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ABSTRACT
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Negotiating Cooperation under Uncertainty: 
Communication in Noisy, Indefinitely 
Repeated Interactions*

Case studies of cartels and recent theory suggest that repeated communication is key for 

stable cooperation in environments where signals about others’ actions are noisy. However, 

empirically the exact role of communication is not well understood. We study cooperation 

under different monitoring and communication structures in the laboratory. Under all 

monitoring structures - perfect, imperfect public, and imperfect private - communication 

boosts efficiency. However, under imperfect monitoring, where actions can only be observed 

with noise, cooperation is stable only when subjects can communicate before every round 

of the game. Beyond improving coordination, communication increases efficiency by 

making subjects’ play more lenient and forgiving. We further find clear evidence for the 

exchange of private information - the central role ascribed to communication in recent 

theoretical contributions.
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1 Introduction

Many social and economic relationships are characterized by repeated interactions in which the

behavior of partners is observable only with noise. Two examples are teamwork arrangements

in which workers repeatedly produce goods for each other, and cartels with repeated price-

setting by its members. How much effort a worker exerts in the production of the good cannot

be observed directly but only inferred from the good itself – a noisy signal (Sekiguchi, 1997;

Compte and Postlewaite, 2015). Likewise, whether or not other cartel members stick to a

collusive agreement cannot be observed directly but only inferred from noisy signals like own

sales in Stigler’s (1964) or the market price in Green and Porter’s (1984) seminal treatments

of oligopolies. The former is the classic example for imperfect private monitoring – own sales

can be observed only by the firm itself; the latter is the classic example for imperfect public

monitoring, the market price being publicly observable.

How cooperation can be sustained under imperfect monitoring has been the central topic

in the theory of infinitely repeated games for the last three decades. This literature identifies

communication as a key factor. However, a comprehensive empirical study of the effects

of communication on cooperation under the different monitoring structures is missing in

the literature. To fill this gap, we design a laboratory experiment with perfect, imperfect

public and imperfect private monitoring structures and different communication protocols.

To derive predictions, we extend the tool box that has been developed for perfect monitoring

games. We develop measures of strategic uncertainty and characterize the set of symmetric

memory-one belief-free equilibria for the imperfect monitoring structures. To study the

evolution of strategy choices over time, we extend Dal Bó and Fréchette’s (2011) strategy

frequency estimation method (SFEM). Our extension allows us to estimate the effects of

covariates on strategy choices. While these tools are side products of our investigation of

communication in the noisy prisoners’ dilemma, their applicability is not limited to the

characterization of our experimental design, and we explain how they can be used to analyze

other games as well.

In the theoretical literature, communication has played a particularly prominent role

in combination with private monitoring. For this monitoring structure it has been shown

that repeated communication opportunities can enlarge the set of achievable equilibria (Mat-

sushima, 1991; Ben-Porath and Kahneman, 1996; Compte, 1998; Kandori and Matsushima,

1998; Obara, 2009; Awaya and Krishna, 2016). Moreover, truthful communication equilibria,

in which players reveal their private signals, are evolutionarily stable, while the cooperative

equilibria without communication that have been analyzed in the literature are not (Heller,

2017). Pre-play communication is not sufficient for the existence of evolutionarily stable

equilibria under private monitoring. However, pre-play communication might nevertheless
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positively influence cooperation rates, for example by reducing strategic uncertainty through

improved coordination on efficient equilibria (Kartal and Müller, 2018). This role for com-

munication might be even more important in the other monitoring structures. For perfect

monitoring games with cooperative equilibria in relatively simple strategies, such as, grim-

trigger strategies, several studies have shown that without communication subjects often fail

to coordinate on any of these equilibria despite their simplicity. This suggests that pre-play

communication might help to establish cooperation.1 Under public monitoring, efficient

equilibria require the use of more complex strategies featuring leniency or forgivingness,

which makes coordination more complicated. As a consequence, communication might fail

to improve coordination on efficient equilibria because subjects could fail to identify and

communicate these strategies. Under private monitoring, any cooperative equilibrium without

repeated communication requires complicated mixing, which makes coordination with or

without pre-play communication extremely difficult; this led Compte and Postlewaite (2015)

to characterize them as “unrealistically complex and fragile” (p. 45).

Further roles for communication are discussed in the behavioral economics literature.

Promises, apologies, and threats of punishment influence cooperative behavior by building

or restoring trust in settings without noise (Charness and Dufwenberg, 2006; Utikal, 2012;

Fischbacher and Utikal, 2013; Camera et al., 2013; Cooper and Kühn, 2014a). If such effects

played a role in our setting, communication might entail more cooperation, leniency, and

forgivingness. However, it is not obvious that these findings will carry over to scenarios with

uncertainty. Several studies of settings with moral wiggle room show that subjects become

more selfish when their behavior is observable only with noise (e.g., Dana et al., 2007; Larson

and Capra, 2009). The imperfect monitoring of their actions gives them a disguise for less

moral behavior and might mute the role of image concerns (Bénabou and Tirole, 2006).

A number of case studies of cartels suggest that communication is crucial for stable

cooperation and point to different roles for communication. Genesove and Mullin (2001) note

in their account of the sugar-refining cartel that its weekly “[m]eetings were used to interpret

and adapt the agreement, coordinate on jointly profitable actions, and determine whether

cheating had occurred” (p. 379). Levenstein and Suslow (2006) review the empirical literature

on cartels and identify communication as a key ingredient of successful cartel organizations –

“not only to provide flexibility in the details of the agreement, but to build trust as well” (p. 67).

Finally, Harrington and Skrzypacz (2011), who study various cartel agreements, conclude

that truthful communication of sales is an important property of all of them. These accounts

suggest (i) that communication is crucial for cooperation in noisy environments, and (ii)

that, while the exchange of private information is very important, the role of communication

1See Dal Bó and Fréchette (2018a) for a comprehensive review of experimental studies of repeated games
without communication.
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is broader. However, relying on field data has its limitations for the study of cooperation

under imperfect monitoring since the noisy signals are often not observable for researchers.

Likewise, most cartel communication is not documented as such documents could be used

as evidence in legal cases.2 To overcome these limitations, researchers have begun to design

laboratory experiments. Several studies have explored the effects of communication and

tested predictions from renegotiation-proofness refinements (Pearce, 1987; Farrell and Maskin,

1989) in experiments without noise (Andersson and Wengström, 2012; Fonseca and Normann,

2012; Cooper and Kühn, 2014a) or imperfect public monitoring (Embrey et al., 2013). While

they offer important insights, which we discuss further in Section 2.2, these experiments do

not allow for a comparison of the use and the effects of communication across monitoring

structures.3

We employ an experimental (3 × 3) design varying both the communication and the

monitoring structure of the game. We study the following communication structures: (i)

no communication; (ii) pre-play communication, where subjects can chat with their partner

before the first round of an indefinitely repeated game, henceforth called a supergame; and

(iii) repeated communication, where subjects can chat with their partner before every round

of the supergame. The second treatment variable is the monitoring structure. We study (i)

perfect monitoring, (ii) imperfect public montoring, and (iii) imperfect private monitoring.

The game that we ask subjects to play is a noisy prisoner’s dilemma, similar to that studied

theoretically by Sekiguchi (1997) and Compte and Postlewaite (2015), and experimentally,

but without communication, by Aoyagi et al. (2018). In this variant of the prisoner’s dilemma,

signals are independent conditional on actions. Payoffs depend on own actions and received

signals, which are noisy reflections of the other player’s actions. Under perfect monitoring,

signals and actions are observed; under imperfect public monitoring, sent and received signals

are observed; and under private monitoring, only the received signals are observed.

We choose open chat as the mode of communication to avoid pushing communication

toward one of the many potential roles. Free-form communication is also the most natural

type and allows us to study its use and content. We set stage-game parameters that guarantee

the existence of cooperative and evolutionarily stable equilibria under private monitoring with

repeated communication, in which players truthfully reveal their private signals. As this is the

main role ascribed to communication in the theoretical literature, we put a special focus on the

exchange of private information in our analysis of the communication content. We also derive

2See Genesove and Mullin (2001), Andersson and Wengström (2007), and Cooper and Kühn (2014a) for
further discussion and examples of cartel cases.

3The only study that we are aware of that also studies communication under private monitoring is by
Arechar et al. (2017), who limit the message space in a way that allows subjects to report their intended
action but rules out any other form of communication. Camera et al. (2013) study communication in a setting
with random re-matching within groups after every round of the repeated game. Vespa and Wilson (2018)
study an indefinitely repeated version of a sender-receiver game (Crawford and Sobel, 1982).
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new theoretical measures of strategic uncertainty for the imperfect monitoring structures

to further characterize our set-up. According to these measures, strategic uncertainty is

high in our parametrization. To address the question of strategy choices, we adapt and

extend the widely used SFEM by Dal Bó and Fréchette (2011). Our approach, which is

based on the EM-algorithm (Dempster et al., 1977), allows us to infer the strategies from the

data rather than having to rely on a predefined set of strategies (for a similar approach see

Breitmoser, 2015; Backhaus and Breitmoser, 2018). This is particularly useful for private

monitoring, where theory predicts the use of behavioral strategies, which are not part of the

commonly used sets of (pure) candidate strategies. Moreover, we borrow from the literature

on latent-class regression models to derive a strategy estimation approach which accounts for

the effects of covariates on strategy choices. This allows us to study the evolution of strategy

choices over time by treating the supergame number as a covariate.

Our main results are the following: (1) With repeated communication, cooperation rates

are high and stable under all monitoring conditions, whereas they start high but decline much

more rapidly with pre-play communication if monitoring is imperfect. This corroborates

the importance of repeated communication for stable cooperation in these environments.

Under perfect monitoring, the additional benefit of repeated communication is much smaller.

(2) Cooperation rates in the pre-play communication treatments are much higher under all

monitoring structures than in the no communication treatments, especially at the beginning

of an interaction. This suggests that coordination via pre-play communication effectively

reduces strategic uncertainty – an interpretation that is corroborated by our analysis of the

communication content. (3) We find that subjects’ play becomes both more lenient and

more forgiving with communication; that the share of non-cooperative strategies declines very

quickly in the first three supergames; that communication is mainly used to share information

and to coordinate behavior; and that many subjects truthfully reveal their private signals

under private monitoring.

The rest of the paper is structured as follows. In the next section, we present the game

and its theoretical properties, and extend the theoretical predictors of cooperation to the

imperfect monitoring cases. In Section 3, we present the experimental design, state our

research questions, and discuss the methods used to tackle them. We turn to the experimental

results in Section 4. In the final part, Section 5, we discuss our key findings, the methods

that we developed, and draw conclusions.

2 The Repeated Prisoner’s Dilemma with Noise

Two players interact with each other in indefinitely many rounds of a supergame. Let δ

denote the fixed continuation probability after any given round. In every round, each of
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the two players can choose between two actions C or D. After both players have chosen an

action a ∈ {C,D}, a noisy process translates both actions into conditionally independent

signals. Each signal ω ∈ {c, d} corresponds to the chosen action with probability (1 − ε).
With probability ε, an error occurs and the action is translated into the wrong signal (C to d

and D to c). All aspects of this process, the conditional independence of signals as well as

the probability of an error are common knowledge. The payoff πi of player i from the current

round is defined by player i’s own action ai and the signal of the other player’s action ω−i.
4

We consider the following normalized expected stage-game payoffs of action profiles which

take the noise into account:

C D

C 1,1 −l,1+g

D 1+g,−l 0,0

Since g > 0 and l > 0 the stage game has the form of a prisoner’s dilemma. We consider three

different monitoring structures. Under perfect monitoring, each player i is informed about

the actions {ai, a−i} and the signals {ωi, ω−i}. Under imperfect public monitoring (Green

and Porter, 1984), players cannot observe the action of the other player and the information

set reduces to {ai, ωi, ω−i}. Under imperfect private monitoring (Stigler, 1964), players

also remain uninformed about ωi, the signal the other player receives, as the information

set reduces to {ai, ω−i}. The conditions for cooperative subgame-perfect equilibria (SPE)

under the perfect and public monitoring structures are well-known results of the theoretical

literature (see, e.g., Mailath and Samuelson, 2006). With perfect monitoring, players can

condition on the intended actions and support full cooperation using pure strategies if the

continuation probability δ is greater or equal to δSPE = g
1+g

. With public monitoring and

strategies conditioning only on the public signals the stricter condition δSPE = g
1−ε+(1−ε)2g

applies with reduced efficiency.5 With private monitoring, cooperation cannot be supported

by an SPE based on pure strategies and players have to rely on mixed (Bhaskar and Obara,

4This might reflect the interaction of two workers where each worker exerts low or high effort on the
production of a good for the other worker, and where whether the good is useful for the partner or not is
a noisy signal of effort (Sekiguchi, 1997). For an alternative but similar interpretation, see Compte and
Postlewaite (2015).

5The continuation probability must be high enough to defer a deviation in the state where both players
cooperate if both players play a grim-trigger strategy, which switches to defection for the remaining rounds
of the interaction when at least one player defected in the last period under perfect monitoring, or when
at least one signal was d under public monitoring. The long-run incentives of cooperation must be as least
as big as the immediate gains from defection which requires 1 + δ

1−δ ≥ 1 + g under perfect monitoring and
1

1−δ(1−ε)2 ≥
1+g

1−δε(1−ε) under public monitoring.
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2002; Sekiguchi, 1997) or behavioral strategies (Ely and Välimäki, 2002; Piccione, 2002).6

2.1 Predictors of Cooperation

Experimental evidence suggests that the SPE conditions are necessary but insufficient to

observe high levels of cooperation in the laboratory (for a survey see Dal Bó and Fréchette,

2018a). More accurate predictors of cooperation exist for the case of perfect monitoring.

We highlight the two most prominent predictors and provide their extensions to public and

private monitoring. The first is the basin of attraction of defection (BAD) (Dal Bó and

Fréchette, 2011), and the second is the δ-threshold by Blonski, Ockenfels and Spagnolo (2011)

with its strategic interpretation by Breitmoser (2015). Related to the latter, we also extend

the existence condition for equilibria in memory-one belief-free M1BF strategies (Ely and

Välimäki, 2002; Piccione, 2002), a class of strategies which is studied in both the theoretical

and experimental literature on repeated games (Breitmoser, 2015; Aoyagi et al., 2018; Heller,

2017). We extend Breitmoser’s (2012) existence condition of equilibria in M1BF strategies

which condition on actions to equilibria in M1BF strategies which condition on public signals

and on action-signal combinations, respectively.

Dal Bó and Fréchette (2011) develop the BAD as a predictor of cooperation and show that

it explains cooperation levels under perfect monitoring. In a mixed population of grim-trigger

(GRIM) and always defecting players (ALLD), the BAD is defined as the share of GRIM

which makes players indifferent between the two strategies. Let πDF denote the probability

of playing GRIM. Under perfect monitoring, indifference between GRIM and ALLD requires

π/(1− δ)− (1− π)l = π(1 + g). Hence, the BAD is defined as:

πDF =
l

l − g + δ
1−δ

In contrast to the SPE condition, the BAD also takes the sucker payoff −l into account. Dal

Bó and Fréchette (2011) interpret the BAD as the degree of strategic uncertainty associated

with cooperation, and note that setting πDF = 0.5 and solving for δ gives the δ-threshold

where cooperation becomes risk dominant in the spirit of Harsanyi and Selten (1988). The

BAD is inversely related to the frequency of cooperation observed in the laboratory (Dal Bó

and Fréchette, 2018a). The extension of the BAD to the imperfect monitoring structures is

straightforward and reveals that the strategic uncertainty of cooperation increases with noise.7

6Under private monitoring, players lack the public signal to coordinate behavior in such a way that
defection after a defection signal is a mutual best-response. Instead, players believing that the other player
cooperated and saw a cooperation signal with a high probability would want to ignore the bad signal. This
incentive to ignore bad signals undermines the necessary responsiveness of the strategy to defer defection.

7The extensions follow from the adaptation of the GRIM strategy to the imperfect monitoring structures,
where players play D if they already played D in the previous round or when the last signal was not cc (c)
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Whether the size of the BAD also predicts cooperation levels under imperfect monitoring is

an open empirical question.

Blonski et al. (2011) use an axiomatic approach to develop a predictor of cooperation:

the BOS-threshold. They use five axioms to identify a critical δ as a function of the three

incentives: the long-run incentive to cooperate ( δ
1−δ ), the short-run incentive to defect if the

opponent cooperates (g), and the short-run incentive to defect if the opponent defects as well

(l). The BOS-threshold is

δBOS =
g + l

1 + g + l

and corresponds to the BAD risk-dominance condition πDF = 0.5. Breitmoser (2015) shows

that the BOS-threshold has implications for the set of cooperative equilibrium strategies. It

is the existence condition of a sub-class of M1BF equilibria which are in semi-grim strategies.

He provides empirical evidence that behavior on both the aggregate and the individual level is

well summarized by these strategies (Breitmoser, 2015). The extensions of the BOS-threshold

to public and private monitoring show that the threshold increases with noise.8 To make it

transparent that these extensions are based on Breitmoser’s (2015) strategic interpretation

we call it the SG-threshold (for semi-GRIM).9

We complement these predictors of cooperation by deriving an existence condition for

equilibria in M1BF strategies – a class of belief-free equilibria that contains memory-one

semi-grim equilibria as a special case. Breitmoser (2012) defines the existence condition for

the case where the strategies condition on actions. We extend the condition to the case

where the strategies condition on the signals {ωi, ω−i} and the case where the strategies

condition on the action-signal combination {ai, ω−i}. The last two cases can be used to

support cooperation under imperfect monitoring. The M1BF strategies can be represented

by a vector of five cooperation probabilities which correspond to five possible memory-one

under public (private) monitoring. With public monitoring, indifference between GRIM and ALLD requires

π 1
1−δ(1−ε)2 − (1 − π) l

1−δε(1−ε) = π (1+g)
1−δε(1−ε) . Hence, the BAD is πDF = l

l−g+ δ((1−ε)2−ε(1−ε))
1−δ(1−ε)2

. With private

monitoring, indifference requires π 1+δε(1−ε)(1+g−l)/(1−δε)
1−δ(1−ε)2 − (1− π) l

1−δε = π (1+g)
1−δε and the BAD is given by

πDF = l

l−g+ δ((1−2ε)−ε(1−ε)(l−g))
1−δ(1−ε)2

. Note that under private monitoring (GRIM, GRIM) is not an equilibrium in

pure strategies (see footnote 7) but πDF equals the mixing probability in Sekiguchi’s (1997) construction of a
belief-based equilibrium.

8The extensions are g+l
(1−2ε)(1+g+l) for semi-grim strategies which condition on the public signals and

g+l
(1−2ε)1+(1−ε)(g+l) for semi-grim strategies which condition on action-signal combinations. See Appendix A

for details.
9It is not clear how to extend δBOS based on its underlying axioms. This would require the specification

of an upper bound on what is lost by picking the defective continuation equilibrium, instead of a cooperative
one with a symmetric Pareto-efficient outcome path. Strategy profiles which fulfill the latter characterization
are unknown under private monitoring.

7



histories. Let this vector be σ = (σ∅, σcc,σcd,σdc,σdd). The history (or state) cd, for instance,

prevails if the player in question cooperated in the last round and the other player defected.

