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ABSTRACT
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Information Provision and Streamlined 
Medical Service: Evidence from a Mobile 
Appointment App

We examine the launch of a mobile outpatient appointment app in China to study the effect 

of information provision and a streamlined appointment process on hospital operations and 

the alignment of healthcare supply and demand. Using a longitudinal dataset on hospital 

operations and a difference-in-differences model, we document that the app increases 

completed hospital consultations by 9.5%, through boosting registrations by 4.8% and 

reducing appointment cancellations by 3.4%. The app improves queuing efficiency in 

overcrowded hospitals and draws demand for underutilized ones. Supported by additional 

evidence from a subset of patients’ electronic medical records, we also find that the app 

directs patients to the hospital and department more suitable to their medical conditions 

and to less busy days, resulting in a better match between patient demand and hospital 

service.
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1 Introduction

Before dawn on an ordinary day, the queue for consultation registration outside Beijing Union

Hospital—one of the nation’s flagship research hospitals—has stretched for hundreds of meters.

While this particular hospital may be among the worst cases in the country, the media has

long reported that “queues at Chinese hospitals are legendary” (Economist, 2017). Though

much of the overcrowding can be attributed to a shortage of medical resources, the mismatch

between healthcare supply and demand must not be overlooked. In China, the hospital-bed

utilization rate has reached 102% in large research hospitals, often relegating some inpatients

to makeshift beds, but is only around 60% in small primary-care facilities (National Bureau of

Statistics, 2015). Elsewhere in the world, suboptimal allocation of limited medical resources has

been documented in both developing and developed countries. In the US, a shortage of general

practitioners and oversupply of specialists contributes to both underprovision and excess spend-

ing (Japsen, 2016; Jauhar, 2014). Despite wide recognition of the supply-demand mismatch in

the Chinese healthcare system, changes have been scarce and late in coming (Eggleston et al.,

2008). Institutional reforms, such as introducing a general-practitioner-based referral system

and meaningful differential pricing between large hospitals and small primary-care providers,

are necessary to correct the mismatch. However, these reforms are progressive and expensive.

In this paper, we study the impact of a mobile outpatient appointment application (app)—a

lightweight information technology (IT) innovation—on hospital operations and the alignment of

healthcare supply and demand in China. The app was designed by a private Chinese healthcare

IT company, which we refer to as the Company hereafter, and launched by the Company’s client

hospitals. Prior to the app’s launch, these hospitals, like most Chinese hospitals, primarily

accepted only walk-in registration for outpatients, who would then be placed in a queue for

consultation in the order of registration. Launching the app only changes hospitals’ operations

by informing their patients of physicians’ availability and allowing advance online booking for
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hourly consultation slots.

Our objective in analyzing the app is twofold. First, to provide managerial insights to

healthcare providers, we evaluate the app’s impact on hospital operations. Like many other

health IT products, the app requires a sizeable set-up cost: An adopting hospital must pay

around 2 million CNY (0.3 million USD) to the Company for the app and to train its staff

to accommodate the procedural changes. Meanwhile, there has been widespread skepticism

about the app’s cost effectiveness, with prominent hospitals already operating close to their

full capacity doubtful that the app could help. The Company, in turn, was concerned that the

app’s easy appointment cancellation feature might waste scarce slot resources. In the absence of

convincing evidence, hospitals were often incentivized by public-relational and political pressure

to adopt the app.1 The use of similar top-down incentives for health IT product adoption

(Schilling, 2011) testifies to the importance of our study.

Second, and more importantly, we examine whether the app improves the match between

supply and demand across hospitals and time. Before the app launch, hospitals’ overreliance

on walk-in registrations made it difficult for patients to learn about hospital crowdedness and

physician availability without physically visiting the hospital. Using a simple analytical model,

we show that this uncertainty could lead to patients’ suboptimal hospital choices. The model

also predicts that by eliminating the uncertainty, the app could improve match efficiency by

directing patients to hospitals more suitable to their medical conditions, which we set out to

test empirically. Jensen (2007) demonstrates that in the context of the Indian fisheries sector,

mobile technology is capable of mitigating information asymmetry and achieving the “law of

one price” across different fishery markets. We investigate the role of information provision

through mobile technology in a market in which the price mechanism is largely absent due to

government regulation.

1. See an administrative guideline published by the National Health and Family Planning Commission of the
People’s Republic of China for an example (in Chinese): http://www.gov.cn/gongbao/content/2014/content_

2600086.htm.
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We gained access to the Company’s longitudinal dataset of hospital-department-day outpa-

tient records from 2013 to 2016 for 22 urban hospitals in a developed coastal province of China.

All of the sampled hospitals use the Company’s Hospital Information System (HIS), which en-

sures a uniform data standard. By the end of the observational window, 9 of the 22 hospitals

had launched the app. The app was launched at different times, and the sequentiality of app

adoption allows a staggered difference-in-differences analysis. A substantial time gap exists be-

tween a hospital’s decision to adopt and the actual app launch date, which is at least partially

outside the adopting hospital’s control. This suggests that it is impractical to coordinate launch

timing with pre-launch trends in hospital operations, which is the key identification assumption

of our analysis. We further validate this assumption in three statistical tests: using data from

the emergency department, using placebo launch timing, and directly testing pre-launch trends.

To supplement the hospital-department level analysis, we also examine two separate datasets.

From over 130,000 patients’ electronic medical records (EMR), we examine how the app affects

hospital choices made by patients of various medical conditions. Using the app-user data, we

study the impact of the app’s subsequent launches on its first batch of users.

Our difference-in-differences analysis first establishes that the app improves hospital opera-

tions by increasing completed outpatient consultations by 9.5%. This is achieved by boosting

registration counts by 4.8% and reducing cancellations—which are defined as a registered pa-

tient’s failure to see a doctor on the registration day—by 3.4%. The cancellation rate averaged

12% in our sampled hospitals prior to the app launch, which suggests that nearly one out of

every eight walk-in patients left after registration and before consulting a physician. Batt and

Terwiesch (2015) document that patients waiting in hospital lines are sensitive to visual queue

lengths and often abandon queues. Given the typically crowded condition of Chinese hospitals,

such a high cancellation rate is most likely caused by unexpectedly long queues. By informing

patients of physicians’ availability and allowing advance booking, the app effectively reduces

cancellation waste. The extent of reduction implies tens of millions per year in increased hospital
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revenue and savings on patient opportunity costs.

Second, the app serves as a “soft” triage mechanism that facilitates better matching between

patients and hospitals:

1. In large tier-three hospitals, we find that the app induces the substitution of walk-in reg-

istrations for online bookings, and increases total consultations by reducing cancellations.

In tier-two hospitals, we find that a net increase in registrations explains the increase

in consultations. This is a welcome outcome, as in China, tier-three hospitals are often

overcrowded and tier-two hospitals are underutilized (Yip and Hsiao, 2008, 2014).

2. We find that the app increases consultations mostly in departments that handle more

severe medical conditions in tier-three hospitals and those that handle less severe condi-

tions in tier-two hospitals, which suggests that patients are better able to sort into the

“right” hospital according to their medical needs. We find consistent results in the EMR

data, where we directly observe the patient’s visit history and the severity of their medical

conditions through recorded diagnoses.

3. We find that in post-adoption hospitals, patients avoid busier weekdays and increase their

consultations during less busy weekends. App-user data show that although subsequent

app launch reduces the average scheduled waiting period for users across all days of the

week, the reduction on weekends is the largest.

Overall, our findings demonstrate that the app leads to a better match between patient demand

and hospital service by directing patients to the hospital and department more suitable to their

medical conditions and to less busy days.

Our work is related to three streams of literature. First and foremost, our paper addresses

healthcare resources’ allocative efficiency: how to align the supply and demand of healthcare

services. Previous studies have documented extensive supply-side factors in the lack of allocative

efficiency, such as an oversupply of specialists (Baicker and Chandra, 2004), distortion in physi-
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cian incentives (Clemens and Gottlieb, 2014), and expensive but narrowly targeted medicine

and technologies (Chandra and Skinner, 2012). Our work contributes by documenting the im-

portance of demand-side factors in allocative efficiency: When better informed and given more

choices, patients choose more suitable healthcare providers and less busy days, implying more

efficient utilization of healthcare resources.

Second, our work studies non-price factors that influence healthcare demand. Previous

research finds that the patient’s choice of hospital is responsive to information, such as that

found on social networks (Moscone et al., 2012), hospital report cards (Dranove and Sfekas,

2008), and government websites (Varkevisser et al., 2012). Studies by Gaynor et al. (2016)

and Cooper et al. (2011) demonstrate that patients “shop” for hospitals when provided with

more information and choices. In this paper, we study the effect of providing appointment

availability information and scheduling flexibility. Our findings of improved hospital operations

and demand-supply alignment show that non-price factors, such as length of waiting, ease of

hospital access, and information technologies, are clearly important.

Finally, our analysis of the app adds to a growing literature of digital healthcare, such

as the adoption of electronic medical records (Agarwal et al., 2012; Agha, 2014; Dranove et

al., 2014; McCullough et al., 2016; Miller and Tucker, 2011); handheld mobile technologies for

physicians (Prgomet et al., 2009); mobile-phone-based interventions for patient adherence to

medical treatment (Chow et al., 2015; Lester et al., 2010; Ramachandran et al., 2013); the

impact of health IT on clinical routines (Goh et al., 2011); online health communities (Goh et

al., 2016); online physician ratings (Gao et al., 2015); telemedicine consultations (Serrano and

Karahanna, 2016); and IT’s facilitating role in hospital quality disclosure (Angst et al., 2014).

Our work differs in its focus on documenting information provision as a way to improve patient

sorting in healthcare markets.
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2 Conceptual Framework

Before proceeding to the empirical analysis, we introduce a conceptual framework that guides

our analysis. This starts with discussions on the mismatch between demand and supply in

Chinese hospitals. We then describe the app’s design, functionality, and launch process, followed

by a simple model that illustrates how the app could improve sorting between patients and

hospitals.

2.1 Why Are Large (Tier-three) Hospitals Overcrowded in China?

In our study, we use China’s official three-tier system to differentiate large research hospitals

from their smaller and primary-care-focused counterparts. This system was established between

the 1950s and 1960s, and its structure and criteria have not radically changed since then (Na-

tional Bureau of Statistics, 2015). The three tiers can generally be regarded as communal- (tier

one), township- (two), and city-level (three) hospitals. The classification is slightly different in

rural and urban areas, and depends on weighted scores of hospital characteristics. Size mea-

sures, such as the number of inpatient beds, are the predominant classifiers (Ministry of Health,

1989). Tier-three hospitals, or what we sometimes loosely refer to as “large hospitals,” provide

comprehensive care, such as acute care and specialist services. They also play a dominant role

in medical education and research. Lower-tier hospitals mainly provide primary and preventive

care, perform basic surgical procedures, and serve local communities. We discuss the Chinese

healthcare market in more detail in online Appendix A.

