pooled scenario (all parameters are
identical across regimes) and the regime-speci�c scenario (each regime has
di¤erent (own) parameters) can be seen as special cases. Which scenario
most closely represents the data can be inferred from the estimates of B0
and d0. To facilitate the analysis, we posit a hierarchical prior for the regime
coe¢ cients f�j; ��2j g using a random coe¢ cient model. The hierarchical
prior places structure on the di¤erences between regime coe¢ cients, but at
the same time posits that they come from a common distribution.

5Throughout the paper we use underscore bars (e.g. a) to denote parameters of a prior
density.

6Because the prior mean of pii equals p = a= (a+ b), the prior density of the regime
duration, d, is approximately � (d) = pd�1

�
1� p

�
with a mean of (a+ b) =b.

7We model the precision parameter because it is easier to deal with its distribution in
the hierarchical step.
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We assume that the (r+1)� 1 vectors of regime-speci�c coe¢ cients, �j,
j = 1; :::; K + 1 are independent draws from a normal distribution, �j �
N (b0;B0), while the regime error term precisions ��2j are IID draws from a
Gamma distribution, i.e. ��2j � G (v0; d0). At the next level of the hierarchy
we assume that

b0 � N
�
��;��

�
(4)

B�10 � W
�
v�;V

�1
�

�
(5)

where W (:) represents a Wishart distribution and ��, ��, v� and V
�1
� are

hyperparameters that need to be speci�ed a priori. Finally, following George
et al. (1993), the error term precision hyperparameters v0 and d0 are assumed
to follow an exponential and Gamma distribution, respectively:

v0 � Exp
�
�0

�
(6)

d0 � Gamma
�
c0; d0

�
(7)

and �0, c0 and d0 are their hyperparameters. Appendix A contains details of
the Gibbs sampler used to simulate our hierarchical HMC model.8

2.1 Model Comparisons Under Di¤erent Numbers of
Breaks

To assess howmany break points (K) the data supports, we estimate separate
models for a range of sensible numbers of break points and then compare the
results across models. A variety of classical and Bayesian approaches are
available to select the appropriate number of breaks in regression models.
A classical approach that treats the parameters of the di¤erent regimes as
given and unrelated has been advanced by Bai and Perron (1998, 2003). This
approach is not, however, suitable for forecasting as it does not account for
new regimes occurring after the end of the estimation sample.
Here we adopt the Bayesian approach developed by Chib (1995, 1996)

that is well suited for model comparisons under high dimensional parameter

8Maheu and Gordon (2004) also use a Bayesian method to forecasting under structural
breaks but assume that the post-break distribution is given by a subjective prior and do
not apply a hierarchical hidden Markov chain approach to update the prior distribution
after a break.
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spaces. Let the model with i breaks be denoted by Mi. The method obtains
an estimate for the marginal likelihood of each model f (yjMi) and ranks
the di¤erent models by means of their Bayes factors:

Bij =
f (yjMi)

f (yjMj)
;

where

f (yjMi) =
f (yjMi;�;p)� (�;pjMi)

� (�;pjMi; y)
; (8)

� =
�
�1; �

2
1; :::;�K+1; �

2
K+1;b0;B0; v0; d0

�
:

The unknown parameters, � and p can be replaced by maximum likelihood
estimates or their posterior means or modes. Large values of Bij indicate that
the data supports Mi over Mj (Je¤reys, 1961). Appendix B gives details of
how the three components of (8) are computed.

3 Posterior Predictive Distributions

In this section we show how to generate h step ahead out-of-sample forecasts
from the model proposed in Section 2. Our information set is given by data
up to the point of the prediction, T , i.e. YT = fy1; :::; yTg. Armed with
estimates of the break points and parameters in the di¤erent regimes, we
update the meta distribution and use this information to forecast future
values of y occurring after the end of our sample, T .
Conditional on YT , density or point forecasts of the y process h steps

ahead, yT+h; can be made under a range of scenarios depending on what
is assumed about the possibility of breaks over the period [T; T + h]. For
illustration we compare the �no break�and �break�scenarios. Under the �no
break� scenario yT+h can be forecast using only the posterior distribution
of the parameters from the last regime, f�K+1; �2K+1g. Under the �break�
scenario we allow for the possibility of multiple new breaks between T and
T + h. In the event of such breaks, forecasts of yT+h based solely on the
posterior distribution of �K+1 and �

2
K+1 will be biased and information about

the break process is required. To compute the probabilities of all possible
break dates, an estimate of the probability of staying in the last regime,
pK+1;K+1, is also required. The posited meta distribution for the regression
parameters, �j � (b0;B0), and the error term precisions, hj � (v0; d0),
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assumed in the hierarchical structure provide the distribution from which
the parameters of any new regimes over the forecast horizon are drawn.
Using the Markov chain property and conditioning on being in regime

K + 1 at time T , the probability of a break at time T + j is

Pr (sT+h = K + 2j �K+1 = T + j; sT = K + 1) = (1� pK+1;K+1) pjK+1;K+1;
(9)

where �K+1 2 [T + 1;T + h] tracks when break number K + 1 happens and
pK+1;K+1 is the probability of remaining in stateK+1.9 Notice that, for fore-
casting purposes, an estimate of the transition probability in the last regime,
pK+1;K+1, is required in order to compute the probability of a new break oc-
curring in the out-of-sample period. Hence, while the transition probability
matrix (1) conditional on K breaks in the in-sample period assumes that
pK+1;K+1 = 1, the second-stage out-of-sample forecast replaces (1) by the
following transition probability matrix

~P =

0BBBBBBBBB@

p11 p12 0 : : : 0
0 p22 p23 : : : 0
...

...
...

...
...

0 : : : 0 pKK pK;K+1
0 0 : : : 0 pK+1;K+1 pK+1;K+2
0 0 : : : 0 pK+2;K+2

. . .

1CCCCCCCCCA
; (10)

where the (K + 1) � (K + 1) sub-matrix in the upper left corner pertains
to the observed data sample, fy1; :::; yTg and is identical to (1) except for
the �nal element, pK+1;K+1 which in general is di¤erent from unity. The
remaining part of ~P describes the breakpoint dynamics in the out-of-sample
period.
We next show how forecasts are computed under di¤erent out-of-sample

scenarios before computing a composite forecast as a probability-weighted
average of the forecasts under each out-of-sample breakpoint scenario and
showing how to integrate out the uncertainty surrounding the number of
in-sample breaks.