σ∅ represents the initial cooperation probability, where ∅ represents the empty history in

round one. If the history is defined by the actions chosen in the last period (which is only

possible under perfect monitoring), the existence condition for M1BF equilibria is

δBF =
φ

1 + φ

where φ denotes the larger of the two values g and l. Note that if g ≥ l, the δBF threshold

corresponds to δSPE under perfect monitoring. If l > g, both conditions differ with δBF >

δSPE. The extensions to the cases where the strategies condition on the public signals-action

combinations reveal higher thresholds, which increase in the level of noise.10 For all three cases,

it can be shown that all M1BF equilibria exhibit the same pattern of cooperation probabilities

after the four non-empty memory-one histories (cc,cd,dc,dd) if and only if δ = δBF . We

call this behavior the threshold M1BF response (T1BF). However, at δ = δBF there exists

a continuum σ∅ ∈ (0, 1) of equilibrium strategies with T1BF since the initial cooperation

probability is a free parameter. The pattern of T1BF is defined by the stage-game parameters

in the same way for all three cases (but usually occurs at different values of δ). If l > g,

the response is a lenient form of tit-for-tat. If g > l, it is a forgiving form of GRIM. In the

frequently studied case g = l, it is the tit-for-tat response (see Appendix A).

2.2 Communication

Renegotiation-proofness refinements (Pearce, 1987; Farrell and Maskin, 1989) are the most

widely used tools to restrict the usually large set of equilibria in repeated games that allow

for cooperation. Weak renegotiation proofness (Farrell and Maskin, 1989) requires that

an equilibrium strategy profile must not have continuation values in any subgames that

are Pareto-dominated by the continuation values in another subgame – the idea being

that subjects would otherwise renegotiate away from the former to the latter. Equilibria

that support cooperation with strongly symmetric strategies, such as equilibria where both

players defect in the punishment state, do not survive this refinement because players would

otherwise renegotiate in this state and restart the game. However, weakly renegotiation-proof

cooperative equilibria often exist in the indefinitely repeated prisoner’s dilemma (van Damme,

1989). They require more complex behavior in the punishment phase, where players have

10For public signals, the condition is δBF = (1−ε)φ−εψ
(1−2ε)(1−2ε+(1−ε)φ−εψ) and for action-signal combinations it is

δBF = φ
1−2ε−εψ+(1−ε)φ where ψ stands for the smaller of the two values g and l. Note that with noise, the

conditions are equivalent only if g = l.
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to play asymmetrically. The player that has deviated must play C while the punisher plays

D. After a certain number of rounds, the punishment phase ends and play restarts with

mutual cooperation.11 Such an equilibrium is arguably more complicated to coordinate on,

which has led some authors to restrict attention to strongly-symmetric strategies. Embrey

et al. (2013), for example, adapt Pearce’s (1987) slightly different renegotiation-proofness

concept to derive predictions for a game with imperfect monitoring. In their variant of

renegotiation-proofness ”a candidate equilibrium would survive potential renegotiation if there

is no other perfect public equilibrium, using strongly symmetric two-state automata, that has a

larger expected value in the punishment state” (p.11). In addition to considering only strongly

symmetric strategies, they restrict their attention to perfect public equilibria. The reason

for this additional restriction is that renegotiation concepts rely on the existence of multiple

subgames, which requires that subjects condition their play on the public history. If subjects

instead condition on private histories, as they do in the belief-based equilibrium construction

by Sekiguchi (1997) or in belief-free equilibria (Piccione, 2002; Ely and Välimäki, 2002), the

only subgame is the entire game.

Predictions that are based on these refinements have been tested in a number of experimen-

tal studies with repeated communication. The results are mixed. Cooper and Kühn (2014a),

who study two-stage games, and Embrey et al. (2013) find no reduction in cooperation when

renegotiation-proofness predicts less cooperation.12 Andersson and Wengström (2012), also

studying a two-stage game with structured communication, find that pre-play messages are

more effective if renegotiation between the two periods is not possible. They observe slightly

lower cooperation rates with repeated as compared to pre-play communication. Cooper and

Kühn (2014a and 2014b) compare treatments with structured and free-form communication

via a chat interface, and find that cooperation rates are higher with free-form communication

(see also Bigoni et al., 2018; Kartal and Müller, 2018).

As discussed above, in the absence of communication there are only complicated equi-

librium constructions under private monitoring. However, when players can communicate

repeatedly, private signals can be reported, which creates a public history and thereby allows

for simpler and more stable equilibria (Heller, 2017). Such truthful communication equilibria

can exist if certain revelation constraints are fulfilled (Compte, 1998). The punishment stage

is constructed in a way that makes every player indifferent between truthfully reporting the

11For the existence of such equilibria l must not be too large relative to the value of returning to the CC
state, which obviously depends on δ. Otherwise, the return to CC is not attractive enough for the punished
to agree on playing C and receiving −l in the punishment phase. We derive renegotiation-proof equilibria in
Appendix A.

12Fonseca and Normann (2012), also studying a two-stage game, and Camera et al. (2013), studying a
game with random re-matching in groups after every round, find a positive rather than a negative effect of
repeated communication on cooperation. Neither of the two studies explicitly tests renegotiation-proofness
predictions.
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private signal and misreporting or staying silent. This requires that no player benefits or

suffers from entering the punishment phase in which the other player is punished.13 The

stability of these equilibria stems from the fact that they provide strict incentives for cooper-

ation, whereas the other equilibrium constructions by Sekiguchi (1997), Piccione (2002), or

Ely and Välimäki (2002) do not (see Heller, 2017).14

3 Experimental Design

Our experiment follows a 3 (monitoring: perfect, imperfect public, imperfect private) ×
3 (communication: none, pre-play, repeated) between-subject design with 9 experimental

treatments. We implement the three different monitoring conditions following Aoyagi et al.

(2018). Under perfect monitoring both players are informed about the intended actions

(ai, a−i) and the signals (ωi, ω−i). Under public monitoring, players are given the reduced

information set (ai, ωi, ω−i). Under private monitoring, players are informed only about

(ai, ω−i).

In addition to the three different monitoring conditions, we implement three different

communication conditions. The benchmark case is that of no communication (as in Aoyagi

et al., 2018). In the pre-play communication condition, subjects enter an open-chat commu-

nication stage before the first round of a supergame. The chat can be used by both players

of the current match to exchange messages for 120 seconds. In the repeated communication

condition, players additionally enter a communication stage before each of the following

rounds where they can exchange messages for 40 seconds.

To keep the length of the supergames constant between treatments, we generate two

sequences of supergames beforehand using a series of random numbers to determine the

length of each supergame.15 Both sequences are implemented for all treatments in different

13We show how such an equilibrium can be constructed in Appendix A.
14If signals are correlated, which is not the case in our set-up, truthful communication equilibria with strict

revelation constraints can be constructed (Kandori and Matsushima, 1998), and higher levels of efficiency
might be achievable by exploiting the informational content of the correlation (Awaya and Krishna, 2016).
Awaya and Krishna (2016) study a set-up with a fixed discount rate, whereas other studies have focused on
proving Folk theorems (Ben-Porath and Kahneman, 1996; Compte, 1998; Kandori and Matsushima, 1998;
Obara, 2009).

15We use the Stata random number generator with seeds 1 and 2 to create two series of uniformly distributed
random numbers between 0 and 1. The first supergame had x rounds if the xth random number was less
than or equal to 0.2 and all previous numbers were greater than 0.2. Then the first x random numbers
were deleted and the following numbers determined the length of the second supergame, and so forth. We
used the two series to determine the lengths of seven supergames each. The length of the two resulting
sequences of supergames are: SQ1 (11 3 5 1 5 2 11) and SQ2 (2 5 5 7 13 4 4). Average supergame lengths
were moderately longer than the expected length of five of the underlying geometric distribution (SQ1: 5.4;
SQ2: 5.7). Random termination is the most widely used way of implementing infinitely repeated games in
the lab. See Fréchette and Yuksel (2017) for a study of other implementation methods.
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sessions. At the end of every round of a supergame, subjects receive feedback about their

earnings and additional information which allows them to (imperfectly) monitor others’

decisions. The realized random number, which determines whether the supergame con-

tinues or not, is also displayed at the end of each round, and could thus be used as a

public randomization device. To allow for learning, each participant in our experiment plays

seven supergames with different partners. The matching proceeds as follows: we divide the

subjects of an experimental session into matching groups of 8–12 subjects. For the first

supergame, each subject is then randomly matched with another participant from their

matching group. After the termination of a supergame, participants are re-matched with a

new partner from their matching group who they did not interact with before. Subjects were

informed about this matching procedure. Before the start of the treatment, participants had

to answer control questions to check their understanding of the instructions (see Appendix D).

Table 1: Summary Statistics for the Experimental Treatments

Perfect Public Private

No Pre Rep No Pre Rep No Pre Rep

Sessions 2 2 2 3 3 4 2 3 3
Matching groups 6 6 6 6 6 6 6 6 6
Subjects 52 54 54 48 52 50 48 50 50
Mean group size 8.7 9.0 9.0 8.0 8.7 8.3 8.0 8.3 8.3

Notes: Mean group size indicates the average number of subjects who formed a matching group. The modal size of a
matching group was eight (44 groups). Seven groups were of size 10 and three of size 12. Subjects did not know the
exact size of their matching group.

We collected data from three matching groups per sequence-treatment combination, that is

from six matching groups per treatment. A total of 458 participants (average age 22, 60%

female) participated in the 24 sessions of our experiment at the LakeLab of the University of

Konstanz.16 The average earning was EUR 18, and the session length 75–90 minutes. Table

1 summarizes the distribution of sessions, subjects, matching groups and the average size of

the matching groups across experimental treatments.

3.1 Experimental Parameters

16The experiment was programmed in z-Tree (Fischbacher, 2007) and subjects were recruited via ORSEE
(Greiner, 2015).
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Figure 1: Stage-Game Parameters and Predictors of Cooperation

c d
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D 37 17

C D
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Perfect Public Private
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πDF 0.4 0.76 0.77
δSG 0.75 0.86 0.86
δBF 0.67 0.8 0.8

The upper left panel of Figure 1 shows the payoff that a subject receives in a round of a

supergame as a function of the action and the signal received about the other player’s action.

We use the same payoff structure, the same continuation probability of δ = 0.8 and the same

error probability of ε = 0.1 in all treatments. These values translate into expected stage-game

payoffs for actions depicted in the lower left panel.17

The right panel of Figure 1 shows the values of the predictors of cooperation which

result from the parameters. We choose the parameters for the following reasons: First,

the parameters are such that without communication we expect low levels of cooperation

under imperfect monitoring and a slightly higher but still low level under perfect monitoring.

These expectations are formed on the basis of our values of BAD and BOS (SG) and the

cooperation rates in other studies with different levels of BAD (BOS) as reviewed in (Dal Bó

and Fréchette, 2018a). This leaves scope for higher cooperation levels in the communication

treatments.18 Second, we want to focus on the main difference between the public and

private monitoring treatments identified in the theoretical literature. This is the possibility of

supporting cooperation based on pure strategies with public signals. We choose parameters,

which leads to a similar BAD with public and private monitoring. The parameters also

rule out that the set of equilibrium M1BF strategies is different between public and private

monitoring since no M1BF equilibria exists, where strategies condition on the public signals.19

Finally, we are interested in whether subjects use communication to transform the game

with private monitoring into one with public signals. Our parameters assure that equilibria

17Payoffs are in experimental currency units. The exchange rate was 50 ECU = EUR 1. Subjects saw both
representations of the stage-game at all times when making their decisions.

18Our no-communication treatments complement the treatments of Aoyagi et al. (2018) where the BAD
takes lower values of 0.03 (0.06), 0.15 (0.53), 0.13 (0.43) for perfect, public, private monitoring, in their low
(high) noise treatment, respectively.

19The threshold for the existence of these equilibria is δ = 0.85, whereas in our parametrization δ = 0.8.
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exist where players truthfully reveal their private signals under private monitoring. They also

assure the existence of renegotiation-proof cooperative equilibria under perfect and public

monitoring (see Appendix A).

3.2 Research Questions and Methods

We start with our research questions regarding cooperation rates and then turn to strategies

and communication content.

Question 1: Is repeated communication crucial for stable cooperation under private moni-

toring, but not under perfect or public monitoring, as recent theory suggests?

For the case of private monitoring, Heller (2017) shows that only defection can be sustained,

by any of the mechanisms discussed in the literature, as an equilibrium that survives his

weak stability criterion. He further shows that if players can communicate repeatedly, there

typically are cooperative truthful communication equilibria, which are weakly stable and even

survive the stronger criterion of evolutionary stability. In our parametrization, this is the case.

Moreover, stable cooperative equilibria also exist without communication under public and

perfect monitoring. We would thus expect a large positive effect of repeated communication

on cooperation under private monitoring, whereas high cooperation is already achievable in

stable equilibria without communication under public and perfect monitoring. In the latter

two monitoring structures, weak renegotiation-proofness (Farrell and Maskin, 1989) elimi-

nates cooperative equilibria in strongly symmetric strategies and repeated communication

might thus have a negative effect. However, there are cooperative equilibria that are weakly

renegotiation-proof. Finally, repeated communication might have an additional benefit under

imperfect monitoring where coordination on an efficient equilibrium is difficult and players

might need to revisit incomplete agreements after round one. To address Question 1, we

compare the average frequency of cooperation and the average stability of cooperation over

rounds between repeated and pre-play communication within the same monitoring structure.

Further, we compare the differences in stability across different monitoring structures.

Question 2: Does pre-play communication, that is, communication only before the first

round of the game, increase cooperation rates to the same extent under all three monitoring

structures?

According to our measures, strategic uncertainty is high in our parametrization in all three

monitoring structures. However, while strategic uncertainty has been shown to matter, at
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least under perfect monitoring without communication, it has also long been recognized that

communication can help coordination (e.g., Cooper et al., 1992; Rabin, 1994; Ellingsen and

Östling, 2010) and that coordination on a cooperative equilibrium would decrease strategic

uncertainty (Kartal and Müller, 2018). Therefore, we expect pre-play communication to

facilitate coordination and thereby to lower strategic uncertainty. However, while efficient

equilibria are easy to find in the perfect monitoring case, this task becomes a lot more

difficult under imperfect public monitoring. Even if players cooperate, bad signals occur

with positive probability and thus players will likely have to enter a phase of punishment

at some point. For this reason, simple punishments, such as “defect forever” after a bad

signal, are inefficient and players have to coordinate on lenient or forgiving strategy profiles

to reap a greater share of the potential gains of cooperation. With private monitoring it

becomes even more complicated. The equilibria that have been found and analyzed in the

literature are all mixed (or behavioral) strategy profiles, which are extremely hard to find,

and coordination on these equilibria seems highly unlikely (Compte and Postlewaite, 2015).

So, while we expect a positive effect of pre-play communication on cooperation rates across

all monitoring structures, compared to the no communication treatments, the effect might

be more pronounced under perfect monitoring than under imperfect monitoring, and more

pronounced under public than under private monitoring. To answer Question 2, we execute

the same test sequence outlined for Question 1 for the differences between pre-play and no

communication treatments. In addition, we measure coordination by the frequency of choices

of the same action within a matched pair in round one of a supergame, and compare these

frequencies between treatments.

Question 3: How do communication opportunities affect strategy choices in the different

monitoring structures, and what do subjects talk about?

Strategies Coordination on efficient equilibria and behavioral effects such as trust-building,

apologies, threats of punishment and anticipation of verbal punishment, could all lead to

more cooperativeness, leniency and forgivingness. To answer Question 3, we adapt and use

the SFEM by Dal Bó and Fréchette (2011) to explore the use of strategies in our treatments

(see Appendix B for details). We begin by characterizing the behavior of subjects in terms of

an average memory-one Markov strategy (as Breitmoser, 2015; Backhaus and Breitmoser,

2018). We interpret the probability of cooperation in the five possible memory-one states

(∅, cc, cd, dc, dd) in the following way. (1− σcc) is an estimate for the frequency of unjustified

defection since most cooperative strategies require cooperation in this state. σcd, σdc and

σdd give an estimate of the frequency of lenient behavior and forgiving behavior. σ∅ is

the probability of initial cooperation. Besides characterizing the average strategy, we also
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study the heterogeneity of strategy choices in our treatments. To this end, we estimate the

strategy shares of a set of pure strategies and three behavioral strategies in our treatments

using standard SFEM.20 Two of the behavioral strategies are motivated by Backhaus and

Breitmoser’s (2018) analysis, who present evidence suggesting that subjects play semi-grim

M1BF strategies, and further find that a small share of (noise) players randomize 50–50 in

all states. Taking these findings into account, we include a strategy “RAND” that predicts

a 50% cooperation probability after all histories. We also include a semi-grim strategy

“SGRIM” which starts with cooperation and cooperates with probability of 1 in the cc-state,

probability 0 in the dd-state, and probability 0.35 in the cd and dc states. The value 0.35

is the average cooperation probability that Backhaus and Breitmoser (2018) report for

these states in the lower panel of Table 1 of their paper.21 The third behavioral strategy

that we include is an equilibrium-M1BF strategy “M1BFeq” that starts with cooperation

in the first round. For the imperfect monitoring structures this is the T1BF strategy

(σ∅ = 1, σcc = 1, σcd = 0.5, σdc = 1, σdd = 0) which conditions on the own action and the

signal about the action of the partner in the previous round. For perfect monitoring, where

subjects are more likely to condition behavior on observed actions rather than signals, it

is (σ∅ = 1, σcc = 1, σcd = 0.75, σdc = 0.5, σdd = 0), which is the only equilibrium M1BF

strategy assuming that subjects cooperate after mutual cooperation, and defect after mutual

defection.22 We also study the evolution of strategy choices over the first three supergames

using a new procedure that we develop borrowing from the literature on latent-class regression

models (Dayton and Macready, 1988; Bandeen-Roche et al., 1997), which we describe in

more detail in Appendix B.23 A disadvantage of imposing a set of candidate strategies to

describe subjects behavior is that the results might be sensitive to the composition of the

candidate set. To assess the robustness of the SFEM results, we also infer behavioral and

pure strategies from the data and compare the results with those of the SFEM. Finally, we

also classify behavior into predefined strategies following Camera et al.’s (2012) approach.24

Communication Content We expect pre-play communication to be used for coordination.

Many other uses are conceivable (as discussed in the introduction) and this analysis will

therefore mainly be of an exploratory nature. However, under imperfect private monitoring,

20More precisely, we include all strategies from Fudenberg et al.’s (2012) study plus three behavioral
strategies. The strategies are described in Tables B1-B4 of Appendix B.

21We choose this value instead of estimating the probability from our data, as this would give the strategy
an additional free parameter and therefore an advantage over the other strategies in the set. In another
strategy estimation exercise, we infer response probabilities from the data but keep the number of free
parameters the same for all strategies.

22See Appendix A for the derivation of these equilibrium strategies.
23See Dvorak (2018) for an introduction to the R package stratEst which implements the method.
24Another approach to understanding strategy choices in indefinitely repeated games is direct elicitation of

strategies (Bruttel and Kamecke, 2011; Dal Bó and Fréchette, 2018b; Romero and Rosokha, 2018).
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we expect a very specific and important role for communication. The sharing of private

information is the key role ascribed to communication under private monitoring in the

recent theoretical literature (e.g., Compte, 1998; Kandori and Matsushima, 1998; Awaya and

Krishna, 2016; Heller, 2017). Two research assistants coded the content of communication

based on 72 sub-categories, from which we created five main categories (Tables C1 and C3

in Appendix C summarize the categories and sub-categories). The five main categories are

Coordination, Deliberation, Relationship, Information and Trivia. The coding was done on

the sub-category level for subject-round observations and multiple coding was possible. We

consider a coding as valid only if both raters independently indicated the same sub-category

for a subject-round observation. To get an overview of the use of communication across

treatments, we focus on the category level. For the more detailed analyses on information

sharing and communication after different histories we study the sub-categories.