Although tier-three and lower-tier hospitals provide care of vastly different quality, the

outpatient consultation fee is regulated and capped at a very low rate across all hospitals.2

Prices for prescription drugs and basic diagnostic tests are also heavily regulated and have

limited variation between hospitals in different tiers (Yip and Hsiao, 2008). Moreover, there is

no general-practitioner-based referral system in China or any other formal protocol for patient

2. In our sampled hospitals, this is generally less than 15 CNY (just above 2 USD).
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referrals (Xu et al., 2010). Consequently, the nation’s public health insurance system typically

does not require a valid referral from lower-tier hospitals or general practitioners to reimburse

costs incurred in higher-tier hospitals. The absence of price differentials and a referral system

makes tier-three hospitals the preferred option for many patients: They skip lower-tier hospitals

and flood into high-tier ones (Eggleston et al., 2008), which causes further disparities between

hospital tiers. This vicious cycle quickly escalated after market-oriented healthcare reforms

in the 1980s and 1990s. Tier-three hospitals have grown rapidly in size and captured the

lion’s share of skilled physicians, patients, and revenue. In contrast, lower-tier facilities are

increasingly understaffed and underfunded, which creates a downward spiral for the quality and

reputation of lower-tier facilities. In 2014, the average tier-three hospital in China employed

26 times more physicians and nurses, treated 27 times more patients, and generated 60 times

more revenue than their tier-one counterparts. The bed-occupancy rate in tier-three hospitals

averages 101.8%, in contrast to only 60.1% in tier-one hospitals (National Bureau of Statistics,

2015). We provide descriptive statistics that contrast hospital characteristics in different tiers

in Appendix Table A1.

As much as one could argue that the overwhelming preference for tier-three hospitals is

rational, the pre-mobile era of hospital appointment systems almost certainly created ineffi-

ciency. Before having access to an online appointment option, most patients simply walked

into a hospital’s outpatient department, registered at the reception, and were placed by the

registration system in a queue for consultation. Not knowing the queuing time until after reg-

istration, many patients—especially those visiting busy tier-three hospitals—were deterred by

unexpectedly long queues and abandoned their registrations (Blumenthal and Hsiao, 2015; Yip

and Hsiao, 2008). We depict this traditional (offline) registration process in the left panel of

Figure 1.
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2.2 The Mobile Outpatient Appointment App

App Designer The mobile outpatient-appointment app was designed by a publicly listed

healthcare IT company (the Company) in China. By the end of 2016, the Company had

launched the app in more than 300 client hospitals in China and had close to 10 million app

users. The Company typically charges a hospital around 2 million CNY (0.3 million USD) for

the app and its future maintenance, but does not otherwise interfere with the client hospital’s

operations.

In addition to the app, one of the Company’s main products is a hospital information system

(HIS), which is a one-stop IT solution for hospitals. To ensure a uniform data standard, we

only sample hospitals that use the Company’s HIS.

Main Functions of the App The app has two main functions: displaying physicians’ avail-

ability and allowing advance booking. The app is a mini-program add-on on WeChat, which

is a massive social-network application: Daily active users account for more than 88% of all

Internet users in China (Clover, 2016). The app works on all mobile platforms and does not

require a separate app-store download or installation. To access the app for appointments in

an adopting hospital, a user must subscribe to the hospital’s WeChat public page, where the

link to the app appears as a functional button. Clicking through the button leads to the app’s

landing pages, as shown in Figure 2, which are standard across adopting hospitals. First, the

user is presented with the left-hand panel, which provides visual guidance to help match the

user’s illness or symptoms to a hospital department. Clicking on leads to a selection screen for

departmental choice, as shown in the middle panel. After choosing a particular department, the

user can browse on-duty physicians’ available hourly consultation slots for the next two weeks

on the right-hand panel and book the desired slot. After paying the registration fee via the app

upon booking, the user can arrive at the designated time, skip the queue, and see the physician

with a minimum on-site wait. The user can also cancel the appointment using the app for a
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full registration fee refund by midnight the day before the appointment date. In the right-hand

panel of Figure 1, we depict the consultation process using the app. It is important to note

that since the app is tied to a hospital’s public page, it does not rank hospitals or provide

crowdedness information from other hospitals for comparison.

Launch of the App Upon signing a sales contract, the Company dispatches IT technicians to

integrate the client hospital’s existing outpatient appointment system with the app. Meanwhile,

the client hospital must train its staff to receive patients who go through the app channel for

consultations. How soon the pre-launch preparation is completed varies greatly, and depends

on the IT system’s complexity and compatibility, as well as constraints on the Company’s and

hospital’s manpower. Typically, the preparation time ranges from four to six months and is

hard for hospitals to precisely predict. Therefore, it is highly unlikely that an adopting hospital

can synchronize the app launch time with anticipated demand shocks or supply changes, such as

hiring additional staff. Moreover, we conduct formal tests in the months before the launch time

to detect whether there exist other hospital interventions or unobserved pre-trends in adopting

hospitals that drive the estimated effects of app adoption. We find no such contaminations. In

Section 4.2, we present further evidence from robustness analyses to show that the app’s launch

time is arguably exogenous and has no confounding factors.

On or around the app launch date, the adopting hospital often holds a press conference or

uses other marketing techniques, such as website banners and on-premises advertising posters,

to announce the launch. These marketing efforts are mostly app-centric. Therefore, though our

estimated effect may pick up these marketing efforts, they should be interpreted as bundled

with app adoption.

App-adopting hospitals typically allocate only a small fraction (ranging from 8-18% for tier-

three hospitals in our sample) of registration slots online and retain the majority for offline

patients. Based on conversations with the Company and some sampled hospitals, we do not be-
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lieve that hospitals change work schedules or increase their workforce upon app launch. Indeed,

we find no post-adoption increase in total registrations for hospitals that, before app launch,

were likely to operate at close to capacity.

2.3 How Can the App Help?

The app is designed to streamline the queuing process and reduce the uncertainty of queuing

time. The mechanism by which it affects patients’ choice of hospitals on different tiers is not

straightforward. To illustrate this point, we develop a stylized model. This model has a unit

mass of patients and two hospitals: a tier-three (h) and a lower-tier (l). Each patient must

decide which hospital to visit for one trip. They have a uniformly distributed idiosyncratic

utility Vh ∼ U [v, v] for visiting the tier-three hospital for consultation. This value could be

interpreted as the match value of one’s medical condition to hospital—i.e., how efficaciously a

patient will be treated by this hospital. Patients must queue in the hospital before consultation,

and hence are affected by a visit-specific disutility from queuing, Q. Before the app launch, we

assume that Q follows a uniform distribution: Q ∼ [0, q]. For simplicity, we fix the utility that

all patients receive from visiting the lower-tier hospital at vl, normalize the queuing disutility

at lower-tier hospitals to 0, and assume that patients are risk-neutral. We analyze the case in

which an average patient prefers to visit the tier-three hospital when facing the average queuing

disutility, or (v+v− q)/2 ≥ vl > 0. We use capital letters Vh and Q to denote random variables

and reserve lower case for their realizations and other fixed values.

Figure 3 shows the effect of the app on the patient’s hospital choice and cancellation. Panels

(A) and (B) present the probability density function of Vh and patient’s hospital choice before

and after the app adoption, respectively. Before the app’s launch, patients observe their own

realized vh before deciding which hospital to visit. However, they do not learn about the

realization of Q until they visit the tier-three hospital, and hence base their visit decisions on

the average of queuing disutility q/2. Panel (A) plots vh on the x-axis. Those with vh−q/2 ≤ vl,
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or Area (I), choose to visit the lower-tier hospital. The rest choose to visit the tier-three hospital.

Suppose that a patient with realized utility vh visits the tier-three hospital and discovers the

queuing disutility to be q. She will only remain in the queue to receive the net utility vh − q if

vh − q ≥ 0. Otherwise, she will cancel her registration. Areas (II) and (III) correspond to the

proportions of patients who stay through the queue and those who cancel their registrations,

respectively.

After the app’s launch, patients who secure consultation slots via the app experience min-

imum queuing time at the tier-three hospital. However, some patients may find their ideal

consultation slots taken before they make their appointments. For algebraic simplicity, we as-

sume that the app changes Q’s distribution to a binomial distribution: With probability p,

patients cannot secure their ideal slot (q = q), and with probability 1− p, patients can (q = 0).

A crucial difference from the pre-launch case is that patients observe the realization of Q before

visiting the tier-three hospital. Panel (B) of Figure 3 plots the case after the app’s launch, with

vh on the x-axis. Area (I*) corresponds to the proportion of patients who choose to visit the

lower-tier hospital, which comprises all those with low match values with the tier-three hospital

(vh ≤ vl) and those who prefer the tier-three hospital to a certain extent (vl ≤ vh ≤ vl + q), but

face q as queuing disutility. Area (II*) corresponds to patients who visit the tier-three hospital

regardless of queuing disutility.

Under our simplified parametrization and compared with before the app launch, the lower-

tier hospital receives more patients if p > 1/2, a lower-bound condition on the proportion of

patients who are not able to secure their ideal slots. If p < 1/2 + 1/(2q2) ∗ (q/2 − vl)
2, an

upper-bound condition on the proportion of patients who are not able to secure their ideal

slots, the tier-three hospitals also complete more consultations than before the app launch.

This gain is achieved by eliminating cancellations. Since some values of p satisfy both lower-

and upper-bound conditions, both the lower-tier and tier-three hospitals may benefit from the

app launch.
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The model is obviously highly stylized. For instance, it assumes a fixed number of patients

and ignores a possible market expansion effect: More patients may be drawn to visit hospitals

under information clarity. Nonetheless, the mechanism highlighted by the model produces three

key empirical predictions for the app’s effect. First, it may increase visits to lower-tier hospitals.

Second, it may increase consultations in tier-three hospitals by reducing cancellations. And

third, “marginal” patients who are more likely to switch from tier-three to lower-tier hospitals

are those with less serious medical conditions (lower vh) or who face higher queuing disutility

(higher q). We set out to test these predictions in our empirical analyses.

3 Data

We collect three datasets for the empirical analyses: hospital operations data, electronic medi-

cal record (EMR) data, and app-user data. Hospital operations data, our primary data source,

consist of daily hospital-department-level outpatient records for 22 urban hospitals in a devel-

oped coastal province of China from January 2013 to September 2016. To study individual-level

choices, we collect two supplementary datasets from a subset of hospitals and the sample pe-

riod. EMR data consist of outpatient consultation records from four out of the 22 hospitals.