9To simplify notation in the following, we do not explicitly condition posterior distrib-
utions on the �xed prior hyperparameters in (4)-(7).
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3.0.1 No Break in [T; T + h]

Suppose there is no break between T and T +h; so the new data is generated
from the last regime (K+1) in the observed sample. Then p (yT+hj sT+h = K + 1; yT )
is drawn fromR R

p
�
yT+hj�K+1; �2K+1; sT+h = K + 1;YT

�
��
�
�K+1; �

2
K+1

��b0;B0; v0; d0;p;ST ;YT � d�K+1d�2K+1;
where ST = (s1; :::; sT ) is the collection of values of the latent state variable
up to period T . We thus proceed as follows:

Obtain a draw from �
�
�K+1; �

2
K+1

��b0;B0; v0; d0;p;ST ;YT � ;
Draw yT+h from the posterior predictive density,

yT+h � p
�
yT+hj�K+1; �2K+1; sT+h = K + 1;YT

�
: (11)

3.0.2 Single Break in [T; T + h]

After a new break the process is generated under the parameters from regime
number K + 2. For a given break date, T + j (1 � j � h), we obtain
p (yT+hj sT+h = K + 2; �K+1 = T + j;YT ) fromZ

� � �
Z
p
�
yT+hj�K+2; �2K+2;b0;B0; v0; d0; sT+h = K + 2; �K+1 = T + j;YT

�
��
�
�K+2;b0;B0

��YT �� � ��2K+2; v0; d0��YT � d�K+2db0dB0d�2K+2dv0dd0:
To see how we update the posterior distributions of b0, B0, v0 and d0 in this
case, de�ne �1:K+1 =

�
�01; :::;�

0
K+1

�0
and �21:K+1 =

�
�21; :::; �

2
K+1

�0
. We then

proceed as follows:

Draw b0 from

b0 � �
�
b0j�1:K+1; �21:K+1;B0; v0; d0;p;ST ;YT

�
;

and B0 from

B0 � �
�
B0j�1:K+1; �21:K+1;b0; v0; d0;p;ST ;YT

�
:
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Draw v0 from

v0 � �
�
v0j�1:K+1; ��21:K+1;b0;B0; d0;p;ST ;YT

�
;

and d0 from

d0 � �
�
d0j�1:K+1; ��21:K+1;b0;B0; v0;p;ST ;YT

�
:

Draw �K+2 and hK+2 from their respective priors given by �
�
�K+2

��b0;B0�
and � (hK+2j v0; d0), respectively, for a �xed set of hyperparameters.

Draw yT+h from the posterior predictive density,

yT+h � p
�
yT+hj�K+2; �2K+2;b0;B0; v0; d0; sT+h = K + 2; �K+1 = T + j;YT

�
:

(12)

To obtain the estimate of pK+1;K+1 needed in (9), we combine information
from the last regime with prior information, assuming the prior pK+1;K+1 �
Beta(a; b), so

pK+1;K+1j YT � Beta(a+ nK+1;K+1; b+ 1) (13)

where nK+1;K+1 is the number of observations from regime K + 1.

3.0.3 Multiple Breaks in [T; T + h]

Assuming h � 2, we can readily extend the previous discussion to multiple
out-of-sample break points. When considering the possibility of two or more
breaks, we need an estimate of the probability of staying in regime K + j,
pK+j;K+j, j � 2. This is not needed for the single break case since � by
assumption � pK+2;K+2 is set equal to one. To this end we modify the
hierarchical HMC by adding a prior distribution for the hyperparameters a
and b of the transition probability,10

a � Gamma
�
a0; b0

�
; (14)

b � Gamma
�
a0; b0

�
:

10Following earlier notations, these parameters appear here without the underscore bar
since they will be estimated from the data.
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pii�values are now drawn from the conditional beta posterior

piij�; � ; y � Beta(a+ li; b+ 1);

where li = � i � � i�1 � 1 is the duration of regime i. The distribution for the
hyperparameters a and b is not conjugate so sampling is accomplished using
a Metropolis-Hasting step. The conditional posterior distribution for a is

� (aj�; � ;p; b;YT ) /
KQ
i=1

Beta (piij a; b)Gamma
�
aj a0; b0

�
:

To draw candidate values, we use a Gamma proposal distribution with shape
parameter &; mean equal to the previous draw ag

q (a�j ag) � G (&; &=ag) ;

and acceptance probability

� (a�j ag) = min
�
� (a�j�; � ; P; b; y) =q (a�j ag)
� (agj�; � ; P; b; y) =q (agj a�) ; 1

�
:

Using these new posterior distributions, we generate draws for pK+2;K+2 us-
ing the convolution of the prior distribution for the pii�s and the resulting
posterior densities for a and b;11

pK+2;K+2j a; b � Beta(a; b):

Allowing for two break points in the out-of-sample period, we get
h�1P
i=1

(h� i)

= h(h� 1)=2 possible break point locations and the weight assigned to such
scenarios is (assuming j � l � h)12

Pr (sT+h = K + 3j �K+2 = T + l; �K+1 = T + j; sT = K + 1)

= pjK+1;K+1 (1� pK+1;K+1) p
l�j�1
K+2;K+2 (1� pK+2;K+2) :

11In contrast to the case for pK+1;K+1, we do not have any information about the length
of regimeK+2 from the estimation sample and rely on prior information to get an estimate
for pK+2;K+2.

12To be more precise, only
h�1P
i=1

(h� i) combinations of two break points are considered,

while the remaining h + 1 cases correspond to the occurrence of zero or one new break.
The general weight for this case is pjK+1;K+1 (1� pK+1;K+1)

I(h>j)
p
(h�j�1)I(h�1>j)
K+2;K+2 , where

j = 0; :::; h � 1 is the break date and I (�) is the indicator function taking a value of 1 if
the inner argument is valid and zero otherwise.
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The extension to m > 2 break points is straightforward and the transition
probability for this case takes the form

Pr (sT+h = K +m+ 1j �K+m = T + z; :::; �K+2 = T + l; �K+1 = T + j; sT = K + 1)

=
mY
i=1

pdiK+i;K+i (1� pK+i;K+i) ; (15)

where di � 1 is the duration of regime K + i.