4 Experimental Results

A common result in the experimental literature is that participants need a few supergames

to adapt their behavior to the experimental environment (e.g., Dal Bó, 2005). We also

observe a considerable amount of learning over supergames (see Figure 2). For our analyzes

of cooperation rates, we will therefore report results from the last three supergames, where

participants’ behavior has largely stabilized, in addition to the results from all supergames.

Our strategy estimations rely on the standard assumption of a stable distribution of strategies

across supergames. Therefore, we mainly focus on the last three supergames for these analyses.

However, we also study the evolution of strategy choices in the beginning of an experimental

session using our latent-class regression approach.

4.1 Cooperation

Figures 3 and 4 present two measures of cooperation: the average frequency of cooperation,

and the average stability of cooperation over rounds. We provide answers to Questions 1 and

2 based on these two figures. The reported p-values, pall (pl3), result from one-sided tests

based on estimations with two-way clustered standard errors at the participant-match level

(Cameron et al., 2011), including all (the last three) supergames.

Question 1: Is repeated communication crucial for stable cooperation under private moni-

toring, but not under perfect or public monitoring, as recent theory suggests?
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Figure 2: Evolution of Cooperation over Supergames
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Notes: The upper three panels display average cooperation rates in round one over the seven supergames.
The lower three panels display overall average cooperation rates in the seven supergames.

Figure 3: Average Frequency of Cooperation Across Treatments
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Notes: Bars show the relative frequency of cooperation. Whiskers depict two-way clustered standard
errors of the mean (clustered on subject and match).
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Figure 4: Stability of Cooperation over Rounds
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Notes: The graph depicts the frequency of cooperation over rounds averaged over all (left panel) or
the last three supergames (right panel). The number of observations from each subject differ over the
rounds because of the different lengths of the supergames (see footnote 16).

Figure 3 shows the average frequency of cooperation across the nine experimental treatments.

The depicted levels of cooperation mostly reflect the amount of cooperation observed in the

first four rounds, where each participants contributes two or three observations depending on

the sequence. The bars indicate that the mean cooperation level in treatments with repeated

communication is higher compared to the treatments with pre-play cooperation under all

three monitoring structures (perfect: pall < 0.01, pl3 = 0.02; public: pall < 0.01, pl3 < 0.01;

private: pall = 0.01, pl3 = 0.04). The size of the effect is largest under public monitoring

where the mean cooperation level is 17 percentage points higher (19 percentage points in the

last three supergames) with repeated communication. Differences in differences indicate that

the additional benefit of repeated communication does not differ significantly between the

perfect and the imperfect monitoring structures (perfect vs. public: pall = 0.42, pl3 = 0.49;

perfect vs. private: pall = 0.26, pl3 = 0.19). However, note that the difference-in-difference

test statistics become statistically significant, even at the 1% level, if we look at the last

supergame only. The reason is that cooperation rates with pre-play communication reach

the same level as with repeated communication under perfect monitoring, but not under

imperfect monitoring, toward the end of the experiment (see Figure 2).

Figure 4 shows the mean cooperation level over rounds. Data is shown until round 11 to

assure that each participant contributes at least one data point for every round. The lines il-

lustrate where differences between the repeated and pre-play communication treatments arise.

Cooperation levels in round one are all above 78% (91% in the last three supergames) with

communication, and do not differ much between treatments. With repeated communication,

cooperation levels are more stable over rounds compared to pre-play communication. The
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effect is much bigger in the imperfect monitoring treatments, where the average cooperation

level reduces by 31 percentage point under public (36 percentage points in the last three

supergames) and 35 percentage points under private monitoring (36 percentage points, last

three) over 11 rounds with pre-play communication but only by 8 percentage points under

public (13 percentage points, last three) and less than 1 percentage point under private

monitoring (12 percentage points, last three) with repeated communication. In contrast, if

monitoring is perfect, the average cooperation level only reduces by 10 percentage points

(9 percentage points, last three) with pre-play communication and does not decline at all

with repeated communication. To assess whether the differences are statistically significant,

we regress cooperation on the round number in probit regressions. Then we test differences

in the coefficients. The results indicate differences in the stability of cooperation between

pre-play and repeated communication in the treatments with imperfect monitoring (perfect:

pall = 0.15, pl3 = 0.34; public: pall < 0.01, pl3 = 0.18; private: pall < 0.01, pl3 = 0.08).

Moreover, the decline of cooperation rates with pre-play communication is steeper under

the imperfect monitoring treatments as compared to perfect monitoring (perfect vs. public:

pall = 0.01, pl3 < 0.13; perfect vs. private: pall < 0.01, pl3 = 0.06).

Question 2: Does pre-play communication increase cooperation rates to the same extent

under all three monitoring structures?

Figure 3 shows that the mean cooperation level in treatments with pre-play communication

is substantially higher compared to the treatments without cooperation under all three

monitoring structures (all monitoring treatments: pall < 0.01, pl3 < 0.01). The size of

the effect is largest under perfect monitoring where the mean cooperation level increases

by 53 percentage points (66 percentage points in the last three supergames) with pre-play

communication (public: 39 percentage points, 44 percentage points in the last three; private:

44 percentage points, 54 percentage points in the last three). Differences in differences

indicate that the effect of pre-play communication differs (in)significantly between perfect and

the imperfect public (private) monitoring (perfect vs. public: pall = 0.04, pl3 < 0.01; perfect

vs. private: pall < 0.12, pl3 = 0.06).25 These results corroborate that pre-play communication

is more effective under perfect monitoring where coordination is easier. This suggests that

the large differences between no communication and communication treatments, indeed,

stem from improved coordination on cooperation in the first round of a supergame in the

communication treatments. This impression is further substantiated by our communication

content analysis (see Section 4.2). Figure 5 further shows that the differences in the level

of coordination on the same action choice in round one increases under every monitoring

25Considering the last supergame only, both p-values are smaller than 0.01.
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structure as participants gain experience.

Finally, we briefly compare the no communication treatments. There are no differences

between perfect and imperfect monitoring structures without communication. Neither the

average cooperation level nor the stability of cooperation over rounds is affected by the

monitoring structure. Figure 4 shows that the average cooperation level declines over the

rounds of a supergame in the treatments without communication under all three monitoring

structures.

Figure 5: Coordination
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Notes: The graph depicts the evolution of coordination in round one over supergames. The lines
indicate the share of pairs, in which both participants choose the same action in round one.

4.2 Strategy Choices and Communication Content

Question 3: How do communication opportunities affect strategy choices in the different

monitoring structures, and what do participants talk about?

Strategies We begin by characterizing strategy choices in the last three supergames in

terms of memory-one behavioral strategies (see Appendix B for details). Table 2 shows the

average memory-one Markov strategy for each experimental treatment.26 In all treatments

with perfect monitoring, strategies condition on {ai, a−i}. In all treatments with imperfect

monitoring, strategies condition on {ai, ω−i}. The initial cooperation probability σ∅ reflects

the higher levels of cooperation in round one in treatments with communication. The measure

for unjustified defection (1−σcc) is generally low. The estimates for leniency σcd indicate more

leniency as one moves from no to pre-play to repeated communication. Since the state (cd) is

frequently observed in the communication treatments with imperfect monitoring the overall

26In Table B5 in Appendix B we report the average memory-one Markov strategies for all supergames.
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cooperation rate is sensitive to this parameter. Leniency increases under imperfect monitoring

as one moves from no to pre-play communication and further as one moves to repeated

communication. For the (dc)-state we see a similar pattern. Finally, the willingness to return

to cooperation in state (dd) is substantially higher with repeated communication, which

suggests that it is very difficult to return to mutual cooperation once this state is reached

unless participants can communicate. Under perfect monitoring, the average cooperation

rated in the asymmetric states σcd and σdc are close together, which replicates the findings

of Breitmoser (2015) and Backhaus and Breitmoser (2018), who analyze data from many

experiments and argue that participants play semi-grim M1BF strategies. Under the imperfect

monitoring structures, σcd is greater than σdc in all six treatments of our experiment. This

makes intuitive sense as the defect signal is noisy in these treatments while it is not under

perfect monitoring.

Table 2: Average Memory-One Markov Strategies

Perfect Public Private

No Pre Rep No Pre Rep No Pre Rep

σ∅ 0.38 0.98 1.00 0.28 0.92 0.97 0.43 0.96 0.98
(0.06) (0.01) (0.00) (0.05) (0.03) (0.02) (0.06) (0.02) (0.01)

σcc 0.95 0.99 0.99 0.91 0.90 0.96 0.95 0.96 0.96
(0.03) (0.00) (0.00) (0.03) (0.02) (0.01) (0.03) (0.01) (0.01)

σcd 0.26 0.56 0.57 0.43 0.68 0.79 0.43 0.59 0.73
(0.05) (0.16) (0.17) (0.06) (0.05) (0.05) (0.05) (0.06) (0.05)

σdc 0.34 0.67 0.57 0.17 0.34 0.50 0.10 0.56 0.63
(0.06) (0.20) (0.17) (0.05) (0.07) (0.09) (0.03) (0.08) (0.08)

σdd 0.05 0.00 0.75 0.08 0.14 0.34 0.04 0.07 0.37
(0.01) (0.00) (0.25) (0.02) (0.03) (0.12) (0.01) (0.04) (0.11)

lnL -355.8 -70.9 -54.8 -375.6 -407.0 -235.2 -304.3 -259.4 -242.1

Notes: The reported results summarize the average behavior in the last three supergames across the nine experimental
treatments. The behavior in each treatment is characterized based on a single memory-one Markov strategy. The reported
values indicate the probability of cooperation after the five possible memory-one histories ∅, cc, cd, dc, dd with bootstrapped
standard errors in parentheses (10000 repetitions).

To explore heterogeneity in strategy choices, we perform a treatment-wise strategy frequency

estimation (Dal Bó and Fréchette, 2011) of a standard candidate set of pure strategies

(Fudenberg et al., 2012), augmented by three M1BF strategies.27 For each of the nine

27The 23 strategies are illustrated in Tables B1-B4 of Appendix B. The set of strategies by Fudenberg
et al. (2012) has been used in a number of other studies (reviewed in Dal Bó and Fréchette, 2018a). In our
implementation, the strategies condition on the same information as in the estimation of Markov strategies.
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experimental treatments, the estimation procedure selects the subset of strategies which

describes participants’ behavior best according to the integrated completed likelihood criterion

(ICL, Biernacki et al., 2000). Table 3 shows the results. Confirming our interpretation of the

average memory-one Markov strategies, the shares of lenient and forgiving strategies increase

sharply with communication under all three monitoring structures. Interestingly, the three

behavioral strategies attract substantial shares.

A potential problem with SFEM is that observed behavior can be attributed only to

the candidate strategies considered, which leads to a misrepresentation if participants play

strategies that are not part of the set of candidate strategies (Dal Bó and Fréchette, 2018b).

To check the robustness of our results, we adapt our strategy inference method to infer rather

than impose a set of strategies which describe participants’ behavior best for each experimental

treatment.28 This can be done for behavioral as well as pure strategies. Tables B6 and

B7 in Appendix B show the inferred strategies and their shares for the nine experimental

treatments. The broad picture is the same as the one we saw with the other approaches.29

We also classified behavior into strategies following Camera et al.’s approach (2012). As these

results do not lead to new qualitative insights either, we report them only in Appendix B and

provide no detailed discussion (see Table B8). Overall, the results of all strategy estimation

procedures indicate that participants’ play is substantially more lenient and forgiving with

communication in the last three supergames.

We analyze the evolution of strategy choices over the first three supergames by extending

SFEM in the spirit of latent-class regression (Dayton and Macready, 1988; Bandeen-Roche

et al., 1997). The models relax the traditional assumption of SFEM that each individual

uses the same strategy across all supergames. Instead, individual strategy use is assumed to

be the result of repeated independent draws from a fixed set of candidate strategies. This

assumption allows to model the prior probability of using a strategy as a function of the

supergame number. As for SFEM, we use the candidate set of 23 strategies and identify

the subset of strategies which describes behavior in a treatment best according to the ICL

criterion. Table 4 reports the latent-class regression models. The reported shares pk indicate

the average frequency of the strategies in the first three supergames. As in Table 3, the

shares of lenient and forgiving strategies are higher in the treatments with communication.

Yet, ALLD receives significant shares in the communication treatments in the first three

supergames. The coefficients β0 reflect the relative prevalence of the lenient and forgiving

Strategies which condition on actions generate the highest likelihood in the perfect monitoring treatments.
Strategies which condition on the action-signal combination generate the highest likelihoods in the imperfect
monitoring treatments.

28See Appendix B for a description of the estimation approach.
29Note that most inferred behavioral strategies do not show the semi-grim structure. This is even the case

for the perfect-monitoring-no-communication treatment where the average M1BF suggests that subjects play
a semi-grim strategy.
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Table 3: SFEM with Behavioral Strategies and Strategy Selection

Perfect Public Private

No Pre Rep No Pre Rep No Pre Rep

ALLD 0.42 - - 0.62 - - 0.52 0.02 -
(0.07) (0.07) - (0.07) (0.02)

FC - - - - 0.09 - - - -
(0.04)

TFT 0.11 - - - - - - - -
(0.07) -

PTFT - - 0.17 - - - - - -
- (0.15)

TF2T 0.04 - - - - - - - -
(0.03)

T2F2T - - - - 0.18 - - 0.44 0.16
(0.11) (0.09) (0.11)

LGRIM2 - - 0.83 - 0.29 0.22 0.21 - 0.15
(0.15) (0.11) (0.12) (0.07) (0.09)

LGRIM3 - - - 0.04 - 0.32 - - -
(0.03) (0.17)

DTFT 0.13 - - - - - - - -
(0.06)

DTF2T 0.02 - - 0.07 - - - - -
(0.02) (0.04)

ALLC - - - - 0.18 0.31 - - 0.43
(0.08) (0.17) (0.13)

M1BFeq - 1 - 0.08 - 0.07 - - 0.16
(0.00) (0.06) (0.05) (0.08)

SGRIM 0.22 - - 0.13 0.16 - 0.27 0.43 0.10
(0.08) (0.05) (0.08) (0.07) (0.09) (0.07)

RAND 0.05 - - 0.06 0.09 0.08 - 0.11 -
(0.04) (0.04) (0.05) (0.04) (0.05)

γ 0.05 0.01 0.01 0.07 0.07 0.03 0.06 0.02 0.05
ICL 357.09 78.11 86.95 362.93 424.45 259.33 287.42 253.86 297.30
lnL -321.48- -74.12- -59.19- -339.39- -371.71- -203.37- -273.65- -229.34- -240.35-

Notes: The table reports maximum-likelihood shares of a candidate set of 23 strategies listed in Tables B1-B4 of Appendix
B. Estimates are obtained assuming constant strategy use over the last three supergames. Strategies condition on action
profiles in perfect treatments, and on action-signal profiles in public and private treatments. γ indicates the probability of
a tremble. The table shows the shares of strategies that occur in at least one of the nine treatments after strategy selection
based on the ICL information criterion. Omitted shares (-) indicate that a strategy is not among the selected strategies of
the treatment. Analytic standard errors in parentheses. Values might not add up as expected due to rounding.
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Table 4: Evolution of Strategy Choices in the First Three Supergames

No Pre-Play Repeated

pk β0 βsg pk β0 βsg pk β0 βsg

Perfect ALLD 0.75 - - 0.25 - - - - -
(0.04) (0.04)

TFT - - - 0.75 0.33 0.94 - - -
(0.04) (0.14) (0.15)

T2F2T 0.25 -1.92 0.18 - - - - - -
(0.04) (0.19) (0.14)

DTF3T - - - - - - 0.10 - -
(0.03)

SGRIM - - - - - - 0.90 1.01 2.87
(0.03) (0.18) (0.58)

γ 0.16 0.07 0.09
ICL 446.51 310.15 316.86
lnL -407.01- -284.15- -295.39-

Public ALLD 0.88 - - 0.33 - - 0.09 - -
(0.03) (0.05) (0.03)

LGRIM3 0.12 -2.11 0.14 - - - - - -
(0.03) (0.26) (0.18)

T2F2T - - - - - - 0.53 0.91 0.96
(0.05) (0.22) (0.18)

M1BFeq - - - 0.67 0.21 0.54 - - -
(0.05) (0.17) (0.13)

RAND - - - - - - 0.38 1.17 0.38
(0.05) (0.25) (0.21)

γ 0.17 0.16 0.03
ICL 402.17 488.87 421.42
lnL -377.42- -444.55- -371.70-

Private ALLD 0.71 - - 0.37 - - 0.18 - -
(0.05) (0.04) (0.04)

TF2T - - - 0.63 -0.17 0.72 0.82 0.92 0.71
(0.04) (0.16) (0.13) (0.04) (0.20) (0.20)

SGRIM 0.29 -1.12 0.24 - - - - - -
(0.05) (0.19) (0.14)

γ 0.11 0.14 0.18
ICL 367.31 412.54 441.74
lnL -326.33- -380.98- -409.79-

Notes: The table reports maximum-likelihood estimates of strategy shares and latent-class regression coefficients for a
candidate set of 23 strategies listed in Tables B1-B4 of Appendix B. Estimates are obtained assuming independent strategy
choices over the first three supergames. Strategies condition on action profiles in perfect treatments, and on action-signal
profiles in public and private treatments. γ indicates the probability of a tremble. The listed strategies persist after
treatment-wise strategy selection based on the ICL information criterion. As ICL suggests a model with only one strategy
(SGRIM) in the repeated communication treatment with perfect monitoring, we report the second best model with two
strategies. Omitted shares (-) indicate that a strategy is not among the selected strategies of a treatment. Analytic
standard errors in parentheses. Values might not add up as expected due to rounding.
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strategies in contrast to ALLD in the first supergame. Negative (positive) values indicate that

a strategy is less (more) frequent than ALLD in the first supergame.30 The coefficients βsg

indicate the time trend in the relative frequency of strategies over the first three supergames.31

A negative (positive) coefficient indicates that the strategy becomes less (more) popular

compared to ALLD in the first three supergames. The coefficients βsg in Table 4 reveal

that participants generally switch to more lenient strategies, such as lenient variants of

GRIM or TFT. However, these trends are only statistically significant in the treatments with

communication.

Communication Content Our two raters made an average of 2.65 classifications into 72

sub-categories per participant-round observation, resulting in 18,678 and 18,984 classifications

in total. For some analyses, we collapse the 72 sub-categories into five main categories:

Coordination, Deliberation, Relationship, Information and Trivia.32 The average Cohen’s

κ across treatments is above 0.7 for all five main categories, which indicates a high level

of agreement between our raters. Table 5 reports their relative frequency in the last three

supergames. Frequencies are very similar when all supergames are considered (see Table C1,

Appendix C). The category Coordination includes all attempts by participants to coordinate

behavior in future rounds. The category also includes implicit or explicit announcements of

choices since such announcements could also be used to coordinate behavior. The category

occurs in the vast majority of participant-round observations of the pre-play phase. Its

relative frequency in the later rounds of the repeated communication treatments is lower,

which suggests that coordination predominantly occurs before the first round. The frequencies

of the categories in round one of the repeated communication treatments are very similar to

those of pre-play communication. The category Deliberation includes all instances in which

participants discuss choices or strategies. Our raters indicate content related to deliberation

in roughly every second participant-round observation with pre-play communication. In the

repeated communication treatments, content related to deliberation becomes less frequent

after round one. All content that concerns the relationship of a matched pair of participants

is included in the category Relationship. The category also covers motivational talk and

positive feedback that we find to be quite common. Content related to this category is

30The treatment with perfect monitoring and repeated communication is an exception. The ICL criterion
suggests that the data of this treatment is best summarized by a single strategy (SGRIM). Since latent-class
regression coefficients cannot be estimated for a model with only one strategy, we report the second best
model with DTF3T and SGRIM. As ALLD is not included in this model, DTF3T serves as the reference
strategy and β0 reflects the relative prevalence of SGRIM in contrast to DTF3T in the first supergame.