App-user data consist of app-users’ mobile registration records in all adopting hospitals after

the app is adopted.

3.1 Hospital Operations Data

Our primary dataset consists of daily hospital-department-level outpatient records for 22 urban

hospitals in a developed coastal province of China. The Company constructed the data by

aggregating patient records in the hospitals’ HIS. This baseline sample covers the period from

January 1, 2013, to September 20, 2016. The panel is unbalanced, because four hospitals

installed their HIS progressively in the course of 2013, and their observations are not available

until HIS is up and running. Nonetheless, from September 3, 2013, onward, all 22 hospitals are
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observed until the end of the sample period. The first app launch was in August 2014. By the

end of the sample period, nine hospitals had adopted the app.

We examine three categories of outcome variables to measure hospital operations: (1) total

registrations for outpatient consultation (green ovals in Figure 1); (2) total consultations, defined

as consultation sessions that actually occurred (blue rectangles in Figure 1); and (3) registration

cancellation rate, defined as the ratio between registration-consultation difference and total

registrations (red diamonds in Figure 1). A cancellation can be an “informed” one, in which a

registered patient informs the hospital by canceling through the app or revisiting the registration

counter for a registration fee refund, or an “uninformed” one, in which a registered patient

simply forfeits his/her registration by abandoning the queue and leaving the hospital. In our

empirical analyses, we do not distinguish between these two types of cancellations.

The three outcome variables are further classified as either “online” (right panel of Figure

1) or “offline” (left panel of Figure 1). Online registrations are those made in advance using

the app, and offline registrations are made on-site at the hospitals. Online/offline consultations

and cancellation rate refer to those following online/offline registrations. Since online outcome

variables are definitionally unavailable before the app launch, we use the three total outcome

variables and the three offline ones as dependent variables in the analyses.

We present some descriptive statistics in Table 1. The sample covers nearly 30,000 hospital-

days and the app is functioning on 17.1% of these days. Table 1’s Panel A shows that on

average, app-adopting hospitals receive more daily registrations and consultations and experi-

ence a higher cancellation rate than non-adopters. The high cancellation rate is particularly

worth noting: adopters receive a total of 2,228 daily registrations, of which 1,846 eventually

consult a physician, leaving 14.6% of registrations unfulfilled. In Table 1’s Panel B, we con-

duct a simple before-after app launch comparison. Adopters’ daily consultations increased from

1,704 to 2,026, and daily registrations increased from 2,153 to 2,323. Even with the ease of

cancelling registrations on the app, the online/offline combined cancellation rate decreased by
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5.4 percentage points for adopters, but barely changed for non-adopters.

3.2 Supplementary Individual Data

Electronic Medical Records (EMRs) We procure more than 130,000 individual patients’

electronic medical records (EMRs) from four hospitals in one district within the provincial

capital. These four hospitals are among the 22 included in the hospital operations data. The

EMR data’s sample period, from January 2015 to September 2016, is also covered by the hospital

operations data. Three of the four hospitals, two tier-two and one tier-three, launched the app

before the sample period for the EMR data. The fourth one, a tier-three hospital, adopted

the app during the sample period. EMR data are longitudinal. Each record includes a patient

identifier, some patient characteristics, the department name, and the diagnosis.

App-user Data We use app-user data to study whether app adoption shortens the time be-

tween mobile booking and actual consultation. App-user data contain more than 1.7 million

mobile booking records from August 1, 2014—the first launch date—to September 30, 2016. For

each registration record, available variables include the patient identifier and basic demograph-

ics, the registered hospital department, and the timestamps when a mobile booking is made and

when the consultation begins. In the following analyses, we define the time difference between

the mobile booking and the actual consultation as the on-app scheduled waiting period.3 In

our sample, the on-app scheduled waiting period averages 44.6 hours, which implies that app

users secure a consultation slot roughly two days in advance.

These three datasets complement each other to offer a holistic view of the app’s impact. Our

main analysis uses hospital operations data, which contain essential information on the app’s

performances and provide the most comprehensive coverage in terms of time and geography.

EMR data contain detailed information on patients’ medical conditions and allows us to track

3. See Figure 1 for how the on-app scheduled waiting period differs from the queuing time in traditional walk-in
visits.
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individuals’ hospital choices over time. We use this dataset to show that the app directs patients

to hospitals that are suitable for their medical conditions. However, only one app launch occurs

during the EMR data’s sample period, which restricts our analysis to an “event study.” App

user data are generated when users book consultation slots on mobile phones. Therefore, it only

captures booking activities at adopting hospitals after the app was launched. In other words,

the patient’s behavior off the app or before the app was not observed. Bearing this limitation in

mind, we use this dataset to study the effect of subsequent app launch on the scheduled waiting

period of the first batch of app users.

4 Hospital Operations

4.1 Benchmark Results

We estimate the app’s impact on hospital operations using hospital operations data and the

following difference-in-differences model:

yit = α+ βAppit + λi + λt + εit, (1)

where yit is one of the six outcome variables for hospital i on day t: total registrations, total

consultations, overall cancellation rate, offline registrations, offline consultations, and offline

cancellation rate. Binary variable Appit is one if hospital i adopted the app on or before day

t and zero otherwise. The coefficient of interest, β, measures the effect of the app on the

outcomes. The hospital’s time-invariant characteristics are controlled by hospital fixed effect

λi. Dummy variables λt include both month fixed effect and year fixed effect, used to control

for time-varying but hospital-invariant factors. In all analyses, the number of registrations and

consultations are in logarithm, such that we can interpret the estimated effect as percentage

changes. Robust standard errors are clustered at the hospital level.

Table 2’s Panel A presents the estimates for Equation (1). We compute p-values using the
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wild bootstrap procedure proposed by MacKinnon and Webb (2018) to account for a small

number of clusters. The simple model seems to fit the data well, scoring R2 around 0.8 for

consultations and registrations and around 0.66 for cancellations. The app increases an adopting

hospital’s total daily consultations by 9.5% (Column 1). This is achieved by both increasing

registrations by 4.8% (Column 2) and reducing the cancellation rate by 3.4 percentage points

(Column 3). Daily offline registrations shrink by 4.4% after app launch (Column 5), suggesting

a straightforward substitution of registrations from offline to online. This reduction is offset by

a drop of 3.6 percentage points in the offline cancellation rate (Column 6), leaving the number

of consultations via the offline channel almost unchanged after the app launch (Column 4).

We attribute the reduction in cancellations to two possible factors. First, patients with

higher costs of queuing—hence a higher chance of abandoning queues—are more likely to switch

the registration from offline to online. Since these patients can now arrive at their precise ap-

pointment times, they cancel less often. Second, with online patients arriving at their appointed

times, queues become visibly shorter in hospitals’ waiting rooms, which encourages patients who

register offline not to cancel their appointments.

Without directly observing health outcomes, we refrain from speculative normative assess-

ments of the changes in registrations and consultations. However, it is difficult to believe

that the reduction in cancellations is not efficiency-improving. Some conservative back-of-the-

envelope calculations help to put the 3.4-percentage-points reduction into perspective. The nine

adopting hospitals in our sample combined had, on average, 15,741 daily registrations before

the app launch. A 3.4-percentage-points reduction in cancellations means that after the app

launch and on each day, around 535 registered patients who would otherwise fail to consult a

physician can now go through the queue. On average, each outpatient consultation generated

around 250 CNY (36 USD) in revenue for adopting hospitals before the app launch. Hence, the

reduced cancellation implies an increased revenue of 133,750 CNY (19,110 USD) per day, or

48.8 million CNY (7 million USD) per year for the nine adopting hospitals. Suppose that each
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of these patients would have wasted two hours each for their cancelled hospital consultations.

Monetizing the wasted hours using the average hourly wage in the province’s urban cities, 35

CNY (5 USD), the app thus reduces losses in opportunity costs by 37,450 CNY (5,350 USD)

per day, or 13.7 million CNY (2 million USD) per year. In total, even ignoring the probable

health benefits, the app produces efficiency gains of 62.5 million CNY (9 million USD) annually

through boosting revenue for all nine adopting hospitals and reducing wasted time for patients.

4.2 Identification and Robustness Checks

Model (1)’s causal identification requires that pre-launch trends in the dependent variables

be parallel—that is, after controlling for hospital and time fixed effects, adopting and non-

adopting hospitals experience no systematically different trends in registration, cancellation,

or consultations. In Section 2.2, we argue that the partially exogenous pre-launch preparation

time makes it difficult for hospitals to anticipatively coordinate their adoption choices with a

special time trend. In addition, we conduct formal statistical tests to support the parallel trend

assumption.

Using “Placebo” Launch Times In the first test, we construct pseudo launch times for

adopting hospitals to determine whether they experienced pre-adoption trends that were dif-

ferent from those of non-adopters. To this end, we restrict the sample to the first 19 months of

the data (January 2013 to July 2014), at which time no hospital had adopted the app. Then,

we further create AppTit as a “placebo dummy” that switches to one after a pseudo launch time

T if hospital i is one of the nine adopting hospitals. We set time T to be each of the 13 months

between April 2013 and April 2014 to ensure that there are at least 3 months of observations on

either side of T . Figure 4 depicts the β estimates from 13 regressions and their 90% confidence

intervals, obtained by estimating Equation (1) using AppTit in place of Appit. We report regres-

sion results in Appendix Table A2. If, supposedly, the number of registrations were already

rising faster or the number of cancellations were falling faster in adopting hospitals prior to app
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launch, some placebo dummies would capture this pre-trend and have statistically significant

coefficients. However, all placebo estimates are close to zero and statistically insignificant, and

significantly different from baseline estimates (dashed horizontal line). This leads us to reject

differences in pre-adoption trends between adopting and non-adopting hospitals.

Using Lead and Lag Launch Times In the second test, we construct pseudo launch times

using the leads and lags of the actual launch time. Figure 5 plots estimates using 11 launch

times and their 90% confidence intervals. Five of these launch times are five, four, . . ., and

one quarter(s) earlier than the actual one (App−5
it to App−1

it ). Five of these are five, four, . . .,

and one quarter(s) later than the actual one (App1
it to App5

it). The estimate in the middle uses

the actual launch time. Corresponding regression results are reported in Appendix Table A3.

Similar to the first test, we find no significant effect in lead quarters, which further substantiates

that the launch timing is unrelated to pre-existing trends.

This exercise also rules out an alternative explanation for the estimated effects in Table 2.

One may be concerned that, in addition to launching the app, adopting hospitals may implement

other measures to improve the offline queuing procedure, such as improving the waiting area

environment and hiring more experienced staff to work at the registration desk. However, the

app’s exact launch time is usually months away and not precisely predictable when a hospital

decides to adopt. In this case, it is unlikely that hospitals synchronize improvement measures to

occur in the same month as the app launch. It is more plausible that many of the improvements

will take place shortly after the decision to launch the app but before the actual launch, in which

case the lead dummies would have turned out significantly positive.