3.1 Combining the Forecasts using BayesianModel Av-
eraging

So far we have shown how to integrate out uncertainty about the number
of out-of-sample (future) breaks. However, we have not dealt with the fact
that we do not know the true number of in-sample breaks. To integrate
out the uncertainty about the number of in-sample breaks, we compute the
predictive density as a weighted average of the predictive densities under the
meta distributions, each of which conditions on a given value of K, using
the model posteriors as (relative) weights. To this end let pK(yT+hjYT ) �
p (yT+hj sT = K + 1;YT ) be the posterior density conditional on K breaks
having occurred at time t. Combining (9)-(11), we can integrate out the state
probability ST+h from the predictive densities and compute the posterior
predictive density that considers the forecasts under the no-break and break
scenarios as follows.

pK (yT+hj YT ) = Pr (sT+h = K + 1j YT )� p (yT+hj sT = K + 1; sT+h = K + 1;YT ) +
hP
j=1

Pr (sT+h = K + 2j �K+1 = T + j; sT = K + 1)

�p (yT+hj �K+1 = T + j; sT = K + 1; sT+h = K + 2;YT ) + (16)
h�m+1P
j=1

h�m+2P
l=j+1

:::
hP

m=l+1

Pr
�
sT+h= K +m+ 1j �K+m= T + l; :::; �K+1= T + j; sT= K + 1

�
�p (yT+hj �K+m = T + l; :::; �K+1 = T + j;YT ) :

This forecast conditions on the existence of K breaks in the in-sample
period that terminates at time T . However, in some applications there may
be considerable uncertainty surrounding the number of in-sample breaks and
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so it is reasonable to integrate out uncertainty about the right number of
break points in the data. We do this by means of Bayesian model averaging
techniques. This requires computing a weighted average of the composite
distributions based on the models that assume di¤erent values of sT . Let
Mk be the model that assumes k � 1 breaks at time T (i.e., sT = k). The
predictive density under the Bayesian model average is

p(yT+hjYT ) =
�KX

k=1

pk(yT+hjYT )p(MkjYT ); (17)

where �K is some upper limit on the largest number of breaks that is enter-
tained. The weights used in the average are given by the posterior model
probabilities:

p (Mkj y) / f (yjMk) p (Mk) (18)

where f (yjMk) is the marginal likelihood from (8) and p(Mk) is the prior
for model Mk.

4 Empirical Application

We apply the proposed methodology to model U.S. Treasury Bill rates, a
key economic variable of general interest. This variable is ideally suited for
our analysis since previous studies have documented structural instability
and regime changes in the underlying process, c.f. Ang and Bekaert (2002),
Garcia and Perron (1996) and Gray (1996).

4.1 Data

We analyze monthly data on the nominal three month US T-bill rate from
July 1947 through December 2002. Prior to the beginning of this sample
interest rates were �xed for a lengthy period so our data set is the longest
available post-war sample with variable interest rates. The data source is the
Center for Research in Security Prices at the Graduate School of Business,
University of Chicago. T-bill yields are computed from the average of bid
and ask prices and are continuously compounded 365 day rates. Figure 1
plots the monthly yields. We divide the data into two parts. Observations
from the beginning of the sample through December 1997 are used as the
estimation sample, while data from January 1998 through December 2002
(60 observations) are used as the forecasting (out-of-sample) period.
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4.2 Prior Elicitation and Posterior Inference

In Section 2 we speci�ed a beta distribution for the diagonal elements of
the transition probability matrix, a Normal-Wishart distribution for the
meta-distribution parameters of the regression coe¢ cients and a Gamma-
Exponential for the error term precision parameters. Implementation of our
method requires assigning values to the associated hyperparameters. For the
pii�s we assume a non-informative prior for all the diagonal elements of (1),
i.e., a = b = 0:5. For the Normal-Wishart distribution, we specify �� = 0,
�� = 1000 � Ir+1, v� = 2 and V� = Ir+1, where 0 is an (r + 1� 1) vector
of zeros, while Ir+1 is the (r + 1� r + 1) identity matrix. These values re-
�ect no speci�c prior knowledge and are di¤use over sensible ranges of values
for both the Normal and Wishart distribution. Similarly, we set �0 = 0:01,
c0 = 1 and d0 = 0:01, allowing the prior for v0 and d0 to be uninformative
over the positive real line.
We also conducted a prior sensitivity analysis to ensure that the empiri-

cal results are robust to di¤erent prior beliefs. For the transition probability
matrix, P; we modi�ed a and b to account for a wide set of regime dura-
tions; we also changed the beta prior mean hyperparameters �� and ��,
and the regime error term precision hyperparameters c0, d0 and �0. In all
cases we found the HMC estimates were insensitive to changes in the prior
hyperparameters. More care is needed when dealing with the beta prior pre-
cision hyperparameter V�. For small values of its diagonal elements (less
than 0:5), the meta distribution for the regression coe¢ cients will not allow
enough variation across regimes, and as a consequence the regime regression
coe¢ cients are clustered around the mean of the meta-distribution, b0. Em-
pirical results were found to be robust for values of the diagonal elements of
V� greater than or equal to 1.