31In Appendix B we explain how these coefficients can be transformed into the strategy shares for each
round and into the changes of the shares between rounds in percentage points.

32See Tables C1 and C3 in Appendix C for the mapping of sub-categories to main categories, the frequency
of occurrence of messages in the (sub-)categories and the average Cohen’s κ (across treatments) of all
categories and sub-categories.
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more frequent under imperfect monitoring. In contrast to the categories Coordination and

Deliberation, the category Relationship does not become less frequent after round one. The

category Information includes all statements that contain reports of actions, signals or payoffs

from the current supergame. It is not possible to report such information before round one.

The category ranges among the most frequent with repeated communication. Note that

content related to the Information category does not imply that participants reveal private

information. In order to assess whether they report private information, we will look at data

from sub-category level in the following. Our last main category, Trivia, contains content that

is off-topic or classified as small talk by our raters. In contrast to the Relationship category,

the content does not have an obvious relation to the game. The Trivia category is always

among the most frequent in all treatments. To get a more detailed picture, we now turn to

the sub-category level.

Table 5: Frequency of Codings per Individual-Round Observation

Perfect Public Private

Pre Rep-f Rep-l Pre Rep-f Rep-l Pre Rep-f Rep-l

Coordination 0.98 1.00 0.11 0.99 0.99 0.21 1.00 0.97 0.28
Deliberation 0.60 0.51 0.09 0.72 0.69 0.13 0.63 0.72 0.12
Relationship 0.14 0.23 0.28 0.31 0.15 0.45 0.36 0.19 0.42
Information − − 0.31 − − 0.50 − − 0.49
Trivia 0.99 0.99 0.57 0.94 0.93 0.38 0.85 1.00 0.55

Notes: Level of the analysis are individual-round observations. “Rep-f” (Rep-l) indicates the first (later) rounds in the
repeated communication treatments. The data is from the last three supergames. A coding is considered as valid if both
raters indicated the same category for a participant-round observation.

Looking at the sub-categories for coordination before the first round of an interaction, we

see that the suggestion to play CC is made by roughly half of all participants and in almost

all pairs of participants in all communication treatments. Some participants suggest DD

but these suggestions occur at a frequency below 10% in all treatments. More complex

suggestions for coordinated play or explicit or implicit threats of punishment in the case of

defection occur at even lower frequencies. These observations highlight that most pairs of

participants enter the game without an agreed-upon plan for how to deal with defections or

bad signals in the imperfect monitoring treatments. It seems plausible that this incomplete

coordination on an efficient equilibrium explains the decline in cooperation in the pre-play

communication treatments under imperfect monitoring. To see what happens under imperfect
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monitoring when participants have the opportunity to talk repeatedly after bad news, we

compare the communication content after an interruption of a perfectly cooperative history,

that is after the first bad signal (crisis), with the content after an uninterrupted perfectly

cooperative history (when things go well) in Table C5 (Appendix C). We see that in both

cases many participants make proposals regarding future play (mostly CC), which suggests

that they coordinate behavior round by round. Interestingly, participants make only slightly

more proposals for coordinated future play in the crisis situations than when things go well,

even though the need for coordination is higher in the former. Nor do we observe more

communication about punishment. Instead, we see a sharp drop in off-topic talk in crisis

situations, a substantial increase in information exchange about signals and payoffs, a big

increase in the frequency of expressions of disappointment, and an increase in the frequency

of accusations of cheating. However, we hardly find any evidence for verbal punishments.

These findings suggest that participants use the repeated communication opportunities in

crisis situations mainly to exchange information and to express disappointment. This appears

to be sufficient to restore trust and prevents most participants from switching to defection.

Table 6 documents the degree to which private information is exchanged under repeated

communication (see Table C1, Appendix C for all supergames). Under public monitoring,

this concerns the actions which cannot be observed by the other player. The right columns

show that an action is reported in only 8% of all participant-round observations after round

one. The vast majority of reports indicate cooperation in the last round, which is true in

94% of all cases. Table 6 also lists the frequency of C reports if the signal was d. In 15% of

the cases where a d signal occurs, it is followed by a report of C (truthful in 84% of cases).

The left columns of Table 6 show that a similar pattern exists under private monitoring but

the frequency of action reports double. One important difference concerns the interpretation

of reporting C when the signal is d. Under private monitoring, the difference compared to

the baseline frequency of C reports suggests that their partners reported the d signal in the

first place. This indirect evidence is supported by the values in the lower part of the table. A

signal is reported in 37% of all participant-round interaction after round one. Most of the

reports reveal a c signal truthfully. In 10% of all participant-round interactions participants

report a d signal. To put this value into perspective, remember that d signals occur very

seldom because of the high level of cooperation. The last line shows the frequency of d reports

when a d signal actually occurred: it is 0.45. Summarizing the results reported in Table

6, we can say that participants make use of repeated communication to exchange private

information. Actions are communicated less often than signals but both reports are usually

credible. However, many signals are not reported under private monitoring.

The results on the content of communication prompt the immediate question how it

relates to cooperation. Table 7 shows the marginal effects from logistic regressions, in which
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Table 6: Exchange of Private Information

Private Public

p(report) p(true) p(report) p(true)

Actions
Report of action 0.15 0.93 0.08 0.94
Report of C 0.15 0.93 0.08 0.95
Report of D 0.00 1 0.01 0.86
Report of C if ωi = d 0.31 0.75 0.15 0.84

Signals
Report of signal 0.37 0.96 - -
Report of c 0.27 0.99 - -
Report of d 0.10 0.86 - -
Report of d if ω−i = d 0.45 - - -

Notes: Frequencies of coding in all participant-round observations after round one of the last three supergames. A coding
is considered valid if both raters indicated the same sub-category for a participant-round observation. Values might not
add up as expected due to rounding.

cooperation in the first round of a supergame is regressed on dummies indicating whether

pre-play communication included messages falling into any of four of our five main categories

and controlling for the supergame played. As the communication content is endogenous, the

reported relationships have to be interpreted as correlations and can only be suggestive of

causal effects. The Information category is left out as there is no information to share before

round one. All seven supergames are considered here as there is almost no variation in the

outcome in the last three supergames where the cooperation rate in round one is 100% in

almost all communication treatments. Content falling into the Relationship and Coordination

(Relationship and Trivia) categories are positively correlated with cooperation in round one

in all pre-play (all repeated) communication treatments.

We also run logistic regressions in which cooperation in later rounds (where we observe

more defections) is regressed on dummies indicating whether communication directly before

the round included messages falling into any of the five main categories, and controlling

for the supergame played, the round of the supergame, the last own action and the last

signal received. No marginal effect of a communication category is statistically different from

0, with the exceptions of Coordination under private and Trivia under private and public

monitoring (see Table C8, Appendix C).
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Table 7: Communication and First Round Cooperation

all Pre all Rep

Coordination −∗∗0.22∗∗− −0.07−
Deliberation −0.02− −0.03−
Relationship −∗∗∗0.10∗∗∗− −∗∗∗0.06∗∗∗−
Information − −
Trivia −0.05− −∗∗0.07∗∗−
Supergame −∗∗∗0.05∗∗∗− −∗∗∗0.04∗∗∗−

Notes: Marginal effects from logistic regressions for cooperation in round one including all supergames. All models

control for socio-demographic and other participant related characteristics. Significance based on t-test using bootstrapped

standard errors, two-way clustered on participant and match (1000 repetitions). ∗ ∗ ∗ (∗∗,∗) indicates significance on the

1 (5,10)% level.

5 Discussion and Conclusion

Our results give a comprehensive overview of how communication is used and affects cooper-

ation and strategy choices under different monitoring structures in the canonical indefinitely

repeated prisoners’ dilemma. They demonstrate that communication can have an enormous

impact on cooperation and its stability. In the following, we briefly summarize our analysis,

the tools developed to conduct it, and discuss our key findings.

To characterize the theoretical properties of the game with respect to strategic uncertainty,

we extend existing work by Dal Bó and Fréchette (2011), Blonski et al. (2011), and Breitmoser

(2015), which applies only to the perfect monitoring case. We derive two new measures of

strategic uncertainty for the imperfect public and private monitoring cases and characterize

the threshold above which M1BF equilibria exist. For the experiment, we choose parameters

that make cooperation riskier under imperfect monitoring than under perfect monitoring,

and under which cooperation seems to be unlikely without communication. Our continuation

probability δ = 0.8 coincides with the M1BF-threshold at which a unique M1BF equilibrium

exists under imperfect monitoring.33 Moreover, stable truthful communication equilibria also

exist with these parameters under private monitoring (Heller, 2017). These design choices

allow us to address a number of important open empirical questions.

We test whether repeated communication helps cooperation under private monitoring,

as suggested by Heller’s (2017) stability criterion and recent case studies of cartels. Indeed,

cooperation is more stable with repeated communication. However, we find that pre-play

33It is unique up to the probability of cooperation in the first period, which is always a free parameter in
strategies that are played in belief-free equilibria.
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communication is very effective in increasing cooperation rates, too, even under private

monitoring. Most subjects use the communication opportunity to coordinate on mutual

cooperation in the first period of the game. This decreases strategic uncertainty and

makes subjects choose cooperative strategies more frequently. However, subjects do not

coordinate on complex efficient equilibria. This finding explains the stronger decrease in

cooperation rates over time as compared to the repeated communication treatments under

imperfect public and private monitoring. Under perfect monitoring, where coordination

on a cooperative equilibrium is much easier, cooperation rates stay on a high level even in

the absence of repeated communication opportunities. To gain a better understanding on

how communication affects cooperation, we analyze the content of communication and its

correlations with behavior in the game. We find that subjects frequently exchange information

about their signals under imperfect monitoring, as suggested by recent theory. However,

we also find that communication falling into the categories – Relationship, Coordination,

and Trivia – is positively correlated with cooperation, which underscores that the role of

communication is broader than information exchange. Our analysis further highlights that

the role that communication plays crucially depends on the monitoring structure.

Our findings from the no-communication treatments complement Aoyagi et al.’s (2018)

results on cooperation without communication under the three different monitoring structures.

Their parametrization is characterized by lower levels of strategic uncertainty and our

cooperation rates are, indeed, lower than theirs. The levels of strategic uncertainty are quite

different between perfect and imperfect monitoring structures in their high noise treatment,

as they are in our parametrization – higher with imperfect monitoring and similar between

the two imperfect monitoring structures. Somewhat surprisingly, neither study finds a

difference between the monitoring structures with respect to cooperation. However, within

any monitoring structure cooperation is lower when strategic uncertainty is higher. This

suggests that the levels of strategic uncertainty, above which cooperation rates decline, is

lower under perfect than under imperfect monitoring.

To study strategy choices, we use and extend Dal Bó and Fréchette’s (2011) SFEM. Rather

than having to rely on a predefined set of candidate strategies, our extension allows us to

infer the strategies from the data using the EM algorithm (Dempster et al., 1977; Backhaus

and Breitmoser, 2018). In addition to the strategies uncovered by this approach, we report

results of the SFEM with a standard set of strategies plus additional (behavioral) strategies,

and of Camera et al.’s (2012) classification approach. With all three approaches, we find that

subjects’ play becomes substantially more lenient and forgiving with communication. Our

results also show that the heterogeneity in strategy choices is best explained by assuming that

some subjects play behavioral and others pure strategies. Both types of strategies attract

substantial shares in the SFEM estimations. We further develop an extension of SFEM based
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on latent-class regression, which allows us to study the evolution of strategy choices over time,

and which can be used in future studies to analyze the correlation between strategy choices

and other covariates (e.g., those studied in Proto et al., 2018). Our latent-class regressions

show that subjects switch very quickly from less cooperative to more cooperative strategies

in the first three supergames of the treatments with communication.

Our choice of a free-form chat communication protocol allows us to study what subjects

choose to talk about in a natural unrestricted way. We would finally like to discuss some

limitations and strengths of this approach that indicate interesting avenues for future research.

Communication affects choices and vice-versa. Ideally, we would thus like to estimate

strategies that treat communication content as a choice and condition behavior not only

on past actions and signals but also on past communication. To have a chance to recover

such strategies from the data, one would have to strongly limit the message space, as do

Arechar et al. (2017), who allow for communication only about intended actions. To gain

more insights into the role of information exchange under private monitoring, it could be

useful to limit communication to the reporting of private signals in future studies. However,

while that would help to gain insights into this important role of communication, our results,

and those from other recent studies of communication in repeated games, clearly suggest that

thinking about communication as a mere exchange of information is insufficient. Kartal and

Müller (2018) take a first step in broadening this narrow theoretical view of communication

by modeling how communication reduces strategic uncertainty. Taking further steps in this

direction promises to be a fruitful agenda for future research.
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Dal Bó, P. and G. R. Fréchette (2011): “The evolution of cooperation in infinitely

repeated games: Experimental evidence,” American Economic Review, 101, 411–429.

——— (2018a): “On the Determinants of Cooperation in Infinitely Repeated Games: A

Survey,” Journal of Economic Literature, 56, 60–114.

——— (2018b): “Strategy choice in the infinitely repeated prisoners’ dilemma,” Mimeo.

Dana, J., R. A. Weber, and J. X. Kuang (2007): “Exploiting moral wiggle room:

Experiments demonstrating an illusory preference for fairness,” Economic Theory, 33,

67–80.

Dayton, M. C. and G. Macready (1988): “Concomitant-Variable Latent-Class Models,”

Journal of the American Statistical Association, 83, 173–178.

Dempster, A., N. Laird, and D. B. Rubin (1977): “Maximum likelihood from incomplete

data via the EM algorithm,” Journal of the Royal Statistical Society Series B, 39, 1–38.

Dvorak, F. (2018): “stratEst: An R Package for Strategy Estimation,” http://fabian-

dvorak.com/software/Dvorak-2018-stratEst-An-R-Package-for-Strategy-Estimation.pdf.
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Appendix A Theoretical Appendix

In A.1, we derive existence conditions for equilibria in memory-one belief-free strategies in

general, and for the subset of semi-grim memory-one belief-free equilibria. The latter give

us the SG-thresholds. Further, we provide a characterization of these equilibria. In A.2, we

construct renegotiation-proof equilibria for perfect and imperfect public monitoring and a

truthful communication equilibrium for the case of imperfect private monitoring. It will be

useful to recall the normalized stage game parameters:

C D

C 1,1 −l,1+g

D 1+g,−l 0,0

A.1 Belief-Free Equilibria

Depending on the monitoring structure, different versions of memory-one belief-free strategies

exist. We consider three cases: (1) M1BF strategies which condition on (ai, a−i), (2) M1BF

strategies which condition on (ωi, ω−i), and (3) M1BF strategies which condition on (ai, ω−i).

Under perfect monitoring, all three cases are possible. Under public monitoring, only cases

2 and 3 are possible while case 3 is the only possible case under private monitoring. The

extensions of the BOS (SG) threshold to public signals and action-signal combinations are

defined in Propositions 1.1.2, 1.2.2 and 1.3.2.

A.1.1 Actions (Perfect Monitoring)

Proposition 1.1.1 [Memory-One Belief-Free Equilibria Conditioning on Actions]

(i) If strategies condition on actions, the existence condition for symmetric memory-one

belief-free equilibria depends on the larger of the two values g and l. Let φ denote the

larger of the two values. The existence condition is:

δ ≥ δBF =
φ

1 + φ
(1)

(ii) Above the threshold, a two-dimensional manifold of memory-one belief-free equilibria
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exists given by

σcd = σcc +

(
σcc − σdd −

1

δ

)
g (2)

and

σdc = σdd −
(
σcc − σdd −

1

δ

)
l (3)

(iii) For δ = δBF all memory-one belief-free equilibrium strategies have the same cooperation

probabilities after nonempty memory-one histories and are σ = (σ∅, 1, (1− g/l), 1, 0) if

l > g, σ = (σ∅, 1, 0, (l/g), 0) if g > l and σ = (σ∅, 1, 0, 1, 0) if g = l. We call this the

threshold memory-one belief-free equilibrium T1BF.

Since g and l are both positive values these equilibria exist for high enough values of δ. Note

that if g ≥ l the δ threshold corresponds to the one for cooperative subgame-perfect equilibria

of the repeated game with perfect monitoring. However, if l > g as in our case, the conditions

differ with δBF > δSPE. The condition applies for belief-free equilibria in reactive strategies

(Kalai et al., 1988) which condition on the other player’s action and require g = l which

yields δBF = δSPE.

Proof of Proposition 1.1.1. Let V ai
ajai

denote player i’s expected payoff for playing ai if player

j observed the action profile {aj, ai} in the previous round (we say player j is in state ajai).

If σaiaj denotes the probability to play c for any player i after {ai, aj}, we have:

V c
aa = (1− δ)(σaa − (1− σaa)l) + δ(σaaVcc + (1− σaa)Vdc) (4)

V d
aa = (1− δ)(σaa(1 + g) + (1− σaa)0) + δ(σaaVcd + (1− σaa)Vdd) (5)

Following Bhaskar et al. (2008), we derive conditions for Vcd and Vcc which assure the strategies

are belief-free, that is, for any σaa ∈ (0, 1), player i is indifferent between playing c or d

independent of player j’s state. Subtracting (5) from (4) gives:

0 = σaa {(1− δ)(l − g) + δ (Vcc − Vcd − Vdc + Vdd))} − (1− δ)l + δ (Vdc − Vdd)

The equation holds independent of σaa if the terms in curly brackets and the last part are

both zero. Solving the the condition resulting from the last part for Vdc − Vdd and inserting

the solution into the condition derived from the terms in curly brackets gives

Vcc = Vcd +
(1− δ)g

δ
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and

Vdc = Vdd +
(1− δ)l

δ

Solving (4) for σcc using the condition on Vdc above and rearranging for Vcc yields

Vcc =
(1− δ)σcc + δ(1− σcc)Vdd

1− δσcc

Solving (4) for σdd using the condition on Vcd and Vcc above gives

Vdd =
σdd

1 + δσdd − δσcc

Now, all Vaa can be eliminated from (4) solved for σdd and σdc this yields (2) and (3) which

proofs (ii). Note that ∂σcd/∂δ > 0, ∂σcd/∂σcc > 0 and ∂σcd/∂σdd < 0. The question is, how

big δ must be at least in order to assure that σcd ≥ 0 if σcc = 1 and σdd = 0. Inserting these

values into (2) and rearranging gives δ > δBF with φ = g. Note that σcd ≤ 1 is true even

if σcc = 1 and σdd = 0 for all feasible values of δ, g and l. At the same time ∂σdc/∂δ < 0,

∂σdc/∂σcc < 0 and ∂σdc/∂σdd > 0. The question here is, how big δ must be at least in order

to assure that σdc ≤ 1 if σcc = 1 and σdd = 0. Inserting these values into (3) and rearranging

gives δ > δBF with φ = l. At the same time, σdc ≥ 0 true even if σcc = 1 and σdd = 0 for

all feasible values of δ, g and l. Hence, the larger of the values g and l imposes the stricter

condition on δ which proofs (i). To complete the proof, insert (1) together with σcc = 1 and

σdd = 0 into (2) and (3) to obtain the structure of the T1BF response defined by g and l.

Next, we derive the δ threshold, above which semi-GRIM equilibria exist. See Breitmoser

(2015) for an alternative derivation.