The estimated coefficients of the lag dummies also have economic implications: They cap-

ture the dynamic effect of the app after its launch. There exists a persistent rise in total

consultations and registrations, and a persistent decline in cancellations after app launch for

adopting hospitals. This is consistent with a continuous diffusion of the awareness of the app
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and patients’ evolving taste for app-provided convenience, though coefficients of lag dummies

should be treated with some caution, as post-adoption data become more sparse for later lags.

Using Emergency Room Visits The benchmark analysis excludes Emergency Room (ER)

data. As visits to the ER are by nature unplanned and unexpected, the app does not handle

registration for ER admissions. This feature allows us to use ER visits as a falsification test for

the exogeneity of app-launch timing. If adopting hospitals coordinate app launch with antic-

ipated demand shocks, such as an epidemic or patient population spike, estimating Equation

(1) using ER visits and registrations would show statistically significant positive effects. Also,

since the average cancellation rate for ER visits amounts to 10.9% before the app launch, if

adopting hospitals implement measures other than the app to improve queuing, such as addi-

tional staffing, we expect that such measures would also impact ER visits. In contrast, Table

2’s Panel B shows negligibly small and statistically insignificant effects.

Robustness Checks We take advantage of the large sample size and its ensuing large statis-

tical power and reestimate Equation (1) in a few variations as robustness checks. First, noting

that adopting hospitals are systematically different from non-adopters, in addition to the tests

on the sufficient parallel pre-launch trends assumption, we drop non-adopting hospitals from

the sample and use later adopters as the control group. Second, to parametrically account

for possible differences in pre-launch trends, we include city-specific time trends and the inter-

action between the linear time trend and pre-launch hospital-level average cancellation rates.

This specification accounts for the possible selection by which earlier adopters are those whose

pre-launch cancellation rates were rising faster. Finally, we also add linear and quadratic time

trends to Equation (1) and test robustness in: (1) a subsample that drops the specialty hospitals

(dermatology, neurology, and dentistry); (2) a subsample that drops weekend observations; (3)

a subsample that is restricted to hospitals in the provincial capital; and (4) a subsample that

drops observations before September 3, 2013, to get a balanced panel. We plot the estimated
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effect of app adoption (β and its 90% confidence intervals) in Appendix Figure A1 and report

regression results in Appendix Table A4. All estimated effects are similar to the baseline.

5 Patient Sorting

The increase in consultations and the reduction in cancellations suggest that patients have

responded to the additional information and flexibility provided by the app. The stylized

model in Section 2.3 produces three predictions on how the app facilitates patient sorting across

hospitals: First, the app may increase visits to lower-tiered hospitals. Second, it may increase

consultations in tier-three hospitals by reducing cancellations. And third, “marginal” patients

who are more likely to switch from tier-three to lower-tier hospitals are those with less serious

medical conditions or those who face higher queuing disutility. We test these predictions in this

section. Beyond these model predictions, we also explore how the app improves patient sorting

across time, that is, from busier days to less busy days. In a nutshell, we consider three channels

through which patients’ sorting across hospitals may be improved: sorting across hospitals for

average patients, sorting across hospitals based on the medical condition’s severity, and sorting

across time.

5.1 Patient Sorting across Hospitals

We first examine post-adoption changes in the hospital choice of the average patient. Of the

nine app-adopting hospitals, four are tier-three and five are tier-two. All but one of the tier-two

hospitals are comparatively small, receiving only one-third of the outpatients received by the

tier-three hospitals before the app’s first launch. These small tier-two hospitals mainly provide

primary healthcare. Only one tier-two hospital is comparable in size to the tier-three hospitals,

and has a strong focus on maternity and child healthcare. All of our results in this paper are

qualitatively unchanged if we exclude this large tier-two hospital. We use the following model
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to estimate the app’s heterogeneous impact on hospitals of different tiers:

yit = α+ βT ierTwoTierTwoi ×Appit + βT ierThreeTierThreei ×Appit + λi + λt + εit, (2)

where TierTwoi and TierThreei are binary indicators for whether hospital i is a tier-two or

tier-three hospital, respectively.

We report estimation results in Table 3, and plot estimates for βT ierTwo and βT ierThree

and their 90% confidence intervals in Appendix Figure A2. Tier-two and tier-three hospitals

experience 9.4% and 9.5% increase in outpatient consultations, respectively. Both estimates

are statistically significant at the 1% level and similar in magnitude to the baseline result.

However, the result reveals important differences in how the app works for different tiers. Tier-

three hospitals may have already operated close to capacity before the app launch, limiting

further increase in total registrations. Instead, as in the baseline results, registrations shift

from offline to online. The streamlined queuing leads to a 6.4-percentage-points reduction in

overall cancellation rate, which explains the increase in consultations. For tier-two hospitals,

we find no evidence that pre-launch offline registrations shift to online; the 9.4% increase in

outpatient consultations is mostly driven by an increase in online registrations. These results

are consistent with the predictions of our model that the app increases visits to lower-tiered

hospitals and reduces cancellations in tier-three hospitals. These results also demonstrate the

app’s effectiveness for both hospitals that are experiencing long queues and those that are

underutilized.

We further examine individuals’ choice patterns in the supplementary app-user data. Since

the data, by construction, only include app users in incumbent adopters and only record patient

choices via the app, we cannot assess the effect of the first app launch on the general population.

Instead, our primary objective is to examine whether subsequent app launches in the same region

shorten a patient’s “in-app” scheduled waiting period, defined as the number of hours that elapse
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between the moment one makes an appointment and the actual consultation (see the right panel

of Figure 1). This scheduled waiting period may be either voluntary, if one sets the appointment

time to suit his/her own schedule, or involuntary, if one’s most desired appointment slot has

been taken, or a combination of both. However, if we find evidence that subsequent launches

reduce the scheduled waiting period, the reduction is most likely for the involuntary portion.

Essentially, with the supplementary app-user data, we estimate the spillover effect of new app

launches on the in-app scheduled waiting period of the first batch of app users.

We estimate the following model:

wijt = α+ βNewNewijt + λi + λj + λt + εijt, (3)

where wijt is the in-app scheduled waiting period for patient i in city j with a consultation

appointment on day t. Newijt denotes the number of subsequent app launches in city j until

day t since patient i’s first online registration. λi and λj are the individual and city fixed effects,

respectively. λt includes both month fixed effect and year fixed effect.

Table 4’s Column (1) presents the results of Equation (3). On average, each additional app

launch reduces the in-app scheduled waiting period by 2.6 hours. This reduction in scheduled

waiting period implies that app-users could either secure a consultation slot sooner or make their

registration later. Both scenarios suggest more flexibility for existing app users. Furthermore,

we investigate the heterogeneous effects of app launches by different hospital tiers by estimating

the following model:

wijt = α+ βT ierTwoNew
T ierTwo
ijt + βT ierThreeNew

T ierThree
ijt + λi + λj + λt + εijt, (4)

where NewT ierTwo
ijt and NewT ierThree

ijt measure the number of subsequent apps launched by

tier-two and tier-three hospitals, respectively. Table 4’s Column (2) reports our statistically

significant findings: The in-app scheduled waiting period is reduced by only 0.7 hours after an
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additional adoption by a tier-three hospital, but by 5 hours after an additional adoption by a

tier-two hospital. This is intuitive: Tier-three hospitals’ in-app slots are often claimed quickly,

which limits the app’s pressure-releasing effect on already adopting hospitals.

5.2 Patient Sorting and Medical Condition Severity

With evidence pointing to changes in hospital choice following app launch, a natural question is

whether patients have been induced to make the “right” choice. Our analytical model predicts

that the app improves patient sorting: Marginal patients with less severe medical conditions

are more likely to go to tier-two hospitals after the app launch, and those with more severe

conditions to tier-three hospitals. In this section, we present empirical evidence at two levels of

aggregation: first at the hospital-department-day level using our primary dataset, and then at

the individual level using the EMR data.

Hospital-level Evidence Using our primary dataset, we map the ambulatory-care-sensitive

conditions listed by Shigeoka (2014) to the departments of endocrinology, cardiology, pul-

monology, urology, cardiothoracic surgery, and orthopedics and refer to them as “more severe”

departments. We then categorize ophthalmology, otolaryngology, dermatology, dentistry, health

promotion, rehabilitation, nutrition, and Chinese medicine as “less severe” departments. We

estimate Equation (2) separately for the two categories, excluding uncategorized departments

from the analysis.

Table 5 reports the estimated effect of the app on patients’ department choices across dif-

ferent hospitals. We also plot the coefficient estimates in Appendix Figure A3. For tier-two

hospitals, whose designated role is front-line primary care providers, the less severe departments

experience a 14.2% increase in total registrations and a 15.6% increase in total consultations,

whereas for the more severe departments, registrations drop by 5% (statistically insignificant),

and consultations remain almost unchanged. For tier-three hospitals, there is a large and sta-

tistically significant increase in total consultations in the more severe departments (18.9%), and
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a much smaller increase in the less severe departments (4.5%, marginally significant). Overall

cancellation rate also takes the larger dip (4.9%) in the more severe departments, implying a

much shortened queue, which promotes an increase of 14.6% in offline consultations. Across the

board, the app appears to serve as a self-triage mechanism and directs patients to consult the

“right” hospital based on their medical conditions.

Individual-level Evidence To supplement the hospital-level analysis, where we indirectly

infer patients’ medical conditions from the departments they visit, we also look for evidence

from the individual-level EMR data, where we directly observe patients’ diagnoses. Before the

EMR data’s sample period, three hospitals have already adopted the app. The fourth one, a

tier-three hospital, adopted the app during the sample period. To examine how the app launch

affects patients’ hospital choices, we restrict the sample to patients who have hospital visits on

both sides of the launch date with the same diagnosis and estimate the following two models:

Tier3Adopteri = α+β1PreT ier2i+β2Severei+β3PreT ier2i×Severei+γXi+λ
Pre
i +λNew

i +εi,

(5)

and

Tier2i = α+ β1PreT ier3Adopteri + β2NonSeverei + β3PreT ier3Adopteri ×NonSeverei

+γXi + λPre
i + λNew

i + εi.