4.3 Model Estimates

In view of their empirical success and extensive use in forecasting13 we model
the process underlying T-bill rates fytg as an rth order autoregressive (AR)
13See Pesaran and Timmermann (2004) for further references to the literature on fore-

casts from AR models subject to breaks.
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model allowing for up to K breaks over the observed sample fy1; :::::; yTg:14

yt =

8>>><>>>:
�1;0 + �1;1yt�1 + :::+ �1;ryt�r + �1�t; t = 1; :::; � 1
�2;0 + �2;1yt�1 + :::+ �2;ryt�r + �2�t; t = � 1 + 1; :::; � 2
...
�K+1;0 + �K+1;1yt�1 + :::+ �K+1;ryt�r + �K+1�t; t = �K + 1; :::; T:

(19)
Within the class of AR processes, this speci�cation is quite general and allows
for intercept and slope shifts as well as changes in the error variances. Each
regime j , j = 1; :::K+1, is characterized by a vector of regression coe¢ cients,
�j =

�
�j;0; �j;1; :::�j;r

�0
, and an error term variance, �2j , for t = � j�1+1; :::; � j:

Following previous studies we consider �rst and second order autoregres-
sive speci�cations for the T-bill rate. The AR(1) model is our base spec-
i�cation and results for the AR(2) model are included to demonstrate the
robustness of our empirical �ndings. For each AR speci�cation we obtain a
di¤erent model by varying the number of breaks, K, and we rank these mod-
els by means of their marginal likelihoods computed using the Chib method
from Section 2.1. Table 1 reports maximized log-likelihood values, marginal
log-likelihoods and break dates for values of K ranging from zero to seven.
For both autoregressive speci�cations, the marginal log-likelihood is maxi-
mized at K = 6. The models with K = 7 break points obtain basically
the same marginal log-likelihood, suggesting that the additional break is not
supported by the data.
Figure 2 plots the posterior probability for the six break points under

the AR(1) model. Results are nearly identical for the AR(2) model. The
local unimodality of the posterior distributions shows that the break points
are generally precisely estimated.15 For the autoregressive models with six
break points, Tables 2, 3, 4 and 5 report the autoregressive parameters,
variance, transition probability and the average number of months spent in
each regime. In all regimes the interest rate is highly persistent and close to
a unit root process. The error term variance is particularly high for regime
5 (lasting from October 1982 to July 1989), and quite low for regimes 1 (Sep

14Although structural break tests often do not reveal the form of the instability, a widely
used class of models assumes that it can be well approximated by a sequence of discrete
structural breaks.
15In contrast, the plot for the model with seven break points (not shown here) had

a very wide posterior density for the 1969 break, providing further evidence against the
inclusion of an additional break point.
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1947 - Nov 1957), 3 (Jul 1960 - Sep 1966) and 7 (July 1989 - Dec 1997).
Tables 3 and 5 report prior parameter estimates, i.e. the meta distribution
parameters under the AR(1) and AR(2) models. For example, in the case of
the AR(1) speci�cation, the two meta distributions are

�j � N
�
0:1908
0:9438

;

�
0:2731 �0:0088

0:1981

��
;

��2j � Gamma (0:7748; 0:0431) :
>From the properties of the Gamma distribution, the mean of the precision
of the meta distribution is almost 18 and the standard error is around 20.
These values are consistent with the values of the inverse of the variance
estimates in Table 2.

4.4 Unit Root Dynamics

The persistent dynamics observed in some of the regimes may be a cause for
concern when calculating multi-step forecasts. Unit roots or even explosive
roots could a¤ect the meta distribution which averages parameter values
across the regimes. To deal with this problem, we propose the following
alternative constrained parameterization of the AR(1) model:

�yt+1 = �j�j � �jyt + �t+1; j = 1; :::; K + 1; (20)

where �t+1 � N(0; �2j). If �j = 0, the process has a unit root while if
0 < �j < 2, it is a stationary AR(1) model. Notably, in the case with a
unit root there is no drift irrespective of the value of �j. Assuming that the
process is stationary, its long run mean is simply �j.
We estimate our hierarchical HMC model under this new parameteriza-

tion. To avoid explosive roots and negative unconditional mean, we constrain
�j to lie in [0; 1] and �j to be strictly positive. We accomplish this by as-
suming that the priors for the regime regression parameters and error term
precisions are

�j � N (b0;B0) I
�
�j 2 A

�
; (21)

hj � G (v0; d0) ;
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with �j =
�
�j; �j

�0
, while the priors for the meta-distribution hyperparame-

ters in this case become

b0 � N
�
��;��

�
I (b0 2 A) (22)

B�10 � W
�
v�;V

�1
�

�
:

I (x 2 A) in (21) and (22) is an indicator function that equals 1 if x belongs
to A and is zero otherwise. A is the set [0;1) � (0; 1]. No changes are
needed in the priors for the meta-distribution hyperparameters of the error
term precision, v0 and d0. We obtain the same posterior densities as under
the unrestricted model although these distributions are now truncated due
to the inequality constraints.
Tables 6 and 7 report estimates assuming six breaks. The detected break

points are the same as those found for the unrestricted AR(1) model. To be
comparable to the earlier tables, the regime coe¢ cients and meta distribution
results refer to �j�j and 1� �j. For each regime and for the meta distribu-
tion, Table 6 shows the probability of a unit root, calculated as Pr

�
�j = 0

�
.

Regimes 1 and 3 are more likely to be non-stationary, both have a unit root
probability slightly higher than one third. This is also re�ected in the meta
distribution results, Pr (b0(2) = 1) = 0:38. Figure 3 shows the posterior den-
sities for the meta distribution parameters for the unrestricted and restricted
models.

4.5 Forecasts

We �nally turn to the calculation of out-of-sample predictive distributions.
We base our results on the model with six breaks occurring over the es-
timation sample, but later also present results based on Bayesian Model
Averaging across di¤erent numbers of breaks using (17) and (18). Attention
is restricted to the AR(1) speci�cation, since predictive distributions under
the AR(2) model are very similar. We start from the end of the in-sample
period T (December 1997) and compute predictive distributions for period
T + h (h = 1; ::; 60) under the scenarios described in section 3. To obtain
the predictive density under the no break scenario we use the information
from the last regime of the hierarchical HMC model. To gain intuition we
also show results under the meta distribution scenario which represents the
opposite extreme case and assumes that a single break occurs at the begin-
ning of the out-of-sample period, T + 1. This case draws a new vector of
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regression parameters and a new error term variance from the meta distrib-
ution. Finally, the hierarchical HMC forecast that allows for out-of-sample
breaks is based on the scenarios in (16). We refer to this as the �composite�
forecast. This forecast assumes uninformative priors for both a and b, with
a0 = 1 and b0 = 0:1. Di¤erent values for a0 and b0 were tried and the results
were found to be robust to changes in a0; b0.16