Proposition 1.1.2 [Semi-Grim M1BF Equilibria Conditioning on Actions]

(i) If strategies condition on actions, the existence condition for symmetric semi-grim

memory-one belief-free equilibria is:

δ ≥ δSG =
g + l

1 + g + l
(6)

(ii) Above the BOSB threshold a continuum σcc ∈ ( g+l
δ(1+g+l)

, 1) of memory one belief-free

equilibria in semi-grim strategies exists, given by:

σdd = σcc −
g + l

δ(1 + g + l)
(7)
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and

σcd = σdc = σcc −
g

δ(1 + g + l)
(8)

(iii) For δ = δSG all semi-grim memory-one belief-free equilibrium strategies have the

same cooperation probabilities after nonempty memory-one histories and are σ =

(σ∅, 1, 1− g/(g + l), , 0). If l = g, then σ = (σ∅, 1, 0.5, 0.5, 0).

Proof of Proposition 1.1.2. Using (2) and (3) yields (7) and (8). Note that σdd < σcd < 1 for

σcc ∈ (0, 1) and any δ ∈ (0, 1). For existence σdd must be positive. Rearranging yields the

SG-threshold. Note that the condition on δ is always stricter than the condition on δ, which

results from σcd = σdc ≥ 0, and is δ ≥ g/(1 + g + l).

Note that the condition for semi grim equilibria is a mixture of the two possible conditions

based on the different values of φ with equal weight on g and l as required by axiom 5 in

Blonski et al. (2011) while (1) gives full weight on the larger of the two values.

A.1.2 Public Signals (Perfect and Public Monitoring)

Proposition 1.2.1 [M1BF Equilibria Conditioning on Public Signals]

(i) If strategies condition on the ε-noisy public signals, the existence condition for symmetric

memory-one belief-free equilibria depends on the larger of the two values g and l. Let φ

denote the larger and ψ the smaller of the two values. The existence condition is:

δ ≥ δBF =
(1− ε)φ− εψ

(1− 2ε)(1− 2ε+ (1− ε)φ− εψ)
(9)

(ii) Above the threshold, a two-dimensional manifold of memory-one belief-free equilibria

exists given by

σcd = σcc +
σcc − σdd − 1

δ(1−2ε)

1− 2ε
((1− ε)g − εl) (10)

and

σdc = σdd −
σcc − σdd − 1

δ(1−2ε)

1− 2ε
((1− ε)l − εg) (11)

(iii) For δ = δBF all memory-one belief-free equilibrium strategies have the same cooperation

probabilities after nonempty memory-one histories and are σ = (σ∅, 1, (1− g/l), 1, 0) if
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l > g, σ = (σ∅, 1, 0, (l/g), 0) if g > l and σ = (σ∅, 1, 0, 1, 0) if g = l. We call this the

threshold memory-one belief-free equilibrium T1BF.

In contrast to result for actions, combinations of the parameters g, l and ε exists for which

δBF > 1.

Proof of Proposition 1.2.1. The proof follows the same steps as for actions. Let V ai
sjsi

denote

player i’s expected payoff for playing ai if player j observed {sj, si} in the previous round

(which means player j is in state sjsi). If σsisj denotes the (universal) probability of player i

to play c after {si, sj}, we get:

V c
ss = (1− δ)(σss − (1− σss)l) + δ[(1− ε)(σss(1− ε) + (1− σss)ε)Vcc

+ε(σss(1− ε) + (1− σss)ε)Vcd
+(1− ε)(σssε+ (1− σss)(1− ε))Vdc

+ε(σssε+ (1− σss)(1− ε))Vdd] (12)

V d
ss = (1− δ)(σss(1 + g) + (1− σss)0) + δ[ε(σss(1− ε) + (1− σss)ε)Vcc

+(1− ε)(σss(1− ε) + (1− σss)ε)Vcd
+ε(σssε+ (1− σss)(1− ε))Vdc

+(1− ε)(σssε+ (1− σss)(1− ε))Vdd] (13)

Again we derive conditions for Vcd and Vcc which together assure the belief-free property

following Following Bhaskar et al. (2008), that is, for any σss ∈ (0, 1), player i is indifferent

between playing c or d independent of player j’s state. First, subtracting (13) from (12)

gives:

0 = σss
{

(1− δ)(l − g) + δ
(
(1− 2ε)2Vcc − (1− 2ε)2Vcd − (1− 2ε)2Vdc + (1− 2ε)2Vdd

))
}

−(1− δ)l + δ ((1− 2ε)εVcc − (1− 2ε)εVcd + (1− 2ε)(1− ε)Vdc − (1− 2ε)(1− ε)Vdd)

Note that he expression holds independent of σss if the terms in curly brackets and the terms

in the second line are both zero. Solving the the condition on the second line for Vdc − Vdd
and inserting into the other condition gives

Vcc = Vcd +
(1− δ)((1− ε)g − εl)

δ(1− 2ε)2

and

Vdc = Vdd +
(1− δ)((1− ε)l − εg)

δ(1− 2ε)2
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Solving (12) for σcc and rearranging for Vcc yields

Vcc =
(1− δ)(σcc − l) + δ(1− ε− σcc(1− 2ε))Vdd + (1−δ)(1−ε)((1−ε)l−εg)

(1−2ε)2
− (1−δ)εl

1−2ε

1− δ(σcc(1− 2ε) + ε)
.

Solving (12) for σdd and inserting Vcc yields an expression for Vdd (omitted here) that does not

depend on any other Vss. Now, all Vss can be eliminated from (12) and we can solve for σcd

and σdc which leads to (ii). For existence we need to assure that σcd ∈ (0, 1) and σdc ∈ (0, 1)

for a feasible combination of values σcc, σdd and δ. First assume (1 − ε)ψ − εφ > 0 and

consider σcd (note that (1− ε)φ− εψ > 0 always holds for ε < 0.5). In this case ∂σcd/∂σcc > 0

and ∂σcd/∂σdd < 0. Note that σcd ≤ 1 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σcd ≥ 0 we use σcc = 1 and σdd = 0. Solving for δ shows gives the condition δ > δBF

with φ = g. Next, we consider σdc still assuming (1 − ε)ψ − εφ > 0. Hence ∂σdc/∂σcc < 0

and ∂σdc/∂σdd > 0. Again σdc ≥ 0 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σdc ≤ 1 we use σcc = 1 and σdd = 0 which gives δ > δBF with φ = l. Therefore, if

(1− ε)ψ− εφ > 0 the stricter condition on δ results from the larger of the two values g or l as

in (9). Note that (1− ε)ψ − εφ < 0 also requires δ > δBF to make the probabilities interior.

On the other hand, it implies φ > 1−ε
ε
ψ and δBF > 1. To see this we can rearrange δBF < 1

to φ < (1−2ε)2+2ε2ψ
2ε−2ε2

and show that this contradicts φ > 1−ε
ε
ψ for ε ∈ (0, 0.5). This proofs (i).

To complete the proof, insert (9) together with σcc = 1 and σdd = 0 into (10) and (11) to

obtain the structure of the T1BF response defined by g and l.

Proposition 1.2.2 [Semi-Grim M1BF Equilibria Conditioning on Public Signals]

(i) If players condition on the ε-noisy public signals, the existence condition for semi-GRIM

equilibria is:

δ ≥ δSG =
g + l

(1− 2ε)(1 + g + l)
(14)

(ii) Above this threshold, a continuum σcc ∈ ( g+l
δ(1−2ε)(1+g+l)

, 1) of semi-grim equilibria exists

given by:

σdd = σcc −
g + l

δ(1− 2ε)(1 + g + l)
(15)

and

σcd = σdc = σcc −
g

δ(1− 2ε)(1 + g + l)
(16)
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(iii) For δ = δSG all semi-grim memory-one belief-free equilibrium strategies have the

same cooperation probabilities after nonempty memory-one histories and are σ =

(σ∅, 1, 1− g/(g + l), 1− g/(g + l), 0). If l = g, then σ = (σ∅, 1, 0.5, 0.5, 0).

Proof of Proposition 1.2.2. Using the semi-grim property σcd = σdc for (10) and (11) yields

(15) and (16). Observe that σdd < σcd < 1 for σcc ∈ (0, 1) and for existence σdd must be

positive which can be rearranged to yield (14).

A.1.3 Action-Signal Combinations (All Monitoring Structures)

Proposition 1.3.1 [M1BF Equilibria Conditioning on Action-Signal Combinations]

(i) If players condition on their own action and the ε-noisy signal of the other player’s

action, the existence condition for symmetric memory-one belief-free equilibria also

depends on the larger of the two values g and l. Let φ denote the larger of the two

values and ψ the smaller of the two. The existence condition is:

δ ≥ δBF =
φ

1− 2ε− εψ + (1− ε)φ
(17)

If g = l the condition is the same as for private signals.

(ii) Above the threshold, a two-dimensional manifold of memory-one belief-free equilibria

exists given by

σcd = σcc +
σcc − σdd − 1

δ

1− 2ε− ε(g + l)
g (18)

and

σdc = σdd −
σcc − σdd − 1

δ

1− 2ε− ε(g + l)
l (19)

(iii) For δ = δBF all memory-one belief-free equilibrium strategies have the same cooperation

probabilities after nonempty memory-one histories and are σ = (σ∅, 1, (1− g/l), 1, 0) if

l > g, σ = (σ∅, 1, 0, (l/g), 0) if g > l and σ = (σ∅, 1, 0, 1, 0) if g = l. We call this the

threshold memory-one belief-free equilibrium T1BF.

Proof of Proposition 1.3.1. Again the proof follows the same steps as for actions. Let V ai
ajsi

denote player i’s expected payoff for playing ai if player j played aj and observed si in
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the previous round (which means player j is in state ajsi). If σaisj denotes the (universal)

probability of player i to play c after {ai, sj}, we get:

V c
as = (1− δ)(σas − (1− σas)l)+

δ ((1− ε)σasVas + εσasVcd + (1− ε)(1− σas)Vdc + ε(1− σas)Vdd) (20)

V d
as = (1− δ)σas(1 + g)+

δ ((1− ε)σasVas + εσasVcd + (1− ε)(1− σas)Vdc + ε(1− σas)Vdd) (21)

Subtracting (21) from (20) gives:

0 = σas {(1− δ)(l − g) + δ ((1− 2ε)Vas − (1− 2ε)Vcd − (1− 2ε)Vdc + (1− 2ε)Vdd))}

−(1− δ)l + δ ((1− 2ε)Vdc − (1− 2ε)Vdd)

The conditions on Vcd and Vcc based on the belief-free property are now:

Vdc = Vdd +
(1− δ)l
δ(1− 2ε)

Vcc = Vcd +
(1− δ)g
δ(1− 2ε)

Solving (20) for σcc and rearranging for Vcc yields

Vcc =
(1− δ)(σcc − (1− σcc)l) + δ(1− σcc)Vdd − δσcc (1−δ)((1−ε)l+εg)

δ(1−2ε)
+ δ(1− ε) (1−δ)l

δ(1−2ε)

1− δσcc

Solving (20) for σdd and inserting the solution for Vcc gives

Vdd =
σdd

(
1− (1−δ)εl+εg

1−2ε

)
+ (1− δσcc) εl

1−2ε

1 + δσdd − δσcc

Next, all Vas can be eliminated from (20) solved for σdd and σdc proofs (ii). For existence

we need to assure that σcd ∈ (0, 1) and σdc ∈ (0, 1) for a feasible combination of values σcc,

σdd and δ. First assume 1− 2ε− ε(g + l) > 0 and consider σcd. In this case ∂σcd/∂σcc > 0

and ∂σcd/∂σdd < 0. Note that σcd ≤ 1 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σcd ≥ 0 we use σcc = 1 and σdd = 0. Solving for δ shows gives the condition δ > δBF

with φ = g. Next, we consider σdc still assuming 1− 2ε− ε(g + l) > 0. Hence ∂σdc/∂σcc < 0

and ∂σdc/∂σdd > 0. Again σdc ≥ 0 for any δ ∈ (0, 1) even if σcc = 1 and σdd = 0. To

establish σdc ≤ 1 we use σcc = 1 and σdd = 0 which gives δ > δBF with φ = l. Therefore, if
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1− 2ε− ε(g + l) > 0 the stricter condition on δ results from the larger of the two values g or

l as in (17).

If 1 − 2ε − ε(g + l) < 0, ∂σcd/∂σcc < 0 and ∂σcd/∂σdd > 0. Using σcc = 1 and σdd = 0

we establish that σcd ≤ 1 only if δ ≥ 1 (and the same can be shown for σdc ≥ 0 when using

σcc = 0 and σdd = 1). Note that (17) also requires δ ≥ 1 in this case. For the last case

1− 2ε− ε(g + l) = 0, σcd and σdc are not defined and (17) also requires δ ≥ 1. This proofs

(i). To complete the proof, insert (17) together with σcc = 1 and σdd = 0 into (18) and (19)

to obtain the structure of the T1BF response defined by g and l.

Proposition 1.3.2 [Semi-Grim M1BF Equilibria Conditioning on Action-Signal Combina-

tions]

(i) If players condition on their own action and the ε-noisy signal of the other player’s

action, the existence condition for symmetric memory one belief-free equilibria in semi

grim strategies is:

δ ≥ δSG =
g + l

(1− 2ε)1 + (1− ε)(g + l)
(22)

(ii) Above this threshold, a continuum σcc ∈ ( g+l
δ((1−2ε)1+(1−ε)(g+l)) , 1) of semi-grim equilibria

exists given by:

σdd = σcc −
g + l

δ((1− 2ε)1 + (1− ε)(g + l))
(23)

and

σcd = σdc = σcc −
g

δ((1− 2ε)1 + (1− ε)(g + l))
(24)

(iii) For δ = δSG all semi-grim memory-one belief-free equilibrium strategies have the

same cooperation probabilities after nonempty memory-one histories and are σ =

(σ∅, 1, 1− g/(g + l), 1− g/(g + l), 0). If l = g, then σ = (σ∅, 1, 0.5, 0.5, 0).

Proof of Proposition 1.3.2. Using the semi-grim property σcd = σdc for (18) and (19) yields

(23) and (24). Observe that σdd < σcd < 1 for σcc ∈ (0, 1) and for existence σdd must be

positive which can be rearranged to yield (22).
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A.2 Renegotiation-Proof and Truthful Communication Equilibria

We give examples for the construction of renegotiation-proof equilibria for the perfect and

imperfect monitoring cases and for a truthful communication equilibrium under imperfect

private monitoring. These equilibria can be described by two states each: (1) a reward

stage, in which both players cooperate, and (2) a punishment stage; and transition rules

between the states. Unlike in equilibria in strongly symmetric strategies, the punisher and the

punished player have to play differently in the punishment stage to assure that this state is

not Pareto-dominated by the reward state. Hence, the continuation values of the two players

will be different once we enter the punishment state. We will use the following notation: Vr

for the continuation value of the reward state, and Vpp (Vpd) for the continuation value of the

punisher (the punished player) in the punishment state. The following condition has to hold

in any renegotiation-proof equilibrium:

Vpp ≥ Vr (25)

The following condition has to hold in any truthful communication equilibrium, where the

revelation constraints require that the punisher must be indifferent between staying in the

reward state or entering the punishment state as punisher:

Vpp = Vr (26)

A.2.1 Perfect Monitoring

The most simple candidate equilibrium is the following. It starts in the reward state with

both players cooperating. In case of a defection, they enter the punishment state, in which

the player who defected plays C while the other player plays D for one period. After this

period, the game returns to the reward state. For this to be a renegotiation-proof equilibrium,

the following three conditions have to be fulfilled:

1. No player has an incentive to deviate in the reward stage:

1 ≥ (1− δ)(1 + g)− δ(1− δ)l + δ2

2. In the punishment stage, the player being punished has no incentive to deviate:

−(1− δ)l + δ ≥ −δ(1− δ)l + δ2
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3. The punisher wants to enter the punishment stage:

(1− δ)(1 + g) + δ ≥ (1− δ)l + δ2

For our experimental parameters it is easy to verify that all three conditions are satisfied.

Hence, our candidate equilibrium is, indeed, an equilibrium.

A.2.2 Imperfect Public Monitoring

The construction becomes slightly more complicated under imperfect public monitoring.

Renegotiation-proofness criteria can only be applied if players play public strategies, that is,

strategies that condition only on the public history. A special case that has to be considered is

the public signal dd, that occurs with positive probability even when both players cooperate.

The simplest candidate equilibrium is the following. It starts in the reward state with

both players cooperating. In case of a cc or a dd signal, they stay in the reward state. In

case of a dc or cd signal, they transition to the punishment state, in which the player who

appears to have defected plays C, while the other player plays D for one period. In case the

public signal contains a c for the punished, the game returns to the reward state. Otherwise,

the punishment phase is repeated. Note that in comparison to the equilibrium under perfect

monitoring, the incentive to comply as a punished player in the punishment state is weakened

by the positive probability of getting away with playing D and still producing a c signal with

probability ε. The continuation payoff of the reward stage of this candidate equilibrium is:

Vr = c+ δ(ε2 + (1− ε)2)Vr + δ(ε(1− ε))Vpd + δ((1− ε)ε)Vpp

where:

Vpd = s+ δ(1− ε)Vr + δεVpd

Vpp = b+ δ(1− ε)Vr + δεVpp

By plugging Vpd and Vpp into Vr and simplifying the equation we get:

Vr =
c(1− δε) + δ(1− ε)ε(b+ s)

(1 + δ − 2δε)(1− δε)− 2δ(1− ε)2

The continuation payoff of deviating from cooperation is:

Vd = b+ 2δε(1− ε)Vr + δ(1− ε)2Vpd + δε2Vpp
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By plugging Vpd and Vpp into Vd and simplifying the equation we get:

Vd = b+
δε2(b+ s)− 2sδε

1− δε
+
δ(1− ε)[2ε+ δ(1− ε)2 + ε2]Vr

1− δε

It is easy to verify that with the parameters of our paper, Vr > Vd, and thus no player has

incentive to deviate in the reward stage.

However, the player who is punished in the punishment stage has an incentive to deviate

in the punishment state. His continuation payoffs from complying and deviating are:

V punished
comply = s+ δ(1− ε)Vr + δεVpd

V punished
deviate = d+ δεVr + δ(1− ε)Vpd

Plugging Vpd and Vr into the two equations above and simplifying yields:

V punished
comply =

s

1− δε
+

cδ(1− ε)
(1− δ − 2δε)(1− δε)− 2δ(1− ε)2

+

δ2(1− ε)2ε(b+ s)

(1− δ − 2δε)(1− δε)2 − 2δ(1− ε)2

V punished
deviate =

d+ δε− δε(d+ s)

1− δε
+

δ2(1− ε)ε(b+ s)(ε+ δ − 2δε)

(1− δ − 2δε)(1− δε)2 − 2δ(1− ε)2
+

cδ(δ + ε− 2δε)

(1− δ − 2δε)(1− δε)− 2δ(1− ε)2

With our experimental parameters, the condition V punished
comply ≥V punished

deviate is violated, which

means that the punished player has incentive to deviate in the punishment stage. Hence,

this candidate equilibrium is not an equilibrium in our parametrization.