(6)

Equation (5) examines whether patients switch to the tier-three adopter from a tier-two hospi-

tal. The subscript i indexes patients and Tier3Adopteri, PreT ier2i, and Severei are dummy

indicators. Tier3Adopteri is valued 1 if patient i’s first visit after the app launch occurs in the

newly adopting tier-three hospital, and 0 otherwise; PreT ier2i is valued 1 if patient i’s previous

visit (before the app launch by definition) occurs in a tier-two hospital; Severei is valued 1 if
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patient i has a severe medical condition, which is classified as such if the patient’s diagnosis

is related to cancer, hypertension, diabetes with complications, angina pectoris or myocardial

infarction, atherosclerosis or other diseases of the arteries, chronic obstructive pulmonary dis-

ease or pneumonia, hepatic failure, acute kidney failure or chronic kidney disease, or traumatic

brain injury (Shigeoka, 2014).

Equation (6) examines whether patients switch from the tier-three adopter to a tier-two

hospital. Dummy indicators Tier2i and PreT ier3Adopteri are defined analogous to their coun-

terparts in Equation (5). Binary variable NonSeverei is valued 1 if patient i has a non-severe

medical condition, which is classified as such if the patient’s diagnosis is related to ophthalmol-

ogy, dermatology, dentistry, health promotion, rehabilitation, nutrition, or Chinese medicine.

In both Equations (5) and (6), we include in Xi the set of individual characteristics: gender,

age, and ID-registry location dummy. We also include a set of monthly and yearly time dummies

to control for seasonal factors such as epidemic outbreaks at the time of pre- and post-launch

visits: λPre
i denotes month and year dummies for pre-launch visits, and λNew

i for post-launch

visits.

Table 6, panel A reports estimation results for Equation (5). Our preferred specification

is model (3), which includes all controls. The estimates reveal that, of the patients who have

visited tier-two hospitals before the app launch, those with severe medical conditions are 4.2%

more likely than those with non-severe medical conditions to visit the tier-three hospital after

the app launch. Table 6, panel B reports estimation results for Equation (6). Model (3), with all

controls, shows of patients who visited the tier-three adopter before the app launch, those with

non-severe medical conditions are 6.4% more likely than those with severe medical conditions

to visit a tier-two hospital after the app launch. We obtain qualitatively similar results across

the board when we separately examine 17 subcategories of diagnoses (e.g., cancer as “severe,”

rehabilitation as “non-severe”). Through this event study on more than 130,000 patients, we

find consistent evidence that the app directs patients to hospitals that are more suitable for
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their medical conditions.

5.3 Patient Sorting across Time

In this section, we examine whether the app induces patients to adjust the timing of hospital

visits to avoid busy hours. This is another potential channel through which information pro-

vision may improve the allocative efficiency of healthcare resources. In China, although some

outpatient departments, such as radiology, may be closed on Sundays, most departments are

generally open seven days a week. In many Chinese hospitals, including those in our sample,

weekdays usually see more consultations—and consequently more congestion—than weekends.

We report the descriptive statistics by day of the week in Appendix Table A7. Before the first

app launch, average daily consultations on weekdays are 40.5% higher than on weekends (1,630

vs. 1,160). The average cancellation rate is also higher on weekdays than on weekends (12.9%

vs. 11.8%). Monday is the busiest day of the week, with an average of 1,865 consultations and

a 13.4% cancellation rate.

To examine whether the app encourages patients to shift consultations to less busy weekends,

we estimate the following model separately for Monday, Tuesday, . . . , Friday, and Weekends:

yit = α+ βDOWAppit ×DOWt + βOtherAppit ×Othert + λi + λt + εit, (7)

where binary dummy DOWt indicates the tth day of the week. Binary Othert is DOWt’s

complement dummy. For instance, when we estimate Equation (7) for weekends, DOWt/Othert

is one/zero when day t is either Saturday or Sunday and zero/one otherwise. λi is hospital fixed

effect, and λt includes both month fixed effect and year fixed effect. Note that we run six

regressions, one for each weekday, instead of including six weekday dummies in one regression.

This is to allow the fixed effects to be flexibly different across regressions. As such, the estimate

for βDOW should be interpreted as the app’s impact on a given day of the week relative to this
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day’s pre-app average, rather than relative to other days of the week.

We plot the six estimates for βDOW and their 90% confidence intervals in Figure 6. Detailed

regression results are included in Appendix Table A8 and Table A9. Both total registrations

and total consultations increase disproportionally more on weekends than weekdays, suggesting

that demand is directed to the hospitals’ less busy hours. Overall cancellations and offline

cancellations drop across all days of the week. Offline registrations drop across weekdays, but

remain almost unchanged on weekends. Due to the reduction in offline weekend cancellations,

offline weekend consultations increase by nearly 5%. The levelled offline weekend registrations

could be because the offline-to-online substitution does not occur on less busy weekends, or

because the app—perhaps by displaying abundant weekend time slots—attracts more patients

on weekends through offline channels, which offsets the offline-to-online substitution. The latter

would suggest that the app’s impact spills over to the offline channel.

We examine individuals’ choice patterns in the supplementary app-user data. In this analysis

we estimate separately for Monday, Tuesday, . . . , Friday, and Weekends:

wijt = α+ βDOWNewijt ×DOWt + βOtherNewijt ×Othert + λi + λj + λt + εijt, (8)

where wijt is the in-app scheduled waiting period for patient i in city j with a consultation

appointment on day t. Newijt denotes the number of new apps adopted in city j on day t

since patient i’s first online registration. Binary dummies DOWt and Othert are defined as

in Equation (7). λi and λj are individual and city fixed effect, respectively. λt includes both

month fixed effect and year fixed effect.

Figure 7 Panel (A) plots estimated scheduled waiting-period reduction by day of the week

and their 90% confidence intervals. Detailed regression results are included in Appendix Table

A10. New app launches lead to a larger reduction in scheduled waiting period for consultations

on weekends, which is consistent with the proposition that the app incentivizes patients to avoid
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busy days. Since app users generally prefer weekend consultations, a subsequent app launch

by another hospital attracts away like-minded app users and relieves weekend slots by a larger

margin than weekday slots.

Interacting hospital tiers with day-of-week provides further evidence that avoiding over-

crowding is an important factor in the patients’ hospital choice. Figure 8, Panel (B) plots

coefficient estimates for the interaction terms of hospital tier and day-of-week. Detailed regres-

sion results are included in Appendix Tables A11 to A13. Tier-three hospitals see a statistically

significant increase in consultations only on the weekends, while tier-two hospitals experience

consistent increases across the entire week. This is consistent with our analytical model’s pre-

diction that patients who face high queuing disutility (visiting on busy days) are more likely to

go to tier-two hospitals using the app. A 4.8% weekend increase in offline registrations in tier-

two hospitals similarly implies that the app’s effect may spill over to offline patients. In further

examing the “more severe” departments in tier-three hospitals (Appendix Figure A4), we find

a similar result: The increase in registrations is only significant on the weekends. This analysis

explains a somewhat puzzling result in Section 5.2, in which the app increases registrations at

these departments, even though they were already operating close to capacity prior to the app

launch.

Using the supplementary app-user data, Figure 7 presents consistent evidence of the reduc-

tion in scheduled waiting period following subsequent app launches. Detailed regression results

are included in Appendix Table A14. The reduction is large and stable across the week when

the new app is adopted by a tier-two hospital, but only statistically significant on the weekend

when the new app’s adoption is by a tier-three hospital.

6 Conclusion

Our study shows that an inexpensive, lightweight, and non-intrusive IT innovation simultane-

ously improves hospital operations and the alignment of healthcare supply and demand. In
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2015, Chinese hospitals performed more than three billion outpatient consultations.4 Holding

supplied resources fixed, even a tiny percentage increase in total consultations could imply a

radical improvement in healthcare access and efficiency; our estimates of the app’s effect in

increasing total consultations is 9.5%. Therefore, we believe that the app could be categorized

as a “Type I” intervention in Chandra and Skinner’s (2012) typology—namely, a cost-effective

“home run” innovation with the potential to benefit a large population.

Given the severe rationing problem and extremely outdated appointment booking process in

Chinese hospitals, one might argue that the app simply picks up low-hanging fruit. We would

argue, however, that there is a lot of low-hanging fruit in the healthcare systems of developing—

and even developed—countries. These are places in which simple economic mechanisms and

technological interventions can go a long way toward improving the quality of life, and therefore

warrant more research.

We close by discussing three possible extensions. First, the caveat of aggregate data and

the limited scope of our individual EMR data imply that we cannot definitively assert that the

net increase in registrations in tier-two hospitals is because some patients switch from crowded

tier-three hospitals and other non-adopting hospitals, or due to newly generated demand for

medical services. This is, however, an important question regarding the app’s scalability: What

if all hospitals in the medical system adopt such an app? In the extreme case, in which the

net increase is purely due to patients who switch from other non-adopting hospitals, the app’s

effect on tier-two hospitals will diminish to zero when all hospitals adopt this app; this implies

that the tier-two hospitals’ app launches are a business-stealing social waste. Comprehensive

individual choice data are necessary to assess the extent of business-stealing.

Second, in the partially privatized Chinese healthcare market—and especially if the app

can empower tier-two hospitals to gain market share from competitors—one would expect that

market structure plays a role in the app’s adoption and diffusion. However, our analysis, except

4. Source: (in Chinese) National Health and Family Planning Commission of the People’s Republic of China
http://www.nhfpc.gov.cn/guihuaxxs/s10748/201607/da7575d64fa04670b5f375c87b6229b0.shtml.
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for examing hospitals’ pre-trends, ignores the app’s two-sided nature and focuses primarily on

the demand side. An extension in this direction would require data with universal coverage of

multiple local healthcare markets.