Figure 4 shows the weights on the �no break�model as a function of the
forecast horizon. One minus this quantity is the weight assigned to draws
from the meta distribution. As expected, the weight decreases monotonically
in the forecast horizon, h, implying that higher weight is given to parameters
drawn from the meta distribution the longer the forecast horizon and the
higher therefore the chance of experiencing a break prior to T + h:
Figure 5 plots the associated forecast densities. The forecast horizon

ranges from one to sixty months. As expected from the variance estimates
in Table 2, under no break the predictive density is concentrated around
its mean, while there is much more uncertainty under the meta distribution
which balances di¤erences in parameter estimates across the seven break seg-
ments. We also inspect graphically the performance of these forecasts. In
each panel the actual (realized) value of the T-bill rate for that period is
indicated by a vertical line. After year 2000, the Treasury bill rate declines
signi�cantly. In fact, a separate Hidden Markov Chain run restricted only to
the period 1998:01-2002:12 con�rmed that a break may have occurred at this
time. Consequently, after this period the forecasts from the no break model
are very poor while the composite model forecasts perform considerably bet-
ter. The last three panels in Figure 5 show that the no break forecasts are
upward biased and unable to capture the decline in the T-Bill rate while the
composite forecasts are more accurate.

4.6 Forecast Evaluation

We next investigate the performance of the no break and hierarchical HMC
models using the posterior predictive p-value approach. If the model �ts the
data reasonably well, realized values of the T-bill rate in the out-of-sample
period should not be too far out in the tails of the predictive density. To see

16The posterior means of the hyperparameters a and b are 28.54 and 0.83 while the
standard deviations are 17.26 and 0.44. The prior for the transition probabilities is, at
the posterior mean of a and b, a beta distribution with a mean of 0.9717 and a variance
of 0.0311.
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if this holds, for each of the models, M , we compute the percentile of the
realized value,

R yT+h
�1 p (zj YT ;M) dz and report how many times the model

yields posterior predictive p-values below 0.05 or above 0.95, viewing an over-
representation of such occurrences as evidence against a model.
Table 8 reports empirical results both for the full out-of-sample period,

1998:01-2002:12 and for the subperiod 2001:01-2002:12. We consider these
samples separately due to the evidence of a break around the end of 2000.
Forecasting performance is computed as averages across di¤erent horizons, h,
based on forecasts originating from period T (i.e. based on YT ). In both cases
the forecast density based on the composite model outperforms forecasts from
the model that assumes no new breaks. Results are particularly striking for
the second subsample where the no break density leads to poor predictions
two thirds of the time, while the composite model is never rejected.
We also computed root mean squared forecast errors under the no break

and composite models - using both the restricted and unrestricted versions
- based either on the posterior mean or the posterior mode of the density
forecast as our point forecast of the future T-bill rate. This is a popular
measure of forecasting performance. Table 9 shows that the composite model
produces more precise point forecasts than the no break model, both in the
restricted and unrestricted case. The constrained model seems to marginally
outperform the unconstrained one.
When compared to the performance of forecasts from classical approaches,

the root mean squared forecast error value of 1.36% from the composite
model is substantially below the value generated by forecasts based on esti-
mates from the full sample (2.06%), a �ve-year rolling window (2.00%) and
discounted least squares (2.04%), assuming a discount factor of 0.95.
One last issue that may be relevant when forecasting T-Bill rates is the

possible presence of autoregressive conditional heteroskedasticity (ARCH)
in the residuals. To some extent our approach deals with this by letting
the innovation variance vary across regimes so that the volatility parameter
e¤ectively follows a step function. To investigate if the normalized residuals
(scaled by the estimated standard deviation) still are heteroskedastic, we ran
Lagrange Multiplier (LM) tests, regressing the squared normalized residuals
on their lagged values. Even though some ARCH e¤ects remain in the scaled
residuals, after scaling the residuals we found that theR2 of the LM regression
was reduced from 16% to 2%.
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4.7 Uncertainty about the Number of in-sample Breaks

The empirical results presented thus far were computed from the hierarchical
HMC model under the assumption of six breaks in the in-sample period. One
can, however, argue that it is not reasonable to condition on the number of
breaks. We therefore explicitly consider models with di¤erent numbers of
break points, integrating out uncertainty about the number of break points
in the data by means of the Bayesian model averaging formulas (17)-(18).
Speci�cally, we consider between one and seven breaks in the data and assign
equal prior probabilities to each of these models.
Table 10 shows the posterior mass assigned to each of the models. A

probability mass close to zero is assigned to the models with �ve or fewer
break points while 82 and 18 percent of the posterior mass is assigned to the
models with six and seven break points, respectively.
Figure 6 plots the combined predictive density under Bayesian model

averaging along with the predictive density that conditions on six breaks.
The graphs reveal that the two densities are very similar. It is therefore not
surprising that the out-of-sample root mean squared forecast error values
obtained under the two approaches are basically the same and di¤er only
after the fourth decimal. This means that the forecasting results reported so
far are very robust to uncertainty about the number of in-sample breaks.

5 Conclusion

The key contribution of this paper has been to introduce a hierarchical hidden
Markov chain approach to model the meta distribution for the parameters
of the stochastic process underlying structural breaks. This allowed us to
forecast economic time series that are subject to structural breaks. Our
approach is quite general and can be implemented in di¤erent ways from
that assumed in the current paper. For example, the state transitions could
be allowed to depend on time-varying regressors tracking factors related to
uncertainty about institutional shifts or the likelihood of macroeconomic or
oil price shocks. When applied to autoregressive speci�cations for U.S. T-Bill
rates, an out-of-sample forecasting exercise found that our approach produces
better forecasts than methods that ignore the possibility of future breaks.
The simple �no new break�approach that forecasts using parameter esti-

mates solely from the last post-break period can be expected to perform well
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when the number of observations from the last regime is su¢ ciently large to
deliver precise parameter estimates, and the possibility of new breaks occur-
ring over the forecast horizon is very small, c.f. Pesaran and Timmermann
(2004). However, when forecasting many periods ahead or when breaks occur
relatively frequently�so the last break point is close to the end of the sample
and a new break is likely to occur shortly after the end of the estimation
sample� this approach is unlikely to produce satisfactory forecasts.
Intuition for why our approach appears to work quite well in forecasting

interest rates is that it e¤ectively shrinks the new parameters drawn after
a break towards the meta distribution. Shrinkage has widely been found to
be a useful device for improving forecasting performance in the presence of
parameter estimation and model uncertainty, c.f. Diebold and Pauly (1990),
Stock and Watson (2003), Garratt, Lee, Pesaran and Shin (2003), and Aiol�
and Timmermann (2004). Here it appears to work because the number of
breaks that can be identi�ed empirically tends to be small and the parameters
of the meta distribution from which such breaks are drawn is reasonably
precisely estimated.
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Appendix A. Gibbs Sampler for the Multiple Regime
Model