However, if we add a second round to the punishment state, in which both play D, we

have found a renegotiation-proof equilibrium for our parametrization. The continuation

payoff of the reward stage is still:

Vr = c+ δ(ε2 + (1− ε)2)Vr + δ(ε(1− ε))Vpd + δ((1− ε)ε)Vpp

Since we add a second punishment stage, Vpd and Vpp change to:

Vpd = d+ δ[s+ δ(1− ε)Vr + δεVpd]

Vpp = d+ δ[b+ δ(1− ε)Vr + δεVpp]
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By plugging Vpd and Vpp into Vr and simplifying the equation we get:

Vr =
c(1− δ2ε) + δε(1− ε)[2d+ δ(b+ s)]

[1− δ(1− 2ε+ 2ε2)](1− δ2ε)− 2δ3ε(1− ε)2

The (unchanged) continuation payoff of deviating from cooperation is:

Vd = b+ 2δε(1− ε)Vr + δ(1− ε)2Vpd + δε2Vpp

By plugging Vpd and Vpp into Vd and simplifying the equation we get:

Vd =
δ(1− 2ε+ 2ε2)d

1− δ2ε
+

[1− δ2ε(1− ε)]b
1− δ2ε

+
δ2(1− ε)2s

1− δ2ε
+

[δε(2− δ2ε) + δ3(1− ε)2](1− ε)Vr
1− δ2ε

And it is easy to verify that under the parameterization of our paper, Vr > Vd, and thus no

player has incentive to deviate in the reward stage.

Next, we have to check whether the punisher and the player who gets punished have

an incentive to deviate in the punishment stage. The continuation payoff is the same as in

the previous case. For the punisher it is obvious that there is no incentive to deviate in the

punishment stage. For the player who gets punished, the continuation payoff is:

V punished
comply = s+ δ(1− ε)Vr + δεVpd

V punished
deviate = d+ δεVr + δ(1− ε)Vpd

Plugging Vpd and Vr into the two equations and simplifying yields:

V punished
comply =

s+ dδε

1− δ2ε
+

cδ(1− ε)
[1− δ(1− 2ε+ 2ε2)](1− δ2ε)− 2δ3ε(1− ε)2

+

δ2ε(1− ε)2[2d+ δ(b+ s)]

[1− δ(1− 2ε+ 2ε2)](1− δ2ε)2 − 2δ3ε(1− δ2ε)(1− ε)2

V punished
deviate = d+

δ(1− ε)(d+ sδ)

1− δ2ε
+

δ[c(1− δ2ε) + δε(1− ε)(2d+ δ(b+ s))](ε− 2δ2ε+ δ2)

[1− δ(1− 2ε+ 2ε2)](1− δ2ε)− 2δ3ε(1− ε)2

With our parameters, V punished
comply ≥V punished

deviate is satisfied. Thus, this candidate equilibrium is,

indeed, a renegotiation-proof equilibrium.
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Note that renegotiation-proof equilibria can be constructed in a way that makes them

substantially more efficient than the most efficient equilibrium in strongly-symmetric strategies.

This requires the use of a public randomization device to determine whether or not the

punishment stage is entered after cd or dc signals with a probability less than one, such that

Vpd equals the continuation value of the punishment state with strong symmetry. Efficiency

will then be higher because Vpp ≥ Vr > Vpd. So, even if they are more complicated than

equilibria in strongly-symmetric strategies, players have an incentive to coordinate on them,

in addition to potential renegotiation concerns.

A.2.3 Imperfect Private Monitoring

Truthful communication equilibria have a similar structure as renegotiation-proof equilibria,

but for a different reason. The condition Vpp = Vr stems from the fact that players must

not have an incentive to lie about their private signal. In other words, reporting a c must

lead to the same continuation value as a report of d. An equilibrium can be constructed

as follows. Players start in the reward state, where they cooperate and report their private

signals truthfully every round, which essentially transforms the game into one of imperfect

public monitoring. Instead of the public signal under public monitoring, the reported signals

are used to determine whether the players stay in the reward state or enter the punishment

state. Unlike under public monitoring, a dd (reported) signal combination cannot be treated

as a cc signal, as this would create an incentive to report d. Instead, the probability of having

to enter the punishment state as the punished player must be independent of the own report.

To this end, the public randomization device can be used to determine which of the two

reports is considered (if any), each with a probability π ≤ 1/2, and never both at the same

time. If a report is considered and the reported signal is c, the game stays in the reward

state. Otherwise, it transitions to the punishment state, in which the player who appeared to

have defected, according to the considered report, becomes the punished player.

The punishment state starts with one period of mutual defection. After this round, the

public randomization device determines whether or not a second round of mutual defection

is entered with probability ρ. In these one or two rounds of mutual defection, no reports

are necessary. In the next and last round of the punishment phase, the punished player

plays C while the punisher plays D. After this round, the punisher reports the signal. If the

punisher reports a d, the punishment phase is repeated, otherwise the players return to the

reward state. With our experimental parameters and π = 0.5 and ρ = 0.0498, it can easily

be verified that this is, indeed, an equilibrium (see below). Moreover, it is an equilibrium

with a strict incentive not to deviate in the reward state. Hence, it survives Heller’s (2017)

stability criteria.

51



The continuation payoff of the reward stage of the proposed equilibrium is:

Vr = c+ δ(π(1− ε)2 + (1− π))Vr + δ(π(1− ε)ε)Vpp + δπεVpd

Where:

Vpd = d+ ρ[δd+ δ(δs+ δ(δ(1− ε)Vr + δεVpd))] + (1− ρ)[δs+ δ(δ(1− ε)Vr + δεVpd)]

is the continuation payoff from being punished. The continuation payoff as a punisher is:

Vpp = d+ ρ[δd+ δ(δb+ δ(δ(1− ε)Vr + δεVpp))] + (1− ρ)[δb+ δ(δ(1− ε)Vr + δεVpp)]

Moreover, the truthful communication constraint has to hold:

Vpp = Vr

We get a solution for ρ by solving the system of equations. With our experimental parameters

and π = 0.5 we get ρ = 0.0498. Moreover, we get:

Vpp = Vr =
d+ δb+ ρδ(d− b+ δb)

1− ρδ3 − (1− ρ)δ2

Vpd =
(1− δ + δπε)[δ(1− ρ+ ρδ)b+ (1 + ρδ)d]

δπε[1− ρδ3 − (1− ρ)δ2]
− c

δπε

Now, we are ready to check whether there are incentives to deviate from following the

proposed equilibrium strategies. First, consider whether players have an incentive to deviate

in the reward stage. The continuation payoff from deviating is:

Vd = b+ δ[πε+ (1− π)]Vr + δπ(1− ε)Vpd

Plugging Vr, Vpd into the equation above yields:

Vd = b+
[(1 + ρδ)d+ δ(1− ρ+ ρδ)b][1− δ − ε+ 2δε]

ε[1− ρδ3 − (1− ρ)δ2]
− c(1− ε)

ε

Plugging in π = 0.5 and ρ = 0.0498 we see that Vd < Vr. Thus, there is no incentive to

deviate in the reward stage.

For the punishment stage, we have to check that the punished player has no incentive to

52



deviate. His continuation payoffs from deviating and complying are as follows:

V punished
deviate = d+ δ(εVr + (1− ε)Vpd)

V punished
comply = s+ δ((1− ε)Vr + εVpd)

Plugging Vr, Vpd into these equations, we can verify that the first condition V punished
comply >

V punished
deviate holds for our parameters and π = 0.5.

For the punisher it is obvious that there is no incentive to deviate in the punishment stage

either. Thus, the proposed strategy profile is, indeed, a truthful communication equilibrium.
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Appendix B Strategy Inference

We use the strategy frequency estimation method (Dal Bó and Fréchette, 2011) and its adap-

tation to behavior strategies (Breitmoser, 2015) to analyze strategy choice across treatments.

To study the evolution of strategy choice over supergames, we extend the existing methods

and model strategy choices as a function of covariates in the spirit of latent class regression

(Dayton and Macready, 1988; Bandeen-Roche et al., 1997). A more detailed documentation

of the methods can be found in Dvorak (2018).

Model Definition

Let pk denote the share of strategy k ∈ {1, · · · , K} in the population and πsk ∈ [0, 1] the

probability of cooperation prescribed by strategy k in state sk ∈ Sk. When estimating pure

strategies, we assume that there exists a pure underlying response probability ξsk ∈ {0, 1}
to each πsk . The pure responses are confounded by a tremble which implements the wrong

action and occurs with probability γ ∈ [0, 0.5]. We assume that the probability of a tremble

is the same for all individuals, supergames and rounds and that the realizations of trembles

are independent across these dimensions. The probability of cooperation for pure strategy k

in state sk is given by: πsk = ξsk(1 − γ) + (1 − ξsk)(1 − γ). Let yisk denote the number of

times individual i ∈ {1, · · · , N} cooperates in nisk observations of state sk of strategy k. We

report the maximum-likelihood estimates of the parameters pk, πsk (or alternatively ξsk and

γ) that maximize the log-likelihood

lnL =
N∑
i=1

ln

(
K∑
k=1

pk
∏
sk∈Sk

(πsk)yisk (1− πsk)nisk
−yisk

)
.

To find the global optima of the parameters, we execute the EM-algorithm (Dempster et al.,

1977) from multiple random starting points and use the Newton-Raphson method to check

for convergence.

Table 2 of Subsection 4.2 reports the maximum-likelihood estimates of πsk of one memory-

one Markov strategy per treatment with five states corresponding to the five memory-one

histories ∅, cc, cd, dc, dd. To obtain the results reported in Tables 3 and 4, we perform

treatment-wise strategy estimation starting with the candidate set of 23 strategies listed in

Tables B1-B4. For each treatment, the number of strategies is selected based the the ICL

information criterion (Biernacki et al., 2000) that has been used to select the number of

strategies before (Breitmoser, 2015). ICL is the Bayesian information criterion (Schwarz,
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1978) penalized by the entropy of the data according to

ICL = −lnL+
df

2
log(N)−

N∑
i=1

K∑
K=1

θiklog(θik),

where df represents the number of free parameters of the model and θik is the posterior

probability that individual i plays strategy k, given by

θik =
pk
∏

sk∈Sk
(πsk)yisk (1− πsk)nisk

−yisk∑K
k=1 pk

∏
sk∈Sk

(πsk)yisk (1− πsk)nisk
−yisk

.

Latent-Class Regression Models

An intuitive approach to analyze the effect of covariates for strategy choices is to assign

individuals to strategies based on the posterior probability assignments θik and use the

assignments as the dependent variable in a multinomial model. However, this approach leads

to downward biased coefficients for the effects of covariates as shown by Bolck et al. (2004).

To circumvent this problem, we explore the evolution of strategy choice over supergames

based on latent class regression models displayed in Table 4. The underlying models assume

that subjects’ strategy choices over supergames reflect repeated independent draws from a

probability distribution over a fixed set of strategies. The probability distribution is modeled

as a function of the supergame number. The log-likelihood of the latent-class regression

model is

lnL =
J∑
j=1

ln

(
K∑
k=1

pjk
∏
sk∈Sk

(πsk)yjsk (1− πsk)njsk
−yjsk

)
,

where the index j ∈ {1, · · · , J} enumerates the unique combinations of individuals i ∈
{1, · · · , N} and supergames g ∈ {1, · · · , G} as J = N · G. The parameter pjk reflects the

prior probability that individual i uses strategy k in supergame g and the share pk of strategy

k in supergame g is the expected value of the prior pjk in supergame g. To model the

evolution of the strategy choices over supergames, we assume that the prior probabilities pjk

are a function of the supergame number. The latent-class regression approach suggests to

model the log-odds of using strategy k as compared to the first strategy in the set based on

the multinomial logit link function (Agresti, 2003)

ln(pjk/pi1) = Xjβk ∀ k ∈ {1, · · · , K},

where βk is a column vector of coefficients for strategy k and Xj a row vector for observation

j consisting of an intercept and the supergame number. Reformulation of the K equations
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yields

pjk =
eXjβk∑K
k=1 e

Xiβk
,

and the maximum-likelihood estimates of the parameters βk and πsk (or alternatively ξsk and

γ) can be found based on a variant of the EM algorithm augmented by a Newton-Raphson

step (Bandeen-Roche et al., 1997).

Adaptation of Strategies

Tables B1-B4 list the set of 23 strategies used to obtain the strategy estimation results

reported in Table 3 and Table 4. Strategies 1-20 and their descriptions are taken from

Fudenberg et al. (2012). SGRIM in Table B3 is the semi-grim structure discovered by

Breitmoser (2015). Circles represent strategy states and arrows deterministic state transitions.

In the treatments with perfect monitoring, the state traditions can in principle be triggered

by action profiles, the two public signals or action-signal combinations. In the treatments

with public monitoring, transitions can be triggered by the two public signals or action-signal

combinations. We assume that all strategies in the set condition on the same information, run

the estimation for the 3 (2) possibilities and report the results with the highest log-likelihood.
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Table B1: Strategies 1-7

Acronym Description Automaton

ALLD Always play D. D

ALLC Always play C. C

DC Start with D, then alternate between C and D. D C

FC Play C in the first round, then D forever. C D

Grim
Play C until either player plays D, then play D
forever.

C

cd, dd, dd

cc D

TFT Play C unless partner played D last round. C

cd, dd

cc, dc

cc,

dc

cd,

ddD

PTFT
(WSLS)

Play C if both players chose the same move last
round, otherwise play D.

C

cd, dc

cc, dd

cc,

dd

cd,

dcD

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C
and D indicate whether the automaton prescribes cooperation or defection in the state. Arrows represent deterministic
state transitions. The labels indicate the information profiles of the previous periods which trigger the transitions. An
unlabeled arrows indicates an unconditional transition that occurs independent of the observed profile.
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Table B2: Strategies 8-15

Acronym Description Automaton

T2
Play C until either player plays D, then play D
twice and return to C (regardless of all actions
during the punishment rounds).

C

cd, dd, dd

cc D D

TF2T
Play C unless partner played D in both of the last
2 rounds.

C
cc,

dc

cd, dd

cd, dd

cc, dc

cc, dc

dc

cd,

ddC D

TF3T
Play C unless partner played D in all of the last 3
rounds.

C
cc,

cc, dc

dc

cd, dd

cd, ddcd, dd

cc, dc

cc, dc

dc

cd,

ddC C D

T2FT
Play C unless partner played D in either of the
last 2 rounds (2 rounds of punishment if partner
plays D).

D
cc,

dc

cc, dc

cd, dd cd, dd

cc, dc

cd, dd

dcC D

T2F2T
Play C unless partner played 2 consecutive Ds
in the last 3 rounds (2 rounds of punishment if
partner plays D twice in a row).

D
cc,

dc

cc,

dc

cc, dc

cd, dd cd, dd

cc, dc

cd, dd

cc, dc

cd, dd

dcCC D

GRIM2
Play C until 2 consecutive rounds occur in which
either player played D, then play D forever.

C

cc cd, dd, dd

cd, dd, dd

cc C D

GRIM3
Play C until 3 consecutive rounds occur in which
either player played D, then play D forever.

C

cc

cc

cd, dd, dd

cd, dd, dd cd, dd, dd

cc C C D

PT2FT

Play C if both players played C in the last 2 rounds,
both players played D in the last 2 rounds, or both
players played D 2 rounds ago and C last round.
Otherwise play D.

D

cc, dd

cc, dd

cd, dc

cd, dc

cd, dc

cc,

dd C D

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C
and D indicate whether the automaton prescribes cooperation or defection in the state. Arrows represent deterministic
state transitions. The labels indicate the information profiles of the previous periods which trigger the transitions. An
unlabeled arrows indicates an unconditional transition that occurs independent of the observed profile.
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Table B3: Suspicious Strategies 16-20

Acronym Description Automaton

DTFT Play D in the first round, then play TFT. D

cc, dc

cd, dd

cd,

dd

cc,

dcC

DTF2T Play D in the first round, then play TF2T. C
cc,

dc

cd, dd

cd, dd

cc, dc

cc, dc

dc

cd,

dd

cc, dc

cc, dc

cd, dd

C DD

DTF3T Play D in the first round, then play TF3T. C
cc,

cc, dc

dc

cd, dd

cd, ddcd, dd

cc, dc

cc, dc

dc

cd,

dd

cc, dc

cc, dc

cd, dd

C C DD

DGRIM2 Play D in the first round, then play GRIM2. C

cc
cc

cc cd, dd, dd

cd, dd, dd

cd, dd, dd

ccD C D

DGRIM3 Play D in the first round, then play GRIM3. C

cc

cc

cc

cc

cd, dd, dd

cd, dd, dd

cd, dd, dd

cd, dd, dd

ccD C C D

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C
and D indicate whether the automaton prescribes cooperation or defection in the state. Arrows represent deterministic
state transitions. The labels indicate the information profiles of the previous periods which trigger the transitions. An
unlabeled arrows indicates an unconditional transition that occurs independent of the observed profile.
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Table B4: Behavior Strategies 21-23

Acronym Description Automaton

SGRIM
Play C if both players played C, and D if both
players played D. If one player played D and the
other C, play C with probability 0.35.

C dd

cc dd

cd, dc cd, dc

cc

cc

cd, dc

dd

0.35

D

M1BFeq

Play C if both players played C, and D if both
players played D. If the own action was C and
the other player played D, play C with probability
σcd. If the own action was D and the other player
played C, play C with probability σdc. With per-
fect monitoring, σcd = 0.75 and σdc = 0.5 and the
strategy conditions on actions. With imperfect
monitoring, σcd = 0.5 and σdc = 1 and the strat-
egy conditions on the own action and the received
signal.