Lastly, an IT-based medical intervention runs the risk of creating new social inequalities

based on technological savvy. In terms of this particular app, using aggregate patient de-

mographic data to examine responses from different age groups, our results seem to suggest

otherwise. For those age 60 and above, the app increases their consultations by over 8%, largely

from increased offline registrations (Appendix Table A15). It appears that even though elderly

patients are not as active in using the app, they benefit from the shortened queues in adopting

hospitals. However, the aggregate data are too sparse to answer this question definitively.
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TABLE 1
Descriptive Statistics Of Hospital Operations Data

Mean Mean Mean Difference

Panel A: Adopter-Non-adopter Comparison for All Hospitals

Variable All Non-adopter Adopter Adopter –
Non-adopter

All Hospitals (22 Hospitals)
Daily Consultations 1,634 1,498 1,846 348
Daily Registrations 1,887 1,668 2,228 560
Daily Cancellation Rate 0.120 0.103 0.146 0.043
Observations 29,731 18,132 11,599
% of Days with App Launched 0.171 0.439

Tier-three Hospitals (8 Hospitals)
Daily Consultations 2,766 2,719 2,813 94
Daily Registrations 3,196 2,986 3,413 427
Daily Cancellation Rate 0.134 0.091 0.178 0.088
Observations 10,976 5,579 5,397

Tier-two Hospitals (14 Hospitals)
Daily Consultations 971 955 1,003 48
Daily Registrations 1,120 1,082 1,196 114
Daily Cancellation Rate 0.112 0.109 0.118 0.009
Observations 18,755 12,553 6,202

Panel B: Before-After Comparison for Adopters

Variable Adopter Before After After – Before
All Adopters (9 Hospitals)
Daily Consultations 1,846 1,704 2,026 322
Daily Registrations 2,228 2,153 2,323 170
Daily Cancellation Rate 0.146 0.170 0.116 -0.054
Observations 11,599 6,509 5,090

Tier-three Adopters (4 Hospitals)
Daily Consultations 2,813 2,582 3,142 559
Daily Registrations 3,413 3,311 3,559 248
Daily Cancellation Rate 0.178 0.219 0.120 -0.099
Observations 5,397 3,167 2,230

Tier-two Adopters (5 Hospitals)
Daily Consultations 1,003 872 1,157 285
Daily Registrations 1,196 1,056 1,360 304
Daily Cancellation Rate 0.118 0.123 0.112 -0.011
Observations 6,202 3,342 2,860

Notes: All descriptive statistics are tabulated from hospital-level daily operations data, which contain 22 hos-
pitals. Emergency room admissions are excluded. Panel A compares non-adopters and adopters, while Panel B
compares the before and after for adopters. Statistics for tier-three and tier-two hospitals are listed separately.
See Section 3 for details on variable definitions.
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TABLE 2
Benchmark Results

(1) (2) (3) (4) (5) (6)
Total Offline

Dependent Variable Consultations Registrations Cancellation
Rate

Consultations Registrations Cancellation
Rate

Panel A: Non-Emergency Departments

App 0.095*** 0.048* -0.034*** 0.005 -0.044** -0.036***
(0.028) (0.025) (0.012) (0.026) (0.022) (0.012)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.801 0.817 0.663 0.797 0.813 0.663
Hospitals 22 22 22 22 22 22
Bootstrap p-valuea 0.010 0.081 0.020 0.455 0.076 0.005
Month & Year FE YES YES YES YES YES YES
Hospital FE YES YES YES YES YES YES

Total

Dependent Variable Consultations Registrations Cancellation
Rate

Panel B: Emergency Room

App 0.008 0.006 -0.001
(0.068) (0.057) (0.016)

Observations 19,732 19,732 19,732
R-squared 0.894 0.903 0.519
Hospitals 15 15 15
Month & Year FE YES YES YES
Hospital FE YES YES YES

Notes: Panel A is for all departments except for the emergency room (ER); Panel B is for the ER. In Panel
B, we exclude seven hospitals that either do not have an ER or have fewer than 10 daily ER admissions for
more than half of the sample period. Numbers of registrations and consultations are in logarithm. The depen-
dent variable in Column (1) is the log total daily consultations, and in Column (2) is the log total appointments
registered through the offline channel, i.e., excluding registrations made through the app. Column (3) is the to-
tal appointment cancellation rate calculated as total registrations−total consultations

total registrations
. Dependent variables in Column

(4) to (6) are offline counterparts. App is the dummy that switches to one after the app is launched in treat-
ment hospitals. See detailed definitions in Section 3. Robust standard errors are clustered at the hospital level:
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
a: Bootstrap p-value is computed using the wild bootstrap procedure proposed by MacKinnon and Webb (2018)
to deal with few clusters.
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TABLE 3
Heterogeneous Effect by Hospital Tier

(1) (2) (3) (4) (5) (6)
Total Offline

Dependent Variable Consultations Registrations Cancellation
Rate

Consultations Registrations Cancellation
Rate

App× T ierTwo 0.094** 0.085** -0.007 0.007 -0.012 -0.015
(0.040) (0.041) (0.011) (0.027) (0.031) (0.012)

App× T ierThree 0.095*** 0.008 -0.064*** 0.003 -0.080*** -0.060***
(0.035) (0.015) (0.021) (0.046) (0.024) (0.022)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.801 0.817 0.676 0.797 0.813 0.671
Hospitals 22 22 22 22 22 22
Month FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES
Hospital FE YES YES YES YES YES YES

Notes: Dependent variables are log total consultations, log total registrations, and total cancellation rate in
Columns (1) to (3), and log offline consultations, log offline registrations, and offline cancellation rate in Columns
(4) to (6). App is the dummy that switches to one after the app is launched in treatment hospitals. T ierThree
and T ierTwo are dummies for tier-three and tier-two hospitals, respectively. Robust standard errors clustered
at the hospital level are in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE 4
Reduction in Scheduled Waiting Period by Hospital Tier

(1) (2)
Dependent Variable Scheduled waiting period (hrs) Scheduled waiting period (hrs)

New -2.654***
(0.128)

NewTierTwo -5.067***
(0.200)

NewTierThree -0.705***
(0.192)

Observations 1,705,283 1,705,283
R-squared 0.008 0.008
Number of Individuals 278,909 278,909
Year and Month FE YES YES
City FE YES YES
Individual FE YES YES

Notes: Dependent variables are in-app scheduled waiting period measured in hours. Independent variable “New”
measures the number of new apps adopted in the same city since the individual’s first appearance in the sample.
NewTierTwo measures the number of new apps adopted by tier-two hospitals, and NewTierThree measures the
number of new apps adopted by tier-three hospitals. Robust standard errors clustered at the individual level are
in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE 5
Heterogeneous Effect by Hospital Tier and by Type of Department

(1) (2) (3) (4) (5) (6)
Total Offline

Dependent Variable Consultations Registrations Cancellation
Rate

Consultations Registrations Cancellation
Rate

Panel A: Departments for Less Severe Conditions

App× T ierTwo 0.156*** 0.142*** -0.011 0.069** 0.046** -0.019*
(0.040) (0.033) (0.010) (0.033) (0.023) (0.010)

App× T ierThree 0.045* 0.028 -0.016** -0.043 -0.059 -0.016**
(0.026) (0.024) (0.008) (0.041) (0.038) (0.008)

Observations 28,085 28,085 28,085 28,085 28,085 28,085
R-squared 0.846 0.848 0.532 0.843 0.845 0.526

Panel B: Departments for More Severe Conditions

App× T ierTwo 0.009 -0.050 -0.043* -0.008 -0.069 -0.045*
(0.100) (0.077) (0.025) (0.094) (0.073) (0.026)

App× T ierThree 0.189*** 0.124** -0.050*** 0.146** 0.082 -0.049***
(0.069) (0.061) (0.018) (0.071) (0.064) (0.017)

Observations 25,509 25,509 25,509 25,509 25,509 25,509
R-squared 0.865 0.870 0.693 0.866 0.870 0.689

Notes: Panel A presents results for less severe departments: health promotion, rehabilitation, nutrition, Chinese
medicine, ophthalmology, otolaryngology, dermatology, and dentistry. Panel B presents results for more severe
departments: endocrinology, cardiology, pulmonology, urology, cardiothoracic surgery, and orthopedics. App is
the dummy that switches to one after the app is launched in treatment hospitals. T ierThree and T ierTwo are
dummies for tier-three and tier-two hospitals, respectively. All regressions include hospital fixed effects, month
fixed effects, and year fixed effects. Robust standard errors clustered at the hospital level are in parentheses: ∗ ∗
∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE 6
Patient Sorting across Hospitals After New App Adopter

(1) (2) (3)

Panel A: Switching from Tier 2 to Tier 3

Dependent Variable Tier 3 Adopter Tier 3 Adopter Tier 3 Adopter

Pre.Severe 0.137*** 0.113*** 0.112***
(0.005) (0.005) (0.005)

Pre.T ier2 -0.084*** -0.088*** -0.090***
(0.002) (0.002) (0.002)

Pre.T ier2× Severe 0.047*** 0.044*** 0.042***
(0.006) (0.006) (0.006)

Observations 132,469 132,469 132,469
R-squared 0.052 0.058 0.059
Demographic Controls No Yes Yes
Month and Year FE No No Yes

Panel B: Switching from Tier 3 to Tier 2

Dependent Variable Tier 2 Tier 2 Tier 2

Pre.NonSevere 0.110*** 0.114*** 0.117***
(0.003) (0.003) (0.003)

Pre.T ier3Adopter -0.516*** -0.488*** -0.484***
(0.003) (0.004) (0.004)

Pre.T ier3Adopter ×NonSevere 0.066*** 0.065*** 0.064***
(0.016) (0.016) (0.017)

Observations 132,469 132,469 132,469
R-squared 0.035 0.083 0.091
Demographic Controls No Yes Yes
Month and Year FE No No Yes

Notes: In Panel A, the dependent variable is the indicator for visiting the new tier-three adopter hospital af-
ter the app launch. Pre.Severe is the indicator for a severe condition in the previous visit; Pre.T ier2 is the
indicator for visiting a tier-two hospital in the previous visit. Severe conditions are defined by diagnosis name:
cancer, hypertension, diabetes with complications, angina pectoris or myocardial infarction, atherosclerosis or
other diseases of the arteries, chronic obstructive pulmonary disease or pneumonia, hepatic failure, acute kidney
failure or chronic kidney disease, or traumatic brain injury, mapped from the ambulatory-care-sensitive condi-
tions listed by Shigeoka (2014). In Panel B, the dependent variable is the indicator for visiting the tier-two
hospital after the app launch. Pre.NonSevere is the indicator for a nonsevere condition in the previous visit;
Pre.T ier3Adopter is the indicator for visiting the tier-three adopter hospital in the previous visit. Non-severe
conditions include diagnoses related to ophthalmology, dermatology, dentistry, health promotion, rehabilitation,
nutrition, kidney disease, and Chinese medicine. Robust standard errors clustered at the individual level are in
parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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FIGURE 2
Screenshots of the App

Notes: This figure shows the screenshots of the app’s basic functionality. The left panel offers visual guidance
to help match the patient’s symptom to a hospital department. The middle panel guides the patient to the
appropriate department. The right panel allows patients to browse on-duty physicians’ available hourly slots and
make appointments for the next two weeks. English translation is provided by the authors.
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FIGURE 3
Effect of the App on Hospital Choice and Cancellation