The posterior distribution of interest is � (�;p;ST j YT ), where

� =
�
�1; �

2
1; :::;�K+1; �

2
K+1;b0;B0; v0; d0

�
includes the K + 1 regime coe¢ cients and the prior locations and scales,
ST = (s1; :::; sT ) is the collection of values of the latent state variable,
YT = (y1; :::; yT )

0; and p = (p11; p22;:::; pKK)0 summarizes the unknown pa-
rameters of the transition probability matrix in (1). The Gibbs sampler
applied to our set up works as follows: First the states are simulated condi-
tional on the data, YT ; and the parameters and, second, the parameters are
simulated conditional on the data and ST . Speci�cally, the Gibbs sampling
is implemented by simulating the following set of conditional distributions:

1. � (ST j�;p;YT )

2. � (�; j YT ;p;ST )

3. � (pj ST )

where we have used the identity � (�;pj ST ;YT ) = � (�j YT ;p;ST )� (pj ST ),
noting that under our assumptions � (pj�;ST ;YT ) = � (pj ST ).
The simulation of the states ST requires �forward�and �backward�passes

through the data. De�ne St = (s1; :::; st) and St+1 = (st+1; :::; sT ) as the
state history up to time t and from time t to T , respectively. We partition
the states�joint density as follows:

p(sT�1j YT ; sT ;�;p)� � � � � p(stj YT ;St+1;�;p)� � � � � p(s1j YT ;S2;�;p):
(A1)

Chib (1995) shows that the generic element of (A1) can be decomposed as

p(stj YT ;St+1;�;p) / p(stj YT ;�;p)p(stj st�1;�;p); (A2)

where the normalizing constant is easily obtained since st takes only two val-
ues conditional on the value taken by st+1. The second term in (A2) is simply
the transition probability from the Markov chain. The �rst term can be com-
puted by a recursive calculation (the forward pass through the data) where,
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for given p(st�1j Yt�1;�;p), we obtain p(stj Yt;�;p) and p(st+1j Yt+1;�;p),
..., p(sT j Yt;�;p). Suppose p(st�1j Yt�1;�;p) is available, then

p(st = kj Yt;�;p) =
p(st = kj Yt�1;�;p)� f (ytj Yt�1;�k)
kX

l=k�1

p(st = lj Yt�1;�;p)� f (ytj Yt�1;�l)
;

where, for k = 1; 2; :::; K + 1;

p(st = kj Yt�1;�;p) =
kX

l=k�1

plk � p(st�1 = lj Yt�1;�;p);

and plk is the Markov transition probability.
For a given set of simulated states, ST , the data is partitioned into K +1

groups. To obtain the conditional distributions for the regression parameters,
prior locations and scales, note that the conditional distribution of the �j�s
are mutually independent with

�j
���2j ;b0;B0; v0; d0;p;ST ;YT � N ��j; V j� ;

where

Vj =
�
��2X0

jXj +B
�1
0

��1
; �j = Vj

�
��2X0

jyj +B
�1
0 b0

�
;

Xj is the matrix of observations on the regressors in regime j, and yj is the
vector of observations on the dependent variable in regime j:
De�ning �1:k+1 =

�
�01; :::;�

0
K+1

�0
and �21:k+1 =

�
�21; :::; �

2
K+1

�0
, the densi-

ties of the location and scale parameters of the regression parameter meta-
distribution, b0 and B0, can be written

b0j�1:k+1;�21:k+1;B0; v0; d0;p;ST ;YT � N
�
��;��

�
B�10

���1:k+1;�21:k+1;b0; v0; d0;p;ST ;YT � W
�
v�;V

�1
�

�
;

where

�� =
�
��1� + (K + 1)B�10

��1
�� = ��

 
B�10

JP
j=1

�j +�
�1
� ��

!
;
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and

v� = v� + (K + 1)

V� =
JP
j=1

�
�j � b0

� �
�j � b0

�0
+V�:

Moving to the posterior for the precision parameters within each regime,
note that

��2j
���j;b0;B0; v0; d0;p;ST ;YT � G

0BBB@
v0 +

�jP
i=�j�1+1

(yi �Xi�i)
0 (yi �Xi�i)

2
;
d0 + nj
2

1CCCA ;
where nj is the number of observations assigned to regime j. The location
and scale parameters for the error term precision are then updated as follows:

v0j�1:k+1; ��21:k+1;b0;B0; d0;p;ST ;YT /
K+1Y
j=1

G
�
��2j
�� v0; d0�Exp�v0j �0�

(A3)

d0j�1:k+1; ��21:k+1;b0;B0; v0;p;ST ;YT � G
 
v0 (K + 1) + c0;

K+1X
j=1

��2j + d0

!