C

dd

cd dd

dccc

cc cd

dddc
cc

cd dccc

cd

dc

dd

σdc

σcd

D

RAND Always randomize between C and D with σ = 0.5. 0.5

Notes: Circles represent the states of an automaton. The first state from the left is the start state. The labels C
and D indicate whether the automaton prescribes cooperation or defection in the state. The numbers in SGRIM
indicate the probability of cooperation in the current state of the automaton. In the memory-one belief-free equilibrium
strategy M1BFeq , σcd and σdc are cooperation probabilities which depend on the monitoring structure. Arrows represent
deterministic state transitions. The labels indicate the information profiles of the previous periods which trigger the
transitions. An unlabeled arrows indicates an unconditional transition that occurs independent of the observed profile.
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Additional Results

Table B5: Average Memory-One Markov Strategies for All Supergames

Perfect Public Private

No Pre Rep No Pre Rep No Pre Rep

σcc 0.94 0.98 0.98 0.86 0.88 0.94 0.91 0.94 0.94
(0.02) (0.00) (0.01) (0.04) (0.02) (0.01) (0.04) (0.01) (0.01)

σcd 0.29 0.29 0.43 0.42 0.58 0.69 0.36 0.51 0.61
(0.03) (0.06) (0.07) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04)

σdc 0.28 0.33 0.43 0.17 0.35 0.46 0.16 0.42 0.56
(0.04) (0.07) (0.08) (0.03) (0.05) (0.05) (0.03) (0.05) (0.06)

σdd 0.09 0.07 0.32 0.11 0.18 0.33 0.07 0.13 0.38
(0.01) (0.01) (0.06) (0.02) (0.03) (0.05) (0.01) (0.02) (0.05)

σ∅−sg1 0.23 0.61 0.56 0.27 0.54 0.52 0.27 0.56 0.56
(0.06) (0.07) (0.07) (0.06) (0.07) (0.07) (0.06) (0.07) (0.07)

σ∅−sg2 0.33 0.70 0.89 0.23 0.69 0.76 0.33 0.72 0.62
(0.06) (0.06) (0.04) (0.06) (0.06) (0.06) (0.07) (0.06) (0.07)

σ∅−sg3 0.33 0.89 0.94 0.12 0.73 0.80 0.29 0.80 0.86
(0.06) (0.04) (0.03) (0.05) (0.06) (0.06) (0.07) (0.06) (0.05)

σ∅−sg4 0.38 0.89 0.96 0.31 0.81 0.92 0.40 0.96 0.82
(0.07) (0.04) (0.03) (0.07) (0.05) (0.04) (0.07) (0.03) (0.05)

σ∅−sg5 0.35 0.96 1.00 0.25 0.87 0.96 0.38 0.94 0.98
(0.07) (0.03) (0.00) (0.06) (0.05) (0.03) (0.07) (0.03) (0.02)

σ∅−sg6 0.38 0.96 1.00 0.27 0.92 0.96 0.46 0.98 0.98
(0.07) (0.03) (0.00) (0.06) (0.04) (0.03) (0.07) (0.02) (0.02)

σ∅−sg7 0.40 1.00 1.00 0.31 0.96 1.00 0.46 0.96 0.98
(0.07) (0.00) (0.00) (0.07) (0.03) (0.00) (0.07) (0.03) (0.02)

lnL -852.43 -397.06 -391.81 -830.42 -955.03 -698.27 -731.88 -708.85 -728.98

Notes: The reported results summarize the average behavior in all supergames across the nine experimental treatments.
The behavior in each treatment is characterized based on a single memory-one Markov strategy. The reported values
indicate the probability of cooperation after the four possible memory-one histories cc, cd, dc, dd which can occur after the
first round. To account for the evolution of strategies over supergames, the parameters σ∅−sg1 to σ∅−sg7 reflect the initial
cooperation probability across the seven supergames. Bootstrapped standard errors in parentheses (10000 repetitions).
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Table B6: Memory-one Markov Strategies for the Last 3 Supergames
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Notes: The reported results summarize the behavior in the last three supergames across the nine experimental treatments.
The behavior in each treatment is characterized based on memory-one Markov strategies. The number of strategies is
selected based on ICL. The reported values indicate the probability of cooperation after the five possible memory-one
histories ∅, cc, cd, dc, and dd. Bootstrapped standard errors in parentheses (10000 repetitions).
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Table B7: Inference of Pure Strategies for the Last 3 Supergames

Perfect Public Private

(σ∅,σcc,σcd,σdc,σdd) No Pre Rep No Pre Rep No Pre Rep

(0,1,0,0,0) 0.64 - - 0.7 - - 0.61 - -
(0.07) (0.07) (0.08)

(1,0,0,0,0) - - - - - 0.04 - - -
(0.03)

(1,1,0,0,0) - 0.4 - - 0.38 - - 0.26 -
(0.16) (0.08) (0.07)

(1,1,0,1,0) 0.36 - - 0.17 - - - - 0.14
(0.07) (0.06) (0.06)

(1,1,1,0,0) - - 0.37 0.13 - 0.24 0.39 - 0.22
(0.17) (0.05) (0.1) (0.08) (0.10)

(1,1,1,1,0) - 0.6 - - 0.62 - - 0.61 -
(0.16) (0.08) (0.08)

(1,1,0,1,1) - - 0.63 - - - - 0.13 -
(0.17) (0.06)

(1,1,1,1,1) - - - - - 0.72 - - 0.63
(0.1) (0.11)

γ 0.10 0.01 0.01 0.11 0.13 0.06 0.10 0.07 0.07
ICL 393.27 132.57 122.88 390.36 449.89 296.34 353.65 317.54 321.97
lnL -362.56- -76.66- -66.33- -349.67- -415.48- -241.52- -323.34- -267.94- -263.38-

Notes: The reported results summarize the behavior in the last three supergames across the nine experimental treatments.
The behavior in each treatment is characterized based on memory-one Markov strategies with pure strategy parameters.
The number of strategies is selected based on ICL. The reported values indicate the probability of cooperation after the
five possible memory-one histories ∅, cc, cd, dc, and dd. Analytic standard errors in parentheses.
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Table B8: Classification of Strategies (Camera et al., 2012)

Perfect Public Private

No Pre Rep No Pre Rep No Pre Rep

ALLD 71 4 0 84 7 1 71 4 1
ALLC 19 152 160 17 101 128 32 116 127
GRIM 39 149 154 14 49 58 34 80 73
TFT 41 151 156 17 66 87 30 89 83
PTFT 22 147 156 10 44 57 26 74 74
T2 22 147 154 6 45 58 27 77 73
TF2T 27 153 160 16 99 125 39 118 122
TF3T 21 152 160 14 98 126 34 116 125
T2F1T 37 150 156 15 70 84 30 87 75
T2F2T 27 153 160 16 102 126 38 118 124
LGRIM2 27 152 161 15 93 119 42 116 121
LGRIM3 22 152 160 14 101 126 33 115 125
PTFT2 23 147 156 7 43 57 27 76 72
FC 24 1 - 12 16 3 14 3 2
DTFT 51 4 - 34 2 2 34 - 3
DTF2T 13 - - 13 1 2 6 - 1
DTF3T 14 - - 8 1 2 4 - 1
DLGRIM2 13 - - 11 1 2 6 - 1
DLGRIM3 17 - - 10 1 2 5 - 1
DC 5 - - 2 4 1 3 2 1

Notes: The reproted results characterize subjects’ behavior in the last three supergames based on the strategy classification
method proposed by Camera et al. (2012). The values reflect the number of supergames in which the behavior of one
player is accurately predicted by a strategy. If a supergame has x rounds and y actions are observed that are not predicted
by the pure strategy, the strategy predicts the behavior accurately if the frequency of errors y/x is smaller or equal to 5
percent.
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Appendix C Communication Content

Table C1: Categories Generated from Subcategories – All Supergames

Frequency in Treatment

Category Subcategories Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

Coordination (C) 1-16,51,52,71,72 0.503 0.958 0.929 0.946 0.341 0.454 0.479 0.93
Deliberation (D) 17-26,34-41,57,70 0.274 0.643 0.643 0.606 0.192 0.219 0.218 0.72
Relationship (R) 30-33,42-45,47-50,58 0.228 0.103 0.181 0.200 0.219 0.270 0.236 0.71
Trivia (T) 53-55 0.605 0.886 0.810 0.711 0.633 0.515 0.552 1.00
Information (I) 27-29,46,56,59-69 0.215 - - - 0.184 0.297 0.285 0.81
Report of action 27,29,46,61,62,66-69 0.008 - - - 0.003 0.020 0.006 0.85
Report of action C 27,29,61,66,68 0.062 - - - 0.054 0.087 0.081 0.77
Report of action D 46,62,67,69 0.058 - - - 0.025 0.070 0.113 0.92
Report of signal 28,56,59,60,66-69 0.141 - - - 0.128 0.187 0.190 0.84
Report of signal c 59,68,69 0.066 - - - 0.028 0.091 0.118 0.91
Report of signal d 28,56,60,66,67 0.204 - - - 0.183 0.273 0.272 0.80

Notes: Categories are 1 if the rater identified content related to at least one of the subcategories for a give text unit
and 0 otherwise. Frequency indicates the probability that both raters indicated one of the respective subcategories for a
randomly selected text unit. Frequencies < 0.001 omitted (-). κ̄ is the average Cohen’s Kappa over all treatments. Mean
κ̄ of all generated categories is 0.84.

Table C2: Categories Generated from Subcategories – Last Three Supergames

Frequency in Treatment

Category Subcategories Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

Coordination (C) 1-16,51,52,71,72 0.404 0.975 0.974 0.973 0.241 0.328 0.381 0.95
Deliberation (D) 17-26,34-41,57,70 0.223 0.543 0.654 0.58 0.146 0.167 0.186 0.68
Relationship (R) 30-33,42-45,47-50,58 0.258 0.117 0.244 0.293 0.208 0.301 0.29 0.7
Trivia (T) 53-55 0.708 0.963 0.91 0.833 0.73 0.641 0.66 1
Information (I) 27-29,46,56,59-69 0.24 - - - 0.176 0.325 0.338 0.79
Report of action 27,29,46,61,62,66-69 0.003 - - - 0.001 0.007 0.002 0.8
Report of action C 27,29,61,66,68 0.066 - - - 0.06 0.083 0.086 0.75
Report of action D 46,62,67,69 0.064 - - - 0.012 0.076 0.139 0.91
Report of signal 28,56,59,60,66-69 0.161 - - - 0.112 0.219 0.232 0.82
Report of signal c 59,68,69 0.067 - - - 0.013 0.083 0.141 0.91
Report of signal d 28,56,60,66,67 0.227 - - - 0.175 0.301 0.318 0.78

Notes: See notes of Table C1. Data from last three supergames.
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Table C3: Battery of Subcategories for Coding – All Supergames

Frequency in Treatment

# Subcategory Category Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

1 Proposal: both C C 0.246 0.542 0.420 0.500 0.169 0.210 0.231 0.85
2 Proposal: both D C 0.033 0.071 0.077 0.054 0.012 0.039 0.030 0.81
3 Proposal: alternate C 0.013 0.024 0.058 0.066 0.005 0.001 0.013 0.75
4 Proposal: self D other C C 0.010 0.013 0.047 0.031 0.006 0.004 0.008 0.72
5 Proposal: self C other D C 0.005 0.008 0.008 0.009 0.001 0.001 0.010 0.56
6 Proposal: other coordination C 0.006 0.029 0.044 0.017 - 0.005 0.002 0.41
7 Question: what action other C 0.009 0.024 0.025 0.017 0.009 0.005 0.005 0.51
8 Announcement: C C 0.009 0.016 0.047 0.006 0.006 0.006 0.008 0.59
9 Announcement: D C 0.007 0.021 0.014 0.017 0.006 0.006 0.004 0.76
10 Rejection of proposal C 0.004 0.005 0.005 0.017 0.002 0.004 0.002 0.59
11 Acceptance proposal C 0.297 0.685 0.585 0.617 0.189 0.256 0.268 0.85
12 Implicit punishment threat for D C 0.003 0.005 0.003 0.029 - 0.004 0.001 0.33
13 Punishment threat grim C 0.003 0.005 0.014 0.003 0.005 - - 0.57
14 Punishment threat lenient grim C - - - - - - - -
15 Approval of punishment threat C 0.002 - - 0.014 0.002 0.001 0.001 0.41
16 Ask for coordination C 0.041 0.119 0.115 0.120 0.011 0.031 0.041 0.79
17 Benefits of C D 0.051 0.161 0.099 0.151 0.038 0.034 0.035 0.63
18 Benefits of D D 0.007 0.013 0.027 0.023 0.002 0.005 0.005 0.53
19 Benefits of asymmetric play D 0.003 0.003 0.008 0.011 0.002 0.001 0.003 0.50
20 Related to fairness discussion D 0.009 0.040 0.025 0.031 0.002 0.002 0.010 0.66
21 Related to strategic uncertainty D 0.050 0.095 0.206 0.100 0.026 0.042 0.036 0.56
22 Related to payoffs D 0.055 0.188 0.181 0.154 0.029 0.035 0.036 0.71
23 Related to Prisoner’s dilemma D 0.004 0.058 0.003 - 0.002 - - 0.84
24 Related to game theory D 0.002 0.011 0.005 0.009 - 0.001 - 0.54
25 Future benefit of C D 0.009 0.016 0.019 0.054 0.006 0.007 0.003 0.49
26 Short term incentives of D D - 0.005 - - - - - 0.05
27 Attribute other d to randomness I 0.004 - - - 0.006 0.006 0.002 0.34
28 Attribute own d to randomness I 0.006 - - - 0.010 0.007 0.005 0.36
29 Assurance to have played C I 0.002 - - - - 0.003 0.003 0.21
30 Promise R 0.021 0.040 0.069 0.077 0.014 0.015 0.013 0.71
31 Distrust R 0.002 0.005 - - 0.002 0.001 0.002 0.27
32 Trust R 0.012 0.016 0.019 0.023 0.011 0.010 0.012 0.63
33 Argue for trustworthy behavior R 0.026 0.048 0.102 0.111 0.021 0.011 0.014 0.62
34 Report payoff from past games D 0.028 0.063 0.022 0.006 0.030 0.025 0.027 0.72
35 Report signals of past games D 0.013 0.042 - 0.009 0.013 0.014 0.011 0.42
36 Good past experience with CC D 0.051 0.151 0.126 0.100 0.028 0.048 0.037 0.75
37 Good past experience with DD D 0.001 0.003 0.003 0.003 - 0.002 0.001 0.43
38 Bad past experience with CC D 0.008 0.021 0.060 0.014 0.002 0.001 0.007 0.44
39 Bad past experience with CC D - - 0.003 - - 0.001 0.001 0.24
40 Good past experience asym. play D 0.001 0.005 0.011 0.003 - - 0.001 0.53
41 Bad past experience asym. play D 0.001 0.003 0.003 0.006 - 0.002 - 0.52
42 Positive feedback after CC R 0.119 - - - 0.115 0.167 0.143 0.81
43 Positive feedback after DD R 0.002 - - - 0.002 0.003 0.001 0.65
44 Positive feedback after asym. play R 0.001 - - - 0.001 0.002 0.002 0.64
45 Empathy R 0.016 - 0.003 - 0.014 0.022 0.020 0.57
46 Confess D I - - - - - 0.001 - 0.40
47 Apology R 0.002 - - - 0.004 0.001 0.001 0.48
48 Justification of play R 0.001 - - - 0.003 0.001 - 0.19
49 Accusation of cheating R 0.007 - - - 0.004 0.008 0.014 0.55
50 Verbal punishment R 0.001 - - - 0.001 0.001 - 0.57
51 Renegotiation C 0.001 - - - - 0.001 0.001 0.06
52 Argument against punishment C - - - - - - - -
53 Small talk T 0.247 0.820 0.739 0.583 0.176 0.141 0.168 0.70
54 Off topic T 0.283 0.193 0.093 0.094 0.368 0.229 0.330 0.58
55 Boredom T 0.011 0.021 - 0.014 0.012 0.012 0.010 0.57
56 Disappointed after b signal I 0.024 - - - 0.029 0.030 0.025 0.55
57 Confusion D 0.033 0.058 0.085 0.026 0.015 0.036 0.037 0.35
58 Motivational talk R 0.026 - - - 0.030 0.041 0.022 0.51
59 Report: own signal c I 0.004 - - - 0.001 0.006 0.008 0.65
60 Report: own signal d I 0.012 - - - 0.005 0.021 0.016 0.82
61 Report: own action C I 0.005 - - - 0.001 0.013 0.005 0.50
62 Report: own action D I 0.003 - - - - 0.009 0.001 0.78
63 Ask for others payoff I 0.019 - - - 0.010 0.023 0.035 0.83
64 Ask for others signal I 0.006 - - - 0.003 0.004 0.014 0.45
65 Ask for others action I 0.006 - - - 0.003 0.011 0.007 0.85
66 Report: own payoff 0 I 0.025 - - - 0.012 0.032 0.047 0.95
67 Report: own payoff 17 I 0.004 - - - 0.002 0.009 0.003 0.90
68 Report: own payoff 30 I 0.022 - - - 0.011 0.016 0.051 0.96
69 Report: own payoff 37 I 0.001 - - - 0.001 0.002 0.001 0.73
70 Being cheated on in past games D 0.005 - - 0.003 0.003 0.007 0.006 0.45
71 Counter-proposal C - - - - - 0.001 0.001 0.46
72 Rejection of punishment C - - 0.003 - - - - 0.67

Notes: Subcategories are 1 if the rater identified content related to the subcategory for a given text unit and 0 otherwise.
Category are Coordination (C), Deliberation (D), Relationship (R), Trivia (T) and Information (I). Frequency indicates
the probability that both raters indicated the respective subcategory for a randomly selected text unit. Frequencies
< 0.001 omitted (-). κ̄ is the average Cohen’s Kappa over all treatments. Mean κ̄ of all subcategories with an overall
frequency > 0.01 is 0.65.
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Table C4: Battery of Subcategories for Coding – Last Three Supergames

Frequency in Treatment

# Subcategory Category Freq. PerPre PubPre PrivPre PerRep PubRep PrivRep κ̄

1 Proposal: both C C 0.224 0.673 0.487 0.613 0.131 0.177 0.195 0.88
2 Proposal: both D C 0.01 0.012 0.058 0.013 0.004 0.011 0.005 0.78
3 Proposal: alternate C 0.005 0.025 0.032 0.013 - - 0.007 0.75
4 Proposal: self D other C C 0.002 - 0.026 - - - 0.004 0.76
5 Proposal: self C other D C 0.002 - 0.006 0.007 - - 0.005 0.64
6 Proposal: other coordination C 0.005 0.012 0.071 0.007 - 0.002 - 0.56
7 Question: what action other C 0.003 - 0.026 0.007 0.001 - 0.005 0.44
8 Announcement: C C 0.007 0.006 0.058 - 0.002 0.004 0.01 0.54
9 Announcement: D C 0.001 0.006 0.019 - - - 0.001 0.83
10 Rejection of proposal C 0.003 0.006 0.006 0.013 - 0.003 0.002 0.6
11 Acceptance proposal C 0.246 0.747 0.59 0.66 0.15 0.185 0.207 0.88
12 Implicit punishment threat for D C 0.003 0.006 - 0.033 0.001 0.003 - 0.28
13 Punishment threat grim C 0.002 - - 0.007 0.005 - - 0.52
14 Punishment threat lenient grim C - - - - - - - -
15 Approval of punishment threat C 0.002 - - 0.027 0.002 - - 0.4
16 Ask for coordination C 0.022 0.062 0.096 0.093 0.004 0.01 0.024 0.79
17 Benefits of C D 0.04 0.123 0.122 0.167 0.024 0.025 0.026 0.62
18 Benefits of D D 0.001 - 0.006 0.007 - 0.001 - 0.28
19 Benefits of asymmetric play D - - 0.006 - - - - 0.4
20 Related to fairness discussion D 0.007 0.037 0.019 0.033 0.002 - 0.008 0.66
21 Related to strategic uncertainty D 0.036 0.068 0.237 0.093 0.013 0.028 0.024 0.54
22 Related to payoffs D 0.032 0.136 0.147 0.113 0.01 0.02 0.02 0.71
23 Related to Prisoner’s dilemma D 0.003 0.056 - - 0.002 - - 0.88
24 Related to game theory D 0.001 0.012 - 0.013 0.001 - - 0.71
25 Future benefit of C D 0.007 0.006 0.013 0.067 0.006 0.006 0.001 0.54
26 Short term incentives of D D - - - - - - - -
27 Attribute other d to randomness I 0.004 - - - 0.005 0.006 0.002 0.31
28 Attribute own d to randomness I 0.006 - - - 0.01 0.004 0.005 0.3
29 Assurance to have played C I 0.002 - - - - 0.003 0.005 0.22
30 Promise R 0.026 0.062 0.103 0.12 0.015 0.017 0.012 0.72
31 Distrust R 0.002 0.006 - - 0.002 0.001 0.003 0.36
32 Trust R 0.012 0.006 0.019 0.02 0.012 0.006 0.016 0.6
33 Argue for trustworthy behavior R 0.029 0.062 0.135 0.18 0.014 0.012 0.015 0.61
34 Report payoff from past games D 0.025 0.043 0.019 - 0.024 0.023 0.03 0.65
35 Report signals of past games D 0.017 0.062 - 0.02 0.014 0.016 0.014 0.44
36 Good past experience with CC D 0.055 0.142 0.179 0.167 0.029 0.048 0.039 0.73
37 Good past experience with DD D 0.001 0.006 0.006 - - - - 0.36
38 Bad past experience with CC D 0.01 0.019 0.109 0.033 0.001 - 0.007 0.43
39 Bad past experience with CC D 0.001 - - - - 0.001 0.001 0.31
40 Good past experience asym. play D 0.001 - 0.013 - - - - 0.5
41 Bad past experience asym. play D 0.001 - - - - 0.002 - 0.67
42 Positive feedback after CC R 0.14 - - - 0.11 0.201 0.178 0.8
43 Positive feedback after DD R 0.001 - - - 0.001 - 0.001 0.44
44 Positive feedback after asym. play R - - - - - - - -
45 Empathy R 0.02 - - - 0.017 0.025 0.029 0.59
46 Confess D I - - - - - 0.001 - 1
47 Apology R - - - - 0.001 - - 0.15
48 Justification of play R 0.001 - - - 0.001 0.001 - 0.12
49 Accusation of cheating R 0.009 - - - 0.002 0.01 0.018 0.61
50 Verbal punishment R - - - - - 0.001 - 0.29
51 Renegotiation C 0.001 - - - - - 0.002 0.05
52 Argument against punishment C - - - - - - - -
53 Small talk T 0.241 0.92 0.821 0.66 0.156 0.127 0.177 0.66
54 Off topic T 0.394 0.315 0.122 0.14 0.473 0.342 0.455 0.58
55 Boredom T 0.014 0.043 - 0.02 0.016 0.012 0.011 0.52
56 Disappointed after b signal I 0.029 - - - 0.039 0.038 0.021 0.56
57 Confusion D 0.022 0.031 0.006 0.027 0.012 0.023 0.031 0.25
58 Motivational talk R 0.028 - - - 0.027 0.046 0.026 0.49
59 Report: own signal c I 0.002 - - - - 0.003 0.005 0.5
60 Report: own signal d I 0.01 - - - 0.002 0.016 0.017 0.8
61 Report: own action C I 0.005 - - - - 0.011 0.005 0.43
62 Report: own action D I 0.001 - - - - 0.002 0.001 0.75
63 Ask for others payoff I 0.018 - - - 0.006 0.017 0.04 0.77
64 Ask for others signal I 0.002 - - - 0.002 0.002 0.003 0.2
65 Ask for others action I 0.004 - - - 0.002 0.006 0.006 0.82
66 Report: own payoff 0 I 0.028 - - - 0.01 0.034 0.054 0.94
67 Report: own payoff 17 I 0.001 - - - - 0.004 0.001 0.91
68 Report: own payoff 30 I 0.023 - - - 0.002 0.017 0.063 0.96
69 Report: own payoff 37 I 0.001 - - - 0.001 0.001 - 0.67
70 Being cheated on in past games D 0.008 - - - 0.004 0.011 0.012 0.47
71 Counter-proposal C - - - - - - 0.001 0.33
72 Rejection of punishment C - - - - - - - -