Notes: The figure shows the effect of the app on patient’s hospital choice and cancellation. Panels (A) and (B)
present the probability density function of Vh and patient’s hospital choice before and after the app adoption,
respectively.
In Panel (A), before the app’s launch, utility from visiting a tier-three hospital is uniformly distributed: Vh ∼
U [v, v]; and utility from visiting a tier-two hospital is fixed at vl. Disutility from queuing in a tier-three hospital
is uniformly distributed: Q ∼ [0, q]; and that in a tier-two hospital is zero. We plot vh on the x−axis. Those
with vh − q/2 ≤ vl, or Area (I), choose to visit lower-tier hospitals. The rest choose to visit tier-three hospitals.
A patient who visits a tier-three hospital discovers the queuing disutility to be q. She will only remain in the
queue to receive the net utility vh − q if vh − q ≥ 0: Areas (II). Otherwise, she will cancel her registration: Area
(III). In particular, for a patient with vh = vl + q/2, she will cancel if vh − q < 0, i.e.,vl + q/2 − q < 0. The
probability of this patient cancelling her registration is Pr(q > vl + q/2) = (q/2− vl)/q.
In Panel (B), after the app’s launch, we assume that the app changes Q’s distribution to be binomial: With
probability p, patients cannot secure their ideal slot (q = q), and with probability 1 − p, patients can (q = 0).
Area (I*) corresponds to patients who visit tier-two hospitals: Those with low valuations of tier-three hospitals
(vh ≤ vl) and those who prefer tier-three hospitals to a certain extend (vl ≤ vh ≤ vl + q) but face q as queuing
disutility. Area (II*) corresponds to patients who visit tier-three hospitals. In particular, for any patient with
vl ≤ vh ≤ vl + q, there is a probability p that she cannot secure ideal slot (q = q) and chooses to visit the tier-two
hospital.
If 1/2 < p < 1/2 + 1/(2q2) ∗ (q/2 − vl)2, Area (I*)>Area(I) and Area(II*)>Area(II), i.e., both lower-tier and
tier-three hospitals benefit from the app launch.
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(A) Total Consultations

(B) Total Registrations

(C) Total Cancellation Rate

FIGURE 4
Testing Parallel Trends before App Adoption

Notes: The figure tests whether there exist differential pre-existing trends between adopting and non-adopting
hospitals in the pre-app period from January 2013 to July 2014. The regression specification is yit = α+βAppTit+
λi + λt + εit, where T ∈ {Apr2013,May2013, ..., Apr2014}, and AppTit is a placebo dummy that switches to one
for adopting hospitals after month T . Each shaded bar represents the estimated β from a separate regression,
coupled with the the 90% confidence interval. Detailed regression results are reported in Appendix Table A2.
Shaded dashed lines represent the estimated effect of actual app adoption in the baseline sample, obtained from
Table 2.
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(A) Total Consultations

(B) Total Registrations

(C) Total Cancellation Rate

FIGURE 5
Dynamic Response before and after App Adoption

Notes: The figure estimates the dynamic effect of the app on the hospital’s total consultations, total registrations,
and total cancellation rate. The regression specification is yit = α +

∑
Q β

QAppQit + λi + λt + εit, where Q ∈
{−5,−4, ..., 6}. App−5 to App5 are lag and lead quarter dummies defined for each treatment hospital. App0

represents the actual app launch, and App6 the 6th quarter and later. All quarter dummies are zero for control
hospitals. Solid dots are estimated βQs from this regression, coupled with the 90% confidence interval. All
regressions include hospital fixed effect, year fixed effect, and month fixed effect. Detailed regression results are
reported in Appendix Table A3.
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(A) Consultations

(B) Registrations

(C) Cancellation Rate

FIGURE 6
Heterogeneous Effect by Days of the Week

Notes: The figure estimates the heterogeneous effect of the app across different days of the week. We run
yit = α + βDOWAppit × DOWt + βOtherAppit × Othert + λi + λt + εit on hospital-level data, where DOWt is
the dummy for a given day of the week, and Othert is the dummy for other days of the week. Shaded bars are
estimated βDOW , coupled with the 90% confidence interval. Detailed regression results are reported in Appendix
Tables A8 (total) and A9 (offline).
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(A) By Days of the Week

(B) By Days of the Week and Hospital Tiers

FIGURE 7
Reduction in Scheduled Waiting Period by Days of the Week and Hospital Tier

Notes: This figure estimates the spillover effect of new app adoption on reducing scheduled waiting period
across different days of the week. Data contain the longitudinal appointment-booking records of the first batch
of app users, which allows us to study the spillover effect of subsequent app-adopters on the incumbent app
adopter’s first batch of app users. Panel (A) esitmates the average reduction across different days of the week;
Panel (B) estimates the average reduction across both days of the week and hospital tiers. In Panel (A), we
estimate wijt = α + βDOWNewijt × DOWt + βOtherNewijt × Othert + λi + λj + λt + εijt; in Panel (B), we
run wijt = α + β1DOWt + β2New

TierTwo
ijt × DOWt + β3New

TierThree
ijt × DOWt + β4New

TierTwo
ijt × Othert +

β5New
TierThree
ijt × Othert + λi + λj + λt + εit, where wijt denotes the scheduled waiting period on the mobile

waiting list, and Newijt denotes the number of new apps adopted in city j at time t since patient i’s first
online appointment; NewTierTwo

ijt and NewTierThree
ijt are the number adopted by tier-two and tier-three hospitals,

respectively. DOWt is the dummy for a given day of the week, and Othert is the dummy for other days of the
week. Shaded bars are estimated βDOW , coupled with the 90% confidence interval. Detailed regression results
are reported in Appendix Tables A10 and A14.
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(A) Consultation

(B) Registration

(C) Cancellation Rate

FIGURE 8
Heterogeneous Effect by Days of the Week and Hospital Tier

Notes: This figure estimates the heterogeneous effect of the app across hospitals of different tiers and across
different days of the week. We run yit = α+β1DOWt×T ierTwoi+β2DOWt×T ierThreei+β3DOWt×T ierTwoi×
Appit+β4DOWt×T ierThreei×Appit+β5Othert×T ierTwoi×Appit+β6Otheri×T ierThreei×Appit+λi+λt+εit
on hospital-level data, where DOWt is the day of the week dummy, and T ierThreei is the dummy for tier-three
hospitals. Lighter shaded bars are estimated β3, and darker shaded bars are estimated β4, both coupled with the
90% confidence interval. Detailed regression results are reported in Appendix Table A11 (consultations), Table
A12 (registrations), and Table A13 (cancellation rate).
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Appendix A The Chinese Healthcare System

China developed its primary-care system after the establishment of the People’s Republic of

China in 1949. One of the major achievements was an innovative three-tier healthcare system

in public hospitals.1 The first tier generally consists of community health stations and clinics

that have fewer than 100 beds and are tasked with providing primary care, preventive care,

and rehabilitation services at the community level. The second tier is generally represented

by township hospitals in mid-size cities. They are equipped with 100 to 500 beds, and are

responsible for more comprehensive health services and medical training for health-workers in

tier-one facilities. The third tier contains general hospitals at the city, provincial, or national

level with a bed capacity exceeding 500. They provide the most sophisticated acute care and

specialist services. They also play a dominant role in medical education and research, and serve

as medical hubs for multiple regions.

Backed by government funding, the three-tier system was successful in improving the popu-

lation’s health and life expectancy across the country. Between 1952 and 1982, life expectancy

increased from 45 years to 68 years, the infant mortality rate fell from 200 to 34 per 1,000 live

births, and longstanding scourges such as schistosomiasis were largely eradicated (Blumenthal

and Hsiao, 2005). In 1984, the “China Model” was highly praised by the World Bank and the

World Health Organization as an effective model for other developing countries (World Bank,

1984).

Following the economic reforms initiated in December 1978, however, the market-oriented

healthcare reforms of the 1980s and 1990s moved the Chinese healthcare system onto a different

track (Blumenthal and Hsiao, 2015; Yip and Hsiao, 2008). The reforms gave more autonomy

to hospitals and dramatically cut government financing. Government subsidies fell to a mere

10% of a hospital’s total revenues by the early 1990s and stayed low ever since (Yip and Hsiao,

1. The three-tier classification of hospitals is based on weighted scores that measure the number of beds, level
of service provision, medical technology, medical equipment, and quality of management and medical care. In
practice, the three tiers are further subdivided into 3 subsidiary levels (Ministry of Health, 1989).

1



2008).

Even through the three-tier structure remains, the disparity between tier-three and tier-one

hospitals has rapidly widened. Tier-three hospitals have grown quickly in size and captured the

lion’s share of skilled physicians, patient flow and revenue. For example, in 2014 the average

tier-three hospitals in China employed 26 times more physicians and nurses, treated 27 times

more patients, and received 60 times more revenue than their tier-one counterparts (National

Bureau of Statistics, 2015). (For additional comparisons between Chinese hospitals in different

tiers, see Appendix Table A1.) In contrast, lower-tier facilities are increasingly understaffed and

underfunded.2 This has created a downward spiral in the quality and reputation of the lower-

tier facilities, and motivates patients to flock to tier-three hospitals regardless of the severity of

their illness.

Tier-three hospitals are increasingly overcrowded, and lower-tier hospitals are increasingly

underutilized. By 2014, the bed occupancy rate in tier-three hospitals is overwhelmingly 101.8%,

in contrast to only 60.1% in tier-one hospitals (National Bureau of Statistics, 2015). In US

hospitals, the most commonly targeted bed occupancy rate is 85% (Green, 2006). The problems

of waiting and rationing quickly escalated in tier-three hospitals — which has deterred patients

with acute conditions from receiving timely care, and drives many patients to forfeit treatment

without being seen.

Facing these challenges, the Chinese government launched a nationwide systemic health

reform in 2009, pledging to provide more affordable and equitable access to health care for

all citizens by 2020. The reform marked a departure from the market-oriented strategy used

since 1978, and reinstated the government’s role in the financing of health care and provision

of public goods (Chen, 2009; Eggleston et al., 2008).3 Although the 2009 healthcare reform has

2. China has a large shortage of general practitioners (GP): in 2014, there were only 0.13 GPs per 1,000
population. GPs only account for 5.6% of all physicians across China (National Bureau of Statistics, 2015). In
contrast, in the UK there are 0.8 GPs per 1,000 population, which account for 28.7% of all physicians (OECD,
2016).

3. The 2009 health reform has five objectives. First, expand public health insurance to gradually cover more
than 90% of the Chinese population, including improved coverage for urban residents, the new rural cooperative
Medicare scheme for rural residents, and the improved Medicaid scheme for the poor. Second, establish a

2



made great progress in expanding insurance coverage, much work remains to improve healthcare

delivery.

Three long-lasting problems stand out, which also mark the main differences between the

Chinese healthcare system and most western healthcare systems: (1) there is no effective referral

system in outpatient settings that directs traffic to primary-care or acute-care hospitals. (2)

The price differential in registrations fee is too narrow to serve as a screening device to enforce

more appropriate use of different levels of healthcare services. (3) The public health insurance

system generally does not cover outpatient consultations and contributes little to establish a

price differential. As a result, all patients are inclined to visit large hospitals regardless of the

severity of illness, which causes overcrowding in large hospitals and underutilization in smaller

ones.