Drawing v0 from (A2) is slightly more complicated since we cannot make
use of any standard distributions. We therefore introduce a Metropolis-
Hastings (M-H) step in the Gibbs sampling algorithm. At each loop of the
Gibbs sampling we draw a value v�0 from a Gamma distributed candidate
generating density of the form

q
�
v�0j v

g�1
0

�
� G

�
&; &=vg�10

�
:

This candidate generating density is centered on the last accepted value
of v0 in the chain, v

g�1
0 , while the parameter & de�nes the variance of the

density and, as a by-product, the rejection in the M-H step. Higher values
of & mean a smaller variance for the candidate generating density and thus
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a smaller rejection rate. The acceptance probability is given by

�
�
v�0j v

g�1
0

�
= min

"
� (v�0j�; ��2;b0;B0; d0;p;ST ;YT ) =q

�
v�0j v

g�1
0

�
�
�
vg�10

���; ��2;b0;B0; d0;p;ST ;YT � =q �vg�10

�� v�0� ; 1
#
:

(A4)
With probability �

�
v�0j v

g�1
0

�
the candidate value v�0 is accepted as the

next value in the chain, while with probability
�
1� �

�
v�0j v

g�1
0

��
the chain

remains at vg�10 . The acceptance ratio penalizes and rejects values of v0
drawn from low posterior density areas.
Finally, p is easily simulated from � (pj ST ) since, under the beta prior

in (2) and given the simulated states, ST , the posterior distribution of pii is
Beta(a+nii; b+1) where nii is the number of one step transitions from state
i to state i in the sequence Sn.

Appendix B. Estimation of Break Point Model

This appendix provides details of how we implement the Chib (1995) method
for comparing models with di¤erent numbers of break points and how we
compute the di¤erent components of (8).
Consider the points (��;p�) in (�;p), which could be maximum likeli-

hood estimates or posterior means or modes. The likelihood function eval-
uated at �� and p� is available from the proposed parameterization of the
change point model and can be obtained as

log f (YT j��;p�) =
TX
t=1

log f (ytj Yt�1;��;p�) ;

where the one-step-ahead predictive density is

f (ytj Yt�1;��;p�) =
K+1X
k=1

f (ytj Yt�1;��;p�; st = k) p (st = kj Yt�1;��;p�) :

For simplicity we suppressed the model indicator. The prior density evaluated
at the posterior means or modes is easily computed since it is known in
advance. The denominator of (8) needs some explanation, however. We can
decompose the posterior density as

� (��; P �j YT ) = � (��j YT )� (p�j��;YT ) ;
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where

� (��j YT ) =
Z
� (��j YT ;ST ) p (ST j YT ) dST ;

and

� (p�j��;YT ) =
Z
� (p�j ST )� (ST j��;YT ) dST :

The �rst part can be estimated as b� (��j YT ) = G�1 GP
g=1

� (��j YT ;ST;g)

using G draws from the run of the Markov Chain Monte Carlo algorithm.
The second part � (p�j��;YT ) requires an additional simulation of the Gibbs
sampler for [ST;g]Gg=1 from � (ST j��;YT ). These draws are obtained by
adding steps at the end of the original Gibbs sampling in order to simulate
ST conditional on (YT ;��;p�) and p� conditional on (YT ;��;ST ).
The idea outlined above is easily extended to the case where the Gibbs

sampler divides � into B blocks, i.e. � = (�1;�2; :::;�B). Since

� (��j YT ) = � (��1j YT )� (��2j��1;YT ) � � ��
�
��Bj��1; :::;��B�1;YT

�
;

we can use di¤erent Gibbs sampling steps to calculate the posterior � (��j Y).
In our example we have �1 = �j, �2 = ��2j (j = 1; :::; K + 1), �3 = b0,
�4 = B0, �5 = v0 and �6 = d0. The Chib method can become computation-
ally demanding, but the various sampling steps all have the same structure.
For some of the blocks in the hierarchical Hidden Markov Chain model, the
full conditional densities are non-standard, and sampling requires the use of
the Metropolis-Hastings algorithm (see for example the precision prior hyper-
parameter v0). The original Chib 1995 algorithm is then modi�ed following
Chib and Jeliazkov (2001).

27



Figure 1: Monthly T-Bill rates, 1947:7 - 2002:12.
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Figure 2: Posterior probability of break occurrence for the AR(1) model, assumingK = 6
breaks.
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Figure 3: Posterior density of the meta distribution parameters b0 under the uncon-
strained (dashed line) and constrained (solid line) models.
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Figure 4: Posterior probability of staying in regime K + 1 at time T + h,
Pr (sT+h = K + 1j sT = K + 1). h is the forecast horizon and ranges from 1 to 60 months.
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Figure 5: Predictive densities under three models for the T-Bill series. The graphs show
the predictive distributions for the T-Bill series under various forecast horizons. The
dotted line represents the forecast assuming no break point in the new data by using only
the information from the last regime (assuming K=6), the solid line represents the �meta-
distribution�forecast under the assumption of a new break occuring immediately after the
end of the estimation sample, while the dash-dotted line is the predictive density from the
composite model.
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Figure 6: Composite predictive densities under Bayesian model averaging (dashed dotted
line) and under the model with six breaks (solid line).
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AR(1) model
No. of breaks Log lik.(LL) Marginal LL Break dates

0 -455.05 -485.93
1 -339.81 -433.86 Dec-69
2 -271.49 -339.18 Dec-69 Jun-85
3 -226.17 -318.50 Nov-69 Oct-79 Oct-82
4 -190.13 -336.56 Jun-53 Nov-69 Oct-79 Oct-82
5 -170.84 -331.28 Jun-53 Nov-69 Oct-79 Oct-82

Jul-89
6 -135.61 -310.87 Nov-57 Jul-60 Sep-66 Oct-79

Oct-82 Jul-89
7 -128.46 -312.37 Nov-57 Jul-60 Dec-65 Nov-69

Oct-79 Oct-82 Jul-89
AR(2) model

# of breaks Log lik. Marg log lik. Break dates
0 -449.57 -514.97
1 -514.79 -449.92 Nov-57
2 -320.58 -498.99 Nov-53 Nov-69
3 -213.18 -418.53 Nov-57 Oct-69 Sep-82
4 -186.63 -412.14 Jun-53 Nov-69 Oct-79 Sep-82
5 -172.81 -420.75 Nov-57 Jul-60 Dec-68 Oct-82

Jul-89
6 -128.45 -395.46 Nov-57 Jul-60 Sep-66 Oct-79

Sep-82 Jul-89
7 -120.94 -398.77 Nov-57 Jul-60 Dec-65 Oct-68

Oct-79 Sep-82 Jul-89

Table 1: Model comparison. This table shows the log likelihood and the marginal log
likelihood estimates for di¤erent numbers of breaks along with the time of the break points
for the di¤erent models. The top and bottom panels display results for the AR(1) and
AR(2) models, respectively.
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Parameter estimates
Regimes