Notes: See notes of Table C3. Data from last three supergames.
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Table C5: Communication after First Defection Signal – All Supergames

Public Repeated Private Repeated

# Subcategory ω 6= {c, c} ω = {c, c} ∆ ωj = d ωj = c ∆

1 Proposal: both C 0.164 0.145 0.019 0.168 0.143 0.025
2 Proposal: both D 0.013 0.012 0.001 - 0.011 -0.011-
3 Proposal: alternate - - - - 0.005 -0.005-
4 Proposal: self D other C - - - 0.017 0.003 0.014
5 Proposal: self C other D 0.007 - 0.007 - - -
6 Proposal: other coordination - 0.004 -0.004- - - -
7 Question: what action other - - - - - -
8 Announcement: C 0.007 0.002 0.005 0.025 0.003 0.022
9 Announcement: D 0.007 - 0.007 - - -
10 Rejection of proposal - - - - 0.002 -0.002-
11 Acceptance proposal 0.178 0.164 0.014 0.143 0.165 -0.022-
12 Implicit punishment threat for D - - - - 0.002 -0.002-
13 Punishment threat grim - - - - - -
14 Punishment threat lenient grim - - - - - -
15 Approval of punishment threat - - - - 0.002 -0.002-
16 Ask for coordination 0.013 0.004 0.009 0.025 0.005 0.02
17 Benefits of C 0.007 0.008 -0.001- 0.008 0.017 -0.009-
18 Benefits of D - - - - - -
19 Benefits of asymmetric play - - - - - -
20 Related to fairness discussion - - - - - -
21 Related to strategic uncertainty 0.013 0.017 -0.004- 0.025 0.011 0.014
22 Related to payoffs 0.013 0.006 0.007 0.017 0.016 0.001
23 Related to Prisoner’s dilemma - - - - - -
24 Related to game theory - 0.002 -0.002- - - -
25 Future benefit of C 0.007 0.002 0.005 0.008 0.002 0.006
26 Short term incentives of D - - - - - -
27 Attribute other d to randomness 0.033 - 0.033 - 0.002 -0.002-
28 Attribute own d to randomness 0.053 - 0.053 0.042 - 0.042
29 Assurance to have played C - - - 0.008 0.003 0.005
30 Promise - 0.012 -0.012- 0.008 - 0.008
31 Distrust - - - 0.008 - 0.008
32 Trust 0.013 0.006 0.007 0.084 0.003 0.081
33 Argue for trustworthy behavior 0.013 - 0.013 - 0.003 -0.003-
34 Report payoff from past games - 0.019 -0.019- 0.008 0.003 0.005
35 Report signals of past games - 0.004 -0.004- - 0.005 -0.005-
36 Good past experience with CC - 0.017 -0.017- - 0.002 -0.002-
37 Good past experience with DD - - - - - -
38 Bad past experience with CC - - - - - -
39 Bad past experience with CC - - - - 0.002 -0.002-
40 Good past experience asym. play - - - - - -
41 Bad past experience asym. play - - - - - -
42 Positive feedback after CC - 0.321 -0.321- 0.017 0.233 -0.216-
43 Positive feedback after DD - - - - - -
44 Positive feedback after asym. play - - - 0.008 0.002 0.006
45 Empathy 0.132 - 0.132 - 0.027 -0.027-
46 Confess D - - - - - -
47 Apology - 0.002 -0.002- - - -
48 Justification of play - - - - - -
49 Accusation of cheating 0.046 - 0.046 0.143 - 0.143
50 Verbal punishment 0.007 - 0.007 - - -
51 Renegotiation - 0.002 -0.002- - - -
52 Argument against punishment - - - - - -
53 Small talk 0.02 0.014 0.006 0.059 0.046 0.013
54 Off topic 0.118 0.269 -0.151- 0.151 0.38 -0.229-
55 Boredom - 0.015 -0.015- - 0.008 -0.008-
56 Disappointed after b signal 0.191 - 0.191 0.185 - 0.185
57 Confusion 0.059 0.044 0.015 - 0.027 -0.027-
58 Motivational talk 0.033 0.089 -0.056- 0.008 0.029 -0.021-
59 Report: own signal c 0.007 0.004 0.003 0.008 0.008 -
60 Report: own signal d 0.151 - 0.151 0.16 0.002 0.158
61 Report: own action C 0.092 0.004 0.088 0.008 0.006 0.002
62 Report: own action D - - - - - -
63 Ask for others payoff 0.086 0.008 0.078 0.059 0.035 0.024
64 Ask for others signal 0.013 0.002 0.011 0.034 0.016 0.018
65 Ask for others action 0.066 - 0.066 0.042 - 0.042
66 Report: own payoff 0 0.197 - 0.197 0.395 0.003 0.392
67 Report: own payoff 17 - - - - - -
68 Report: own payoff 30 0.066 0.015 0.051 - 0.076 -0.076-
69 Report: own payoff 37 - - - - - -
70 Being cheated on in past games - 0.006 -0.006- - 0.003 -0.003-
71 Counter-proposal - - - - 0.002 -0.002-
72 Rejection of punishment - - - - - -

Notes: Frequency of subcategories for subject-round observations with cooperative history in round t. A Subject has a
cooperative history if her previous actions were C and all signals she observed in rounds < t were c. Frequencies illustrate
the use of subcategories dependent on signals in round t. Frequency indicates the probability that both raters indicated
the respective subcategory for a randomly selected text unit. Frequencies < 0.001 omitted (-).
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Table C6: Communication after First Defection Signal – Last Three Supergames

Public Repeated Private Repeated

# Subcategory ω 6= {c, c} ω = {c, c} ∆ ωj = d ωj = c ∆

1 Proposal: both C 0.136 0.094 0.042 0.182 0.112 0.07
2 Proposal: both D - 0.01 -0.01 - 0.013 -0.013
3 Proposal: alternate - - - - 0.005 -0.005
4 Proposal: self D other C - - - - 0.005 -0.005
5 Proposal: self C other D - - - - - -
6 Proposal: other coordination - - - - - -
7 Question: what action other - - - - - -
8 Announcement: C - 0.003 -0.003 0.03 0.005 0.025
9 Announcement: D - - - - - -
10 Rejection of proposal - - - - 0.003 -0.003
11 Acceptance proposal 0.123 0.094 0.029 0.121 0.142 -0.021
12 Implicit punishment threat for D - - - - - -
13 Punishment threat grim - - - - - -
14 Punishment threat lenient grim - - - - - -
15 Approval of punishment threat - - - - - -
16 Ask for coordination - - - 0.045 0.003 0.042
17 Benefits of C - - - - 0.013 -0.013
18 Benefits of D - - - - - -
19 Benefits of asymmetric play - - - - - -
20 Related to fairness discussion - - - - - -
21 Related to strategic uncertainty - 0.01 -0.01 - 0.003 -0.003
22 Related to payoffs 0.012 0.006 0.006 0.015 0.008 0.007
23 Related to Prisoner’s dilemma - - - - - -
24 Related to game theory - - - - - -
25 Future benefit of C 0.012 0.003 0.009 - - -
26 Short term incentives of D - - - - - -
27 Attribute other d to randomness 0.037 - 0.037 - - -
28 Attribute own d to randomness 0.025 - 0.025 0.045 - 0.045
29 Assurance to have played C - - - 0.015 0.005 0.01
30 Promise - 0.01 -0.01 - - -
31 Distrust - - - 0.015 - 0.015
32 Trust 0.025 0.003 0.022 0.136 0.005 0.131
33 Argue for trustworthy behavior 0.025 - 0.025 - 0.003 -0.003
34 Report payoff from past games - 0.026 -0.026 - - -
35 Report signals of past games - 0.003 -0.003 - 0.008 -0.008
36 Good past experience with CC - 0.023 -0.023 - 0.003 -0.003
37 Good past experience with DD - - - - - -
38 Bad past experience with CC - - - - - -
39 Bad past experience with CC - - - - 0.003 -0.003
40 Good past experience asym. play - - - - - -
41 Bad past experience asym. play - - - - - -
42 Positive feedback after CC - 0.314 -0.314 - 0.254 -0.254
43 Positive feedback after DD - - - - - -
44 Positive feedback after asym. play - - - - - -
45 Empathy 0.16 - 0.16 - 0.037 -0.037
46 Confess D - - - - - -
47 Apology - - - - - -
48 Justification of play - - - - - -
49 Accusation of cheating 0.074 - 0.074 0.182 - 0.182
50 Verbal punishment 0.012 - 0.012 - - -
51 Renegotiation - - - - - -
52 Argument against punishment - - - - - -
53 Small talk 0.025 - 0.025 0.091 0.064 0.027
54 Off topic 0.185 0.353 -0.168 0.197 0.479 -0.282
55 Boredom - 0.01 -0.01 - - -
56 Disappointed after b signal 0.235 - 0.235 0.136 - 0.136
57 Confusion 0.062 0.036 0.026 - 0.035 -0.035
58 Motivational talk 0.049 0.071 -0.022 - 0.024 -0.024
59 Report: own signal c - 0.003 -0.003 - 0.005 -0.005
60 Report: own signal d 0.111 - 0.111 0.121 0.003 0.118
61 Report: own action C 0.086 - 0.086 0.015 0.011 0.004
62 Report: own action D - - - - - -
63 Ask for others payoff 0.062 - 0.062 0.091 0.045 0.046
64 Ask for others signal - 0.003 -0.003 - 0.003 -0.003
65 Ask for others action 0.049 - 0.049 0.045 - 0.045
66 Report: own payoff 0 0.21 - 0.21 0.5 0.003 0.497
67 Report: own payoff 17 - - - - - -
68 Report: own payoff 30 0.074 0.006 0.068 - 0.091 -0.091
69 Report: own payoff 37 - - - - - -
70 Being cheated on in past games - 0.01 -0.01 - 0.005 -0.005
71 Counter-proposal - - - - 0.003 -0.003
72 Rejection of punishment - - - - - -

Notes: See notes of Table C5. Data from last three supergames.
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Table C7: Communication Content and Cooperation – Rounds > 1, All Supergames

Repeated Treatments

Perfect Public Private

Coordination −0.02− −∗0.04∗− −∗∗0.07∗∗−
Deliberation −0.01− −0.02− −∗∗0.06∗∗−
Relationship −∗∗0.02∗∗− −0.02− −∗0.05∗−
Information −0.01− −0.03− −0.04−
Trivia −∗∗∗0.03∗∗∗− −∗∗∗0.10∗∗∗− −0.01−
Supergame −∗∗∗0.01∗∗∗− −∗∗∗0.02∗∗∗− −∗∗∗0.03∗∗∗−
Round −0.00− −0.01− −0.00−
Last Action −∗∗∗0.25∗∗∗− −∗∗∗0.32∗∗∗− −∗∗∗0.22∗∗∗−
Last Signal −∗∗∗0.08∗∗∗− −∗∗∗0.17∗∗∗− −∗∗∗0.27∗∗∗−

Notes: Marginal effects from logistic regressions for cooperation in rounds > 1. All supergames. All models control for
socio-demographic and other subject related characteristics. Significance based on t-test using bootstrapped standard
errors, two-way clustered on subject and match (1000 repetitions). ∗∗∗ (∗∗,∗) indicates significance on the 1 (5,10)% level.

Table C8: Communication Content and Cooperation – Rounds > 1, Last Three Supergames

Repeated Treatments

Perfect Public Private

Coordination −0.01− −0.00− −∗0.03∗−
Deliberation −0.03− −0.01− −0.01−
Relationship −0.00− −0.02− −0.01−
Information −0.00− −0.02− −0.03−
Trivia −0.00− −∗∗∗0.07∗∗∗− −∗0.03∗−
Supergame − 0.00∗− −0.02− −0.02−
Round −0.00− − 0.00∗− −0.00−
Last Action −∗0.05∗− −∗∗∗0.23∗∗∗− −∗∗0.16∗∗−
Last Signal −0.01− −∗∗∗0.11∗∗∗− −∗∗0.15∗∗−

Notes: See notes of Table C8. Data from last three supergames.
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Appendix D Experimental Instructions and Quiz

[Below are the instructions for the perfect-monitoring treatment with repeated communication.
Instructions for the other treatments were very similar and are therefore omitted here. They
can be obtained from the authors upon request, along with the original instructions in
German.]

Overview

Welcome to this experiment. We ask you not to speak with other participants during the experiment and to
switch off your mobile phones and other mobile electronic devices.

For your participation in today’s session, you will be paid in cash at the end of the experiment. The amount
of the payout depends in part on your decisions, partly on the decisions of other participants and partly on
chance. It is therefore important that you carefully read and understand the instructions before the start of
the experiment.

In this experiment, every interaction between participants goes through the computers you are sitting in front
of. You will interact with each other anonymously. Neither your name nor the names of other participants
will be made public, either today or in future written evaluations.

Today’s session includes several rounds. Your payout amount is the sum of the earned points in all rounds,
converted into euros. The conversion of points into euros is done as follows. Each point is worth 2 cents, so
the following applies: 50 points = EUR 1.00.

All participants will be paid privately, so that other participants will not be able to see how much they have
earned.

Experiment

Interactions and Matching

This experiment comprises 7 identical interactions, each consisting of a randomly determined number of rounds.

At the very beginning, before the first interaction, you are randomly placed in a group with other participants.
In each of the 7 interactions, you will interact with a different participant in your group.

In concrete terms, this is how it works: Before the first interaction, you are assigned to a person from your
group with whom you interact in all rounds of the first interaction. In the second interaction, you are then
assigned to a new person from your group, with whom you interact in all rounds of the second interaction,
etc. In this way, you interact with each person assigned to your group in exactly one interaction, but in all
rounds of that interaction.

Length of an Interaction

The length of an interaction is determined randomly. After each round there is an 80% chance that there will
be at least one more round.

You can imagine this as follows. A 100-sided dice is rolled after each round. If the roll is 20 or less, there is no
further round. If the roll is a different number (21-100), the interaction continues. Note that the probability
of another round does not depend on the round you are in. The probability of a third round when you are in
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round 2 is 80%, as is the probability of a tenth round when you are in round 9.

As soon as chance decides after a round that there is no further round in the interaction, the interaction is
finished and you are assigned to a new person for the next interaction. After the seventh interaction, the
experiment ends.

Interactions and Sequence of Events in a Round

Before each round of interaction, you can chat with the other person on your screen. The chat takes place in
an anonymous chat window. In order to protect your anonymity, it is important that you do not provide any
information about yourself or your seat number during communication. Otherwise we reserve the right not to
pay you any money in the end. The entire chat content is displayed during the interaction and can be read
again.

After the first chat the first round begins.

In each round, you select one of two possible options, A or B. The other person also selects one of two possible
options, A or B.

There is a 90% probability that the option you have chosen will be correctly communicated to the other
person. There is a 10% probability that the option you have not selected will be transmitted. What the other
person receives is what we call the other person’s signal. The same applies to the other person’s option and
your signal. For example, if the other person chooses option A, you receive Signal A with 90% probability
and with 10% probability you get Signal B. Assuming you choose Option B, the other person receives Signal
A with 10% probability and Signal B with 90% probability.

Your round income depends on your selected option and the signal received. Likewise, the payout of the
other person depends on their chosen option and the signal they receive.

Once you and the other person have chosen an option, chance decides which signals are transmitted and
what round earnings result from them with the probabilities given above.

Figure D1: Round Income [Figure 1 from Instructions]

Your income with signal
Expected income if the other person

chooses option A chooses option B

Your options

The four cells on the right in Figure 1 show the expected earnings depending on your option choice and the
option choice of the other person. For example, if you select option B and the other person selects option
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A, you receive Signal A with 90% probability and Signal B with 10%. Therefore you will receive 37 points
with 90% probability and 17 points with 10% probability, that is, your expected earnings in this case are:
0.9*37+0.1*17=35 points.

Figure D2: Part of Feedback Screen (Example) [Figure 2 from Instructions]

Round Income

Your Choice:

Your Signal:

Choice of oth. person:

Signal of oth. person:

Your Points in
this Round:

At the end of the round, you will receive feedback on your chosen option, the signal received, the other
person’s choice of an option, the signal received by the other person, and your own round earnings (see Figure
2).

All possible following rounds are identical in sequence. The course of the current interaction, that is, the
feedback that you received at the end of all previous rounds, is shown in a table in every round.

End and Payoff

As soon as chance ends the seventh interaction, the experiment is over.

At the end of the experiment, the points from all rounds are converted into euros and paid out privately.

The last screen of the last round of the seventh interaction shows you how much you have earned in euros.

Questions?

Take your time to go over the instructions again. If you have any questions, please raise your hand. An
experimenter will then come to your place.

If you think you have understood everything well, you can start the quiz on your screen. The quiz is only to
ensure that everyone has understood the instructions well. The answers do not affect your payout.
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Quiz [on screen]

[The quiz was the same in all nine treatments. The correct answers appeared on the next screen.]

1. How many interactions are there?

[1,7, it is random]

2. What is the probability that there is a first round of an interaction?

[20%, 80%, 100%]

3. What is the probability that there will be a second round in an interaction when you are
currently in the first?

[20%, 80%, 100%]

4. What is the probability that there will be a third round in an interaction when you are
currently in the second?

[20%, 80%, 100%]

5. What is the probability that there will be a third round in an interaction when you are
currently in the first?

[64%, 80%, 100%]

6. You choose Option B and the other person cooses Option B.

(a) What is the probability that you receive Signal A?

[10%, 90%, 100%]

(b) What is the probability that the other person receives Signal B?

[10%, 90%, 100%]

(c) How high is your payoff in case you receive Signal A?

[19, 35, 37]

(d) How high is the expected payoff of the other person?

[19, 35, 37]
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