1 2 3 4 5 6 7
Constant

Mean 0.020 0.267 0.020 0.224 0.396 0.247 0.121
s.e. 0.032 0.221 0.071 0.149 0.498 0.209 0.072

AR(1) coe¢ cient
Mean 1.002 0.886 1.005 0.968 0.958 0.967 0.971
s.e. 0.018 0.075 0.022 0.024 0.043 0.027 0.013

Variances
Mean 0.023 0.269 0.016 0.260 2.525 0.160 0.039
s.e. 0.003 0.077 0.003 0.029 0.687 0.027 0.006

Transition Probability matrix
Mean 0.988 0.958 0.980 0.990 0.965 0.981 1
s.e. 0.010 0.034 0.016 0.007 0.028 0.015 0

Mean dur. 120 37 72 156 37 84 99

Table 2: Posterior parameter estimates for the unconstrained AR(1) hierarchical Hidden
Markov Chain model with six break points.

Mean Parameters
Mean s.e. 95% conf interval

b0(1) 0.191 0.211 -0.209 0.633
b0(2) 0.944 0.161 0.619 1.220

Variance Parameters
Mean s.e.

B0(1; 1) 0.273 0.312
B0(2; 2) 0.198 0.147

Error term precision
Mean s.e. 95% conf interval

v0 0.775 0.344 0.260 1.500
d0 0.043 0.024 0.010 0.101

Table 3: Prior parameter estimates for the unconstrained AR(1) hierarchical Hidden
Markov Chain model with six break points.
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Parameter estimates
Regimes

1 2 3 4 5 6 7
Constant

Mean 0.023 0.300 0.009 0.208 0.572 0.290 0.108
s.e. 0.034 0.225 0.069 0.156 0.593 0.212 0.069

AR(1) coe¢ cient
Mean 1.044 1.040 0.950 0.934 1.153 1.098 1.267
s.e. 0.091 0.161 0.112 0.080 0.153 0.108 0.092

AR(2) coe¢ cient
Mean -0.045 -0.162 0.059 0.036 -0.208 -0.136 -0.292
s.e. 0.093 0.160 0.115 0.081 0.156 0.109 0.090

Variances
Mean 0.023 0.2591 0.015 0.260 2.468 0.160 0.035
s.e. 0.003 0.071 0.003 0.031 0.646 0.027 0.005

Transition Probability matrix
Mean 0.988 0.959 0.980 0.990 0.961 0.982 1
s.e. 0.010 0.033 0.016 0.008 0.031 0.014 0

Table 4: Posterior parameter estimates for the unconstrained AR(2) hierarchical Hidden
Markov Chain model with six break points.

Mean Parameters
Mean s.e. 95% conf interval

b0(1) 0.215 0.259 -0.272 0.761
b0(2) 1.072 0.213 0.648 1.490
b0(3) -0.109 0.210 -0.522 0.308

Variance Parameters
Mean S.e.

B0(1; 1) 0.405 0.443
B0(2; 2) 0.289 0.261
B0(3; 3) 0.295 0.292

Error term precision
Mean S.e. 95% conf interval

v0 0.872 0.359 0.340 1.674
d0 0.047 0.025 0.011 0.109

Table 5: Prior parameter estimates for the unconstrained AR(2) hierarchical Hidden
Markov Chain model with six break points.
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Parameter estimates
Regimes

1 2 3 4 5 6 7
�j�j

Mean 0.029 0.293 0.055 0.241 0.534 0.281 0.126
s.e. 0.028 0.176 0.053 0.138 0.424 0.167 0.062

1� �j
Mean 0.991 0.882 0.990 0.965 0.947 0.963 0.970
s.e. 0.011 0.060 0.012 0.022 0.036 0.022 0.012

Pr
�
�j = 0

�
0.374 0.010 0.361 0.037 0.056 0.016 0.001

Variances
Mean 0.023 0.256 0.016 0.257 2.526 0.159 0.039
s.e. 0.003 0.071 0.003 0.030 0.653 0.026 0.006

Transition Probability matrix
Mean 0.988 0.960 0.980 0.990 0.962 0.982 1
s.e. 0.010 0.034 0.017 0.008 0.031 0.014 0

Mean dur. 120 37 72 156 37 84 99

Table 6: Posterior parameter estimates for the AR(1) hierarchical Hidden Markov Chain
model with six break points under the constrained parameterization in (19).

Mean Parameters
Mean s.e. 95% conf interval

b0(1) 0.173 0.198 0 0.650
b0(2) 0.914 0.112 0.627 1

Pr (b0(2) = 1) 0.383
Variance Parameters
Mean s.e.

B0(1; 1) 0.282 0.254
B0(2; 2) 0.189 0.140

Error term precision
Mean s.e. 95% conf interval

v0 0.858 0.359 0.335 1.677
d0 0.047 0.026 0.012 0.114

Table 7: Prior parameter estimates for the AR(1) hierarchical Hidden Markov Chain
model with six break points under the constrained parameterization in (19).
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Violations %
1998:01-2002:12 2001:01-2002:12

No break 0.350 0.667
Combined 0.183 0

Table 8: Percentage of times the posterior predictive p-value lies outside the 0.05-0.95
interval under the model assuming no new break points after the end of the sample and
the composite hierarchical Hidden Markov chain model.

Unconstrained Constrained
Posterior Mean

No break 1.575 1.579
Combined 1.366 1.363

Posterior Mode
No break 1.607 1.594
Combined 1.288 1.294

Table 9: Root mean squared forecast error for the posterior means and modes of the
predictive densities under the model assuming no new break points after the end of the
sample and the constrained and unconstrained composite hierarchical Hidden Markov
chain models.

# of breaks Posterior Prob
0 7.67E-77
1 3.15E-54
2 4.14E-13
3 3.97E-04
4 5.69E-12
5 1.12E-09
6 0.817
7 0.182

Table 10: Model Posterior Probabilities for di¤erent number of in sample break points.
The posterior probabilities are computed by means of the margial log likelihood of table
1.
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