Despite lackluster development on the supply side, the demand for health and health services

is booming in China, driven by the growing middle class and an aging population. The total

number of annual hospital consultations has tripled from 2005 to 2014 (from 51.8 million to

153.7 million), and average hospital revenue has increased almost five times during the same

period (from 55.7 million to 273.4 million) (National Bureau of Statistics, 2015). A report

by the McKinsey Global Institute predicts that the healthcare spending in China will reach

1 trillion USD by 2020, up from 350 billion in 2012 (Le Deu et al., 2012). Facing this ever-

growing demand, improving the healthcare delivery has become the top priority for both the

government and the society as a whole to ensure the most effective development of China’s

healthcare system.

nationwide drug system with dedicated high reimbursement rates for a list of essential drugs to provide an
affordable drug supply. Third, provide more public financing and infrastructure support to grassroots health
facilities and county hospitals to expand health service network in rural areas and reduce the workload for urban
hospitals. Fourth, promote basic public health services. Fifth, launch the pilot reform in public hospitals. See
Chen (2009) for more detail.

3



Appendix B Tables

TABLE A1
Comparison of Hospital Performance by Hospital Tier

(1) (2) (3)
Hospital Tier Tier 3 Tier 2 Tier 1

Number of Hospitals 1954 6850 7009
Patients per Hospital 715478 167458 26363
Physicians per Hospital 341 93 16
Nurses per Hospital 524 129 17
Bed Utilization (percent) 101.8 87.9 60.1
Revenue per Hospital (million CNY) 663 101 11
Expenditure per Hospital (million CNY) 631 97 10
Outpatient Registrations Fee (USD) 2.6 1.3 1

Source: China Health Statistical Yearbook 2015.
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TABLE A3
Comparing the Dynamic Response Between Adopting and Non-Adopting

Hospitals Before and After the Treatment

(1) (2) (3)
VARIABLES Total Consultations Total Registrations Total Cancellation Rates

App−5 -0.036 -0.041 0.003
(0.029) (0.032) (0.010)

App−4 -0.022 -0.040 0.009
(0.028) (0.032) (0.011)

App−3 0.001 -0.007 0.003
(0.029) (0.034) (0.010)

App−2 -0.026 -0.033 0.003
(0.025) (0.028) (0.009)

App−1 -0.016 -0.030 0.009
(0.026) (0.029) (0.009)

App1 0.002 0.008 -0.006
(0.026) (0.028) (0.008)

App2 0.073** 0.098*** -0.020**
(0.029) (0.032) (0.008)

App3 0.039 0.064* -0.019**
(0.032) (0.037) (0.008)

App4 0.050* 0.082*** -0.025***
(0.027) (0.031) (0.008)

App5 0.049* 0.086*** -0.028***
(0.026) (0.032) (0.010)

App6 0.095*** 0.163*** -0.050***
(0.027) (0.032) (0.010)

Observations 28,832 28,832 28,832
R-squared 0.814 0.800 0.734

Notes: The table estimates the dynamic effect of the app on the hospital’s total consultations, total registrations,
and total cancellation rates. The estimated coefficients and the corresponding 90% confidence intervals are plot-
ted in Figure 5. The regression specification is yit = α+

∑
Q β

QAppQit + λi + λt + εit, where Q ∈ {−5,−4, ..., 6}
where AppQ is the dummy indicating the Qth quarter from the actual app launch. App1 is the dummy for the
first three months after the app launch, and App6 is the dummy for all subsequent months after the 6th quarter
following the actual app launch. All quarterly lags and leads remain zero for control hospitals. All regressions
include hospital fixed effects, month fixed effects and year fixed effects. Robust standard errors clustered at the
hospital-month level are in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A4
Robustness Analysis

(1) (2) (3) (4) (5) (6)
Total Offline

VARIABLES Consultations Registrations Cancellation
Rate

Consultations Registrations Cancellation
Rate

Robustness 1: Subsample of adopter hospitals

App 0.093*** 0.050** -0.034*** 0.026 -0.020 -0.037***
(0.021) (0.020) (0.008) (0.020) (0.019) (0.008)

Observations 11,630 11,630 11,630 11,630 11,630 11,630
R-squared 0.887 0.904 0.754 0.887 0.905 0.759

Robustness 2: Adding city-specific time trend

App 0.094*** 0.048*** -0.034*** 0.005 -0.044*** -0.036***
(0.014) (0.014) (0.006) (0.014) (0.013) (0.006)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.801 0.817 0.664 0.797 0.813 0.663

Robustness 3: Adding interaction between pre-app cancellation rates and time trend

App 0.083*** 0.055*** -0.021*** -0.005 -0.035*** -0.023***
(0.014) (0.014) (0.005) (0.014) (0.014) (0.005)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.801 0.817 0.724 0.797 0.813 0.727

Robustness 4: Adding linear and quadratic time trend

App 0.096*** 0.050*** -0.035*** 0.008 -0.042*** -0.037***
(0.014) (0.013) (0.006) (0.014) (0.013) (0.006)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.801 0.817 0.664 0.797 0.814 0.664

Robustness 5: Subsample of non-specialty hospitals

App 0.107*** 0.055*** -0.038*** 0.015 -0.040*** -0.041***
(0.015) (0.014) (0.006) (0.014) (0.014) (0.006)

Observations 26,970 26,970 26,970 26,970 26,970 26,970
R-squared 0.826 0.841 0.664 0.822 0.838 0.664

Robustness 6: Subsample of weekdays observations

App 0.099*** 0.054*** -0.034*** 0.008 -0.041*** -0.037***
(0.014) (0.014) (0.006) (0.014) (0.014) (0.006)

Observations 21,232 21,232 21,232 21,232 21,232 21,232
R-squared 0.862 0.875 0.671 0.860 0.873 0.673

Robustness 7: Subsample of provincial capital hospitals

App 0.082*** 0.040*** -0.032*** 0.012 -0.028* -0.030***
(0.016) (0.015) (0.008) (0.017) (0.016) (0.008)

Observations 20,252 20,252 20,252 20,252 20,252 20,252
R-squared 0.805 0.812 0.369 0.800 0.807 0.375

Robustness 8: Subsample of balanced panel

App 0.087*** 0.054*** -0.024*** 0.002 -0.034** -0.027***
(0.014) (0.013) (0.005) (0.014) (0.013) (0.005)

Observations 25,126 25,126 25,126 25,126 25,126 25,126
R-squared 0.812 0.826 0.681 0.808 0.822 0.678

Notes: The table checks the robustness by re-estimating Equation 1 with modified specifications. All regressions
include hospital fixed effects, month fixed effects and year fixed effects. Robust standard errors clustered at the
hospital-month level are in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A7
Descriptive Statistics By Days of the Week Before App Launch

VARIABLES Daily Consultations Daily Registrations Daily Cancellation Rate

Mean S.D. Mean S.D. Mean S.D.

Monday 1,865 1,600 2,200 1,838 0.134 0.0904
Tuesday 1,632 1,439 1,902 1,625 0.128 0.0843
Wednesday 1,558 1,326 1,830 1,520 0.130 0.0891
Thursday 1,538 1,294 1,797 1,487 0.126 0.0840
Friday 1,547 1,310 1,803 1,499 0.125 0.0800
Saturday 1,320 1,070 1,549 1,258 0.120 0.0887
Sunday 1,002 699.4 1,174 877.2 0.116 0.0908

Weekdays 1,630 1,405 1,909 1,608 0.129 0.0857
Weekends 1,160 915.9 1,360 1,099 0.118 0.0898

Notes: This table shows hospital summary statistics broken down by days of the week for the year 2013.
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TABLE A8
Heterogeneous Effect by Days of the Week (Part 1: Total)

(1) (2) (3) (4) (5) (6)
Monday Tuesday Wednesday Thursday Friday Weekends

Panel A: Log Total Consultations

DOW 0.229*** 0.127*** 0.070*** 0.039*** 0.046*** -0.306***
(0.005) (0.006) (0.005) (0.005) (0.004) (0.012)

App×DOW 0.076*** 0.070*** 0.069*** 0.078*** 0.105*** 0.131***
(0.018) (0.017) (0.016) (0.017) (0.016) (0.020)

App×Other 0.098*** 0.099*** 0.099*** 0.097*** 0.093*** 0.079***
(0.014) (0.014) (0.014) (0.014) (0.014) (0.015)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.811 0.804 0.802 0.801 0.801 0.831

Panel B: Log Total Registrations

DOW 0.234*** 0.134*** 0.074*** 0.041*** 0.051*** -0.321***
(0.005) (0.006) (0.005) (0.005) (0.004) (0.011)

App×DOW 0.027 0.023 0.021 0.034** 0.058*** 0.088***
(0.018) (0.017) (0.015) (0.016) (0.016) (0.019)

App×Other 0.052*** 0.053*** 0.053*** 0.051*** 0.047*** 0.032**
(0.014) (0.013) (0.014) (0.013) (0.014) (0.015)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.827 0.820 0.818 0.817 0.817 0.848

Panel C: Total Appointment Cancellation Rate

DOW 0.005*** 0.006*** 0.004*** 0.002*** 0.005*** -0.013***
(0.001) (0.001) (0.000) (0.000) (0.000) (0.001)

App×DOW -0.037*** -0.035*** -0.036*** -0.032*** -0.035*** -0.032***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

App×Other -0.034*** -0.034*** -0.034*** -0.034*** -0.034*** -0.035***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.664 0.664 0.664 0.663 0.664 0.669

Notes: This table reports the estimated effects of the app on hospital’s total consultations (Panel A), total regis-
trations (Panel B), and total cancellation rate (Panel C), by days of the week. The estimated coefficients and the
corresponding 90% confidence intervals are plotted in Figure 6. Dependent variables are in logarithmic terms.
Independent variable DOW is dummy for a given day of the week, and Other is dummy for other days of the
week. All regressions include the hospital fixed effects, month fixed effects, and year fixed effects. Robust stan-
dard errors clustered at the hospital-month level are in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A9
Heterogeneous Effect by Days of the Week (Part 2: Offline)

(1) (2) (3) (4) (5) (6)
Monday Tuesday Wednesday Thursday Friday Weekends

Panel D: Log Offline Consultations

DOW 0.229*** 0.127*** 0.070*** 0.039*** 0.046*** -0.306***
(0.005) (0.006) (0.005) (0.005) (0.004) (0.012)

App×DOW -0.016 -0.022 -0.015 -0.014 0.011 0.045**
(0.017) (0.017) (0.016) (0.017) (0.016) (0.020)

App×Other 0.008 0.010 0.008 0.008 0.004 -0.012
(0.014) (0.014) (0.014) (0.014) (0.014) (0.015)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.807 0.800 0.798 0.797 0.797 0.828

Panel E: Log Offline Registrations

DOW 0.234*** 0.134*** 0.074*** 0.041*** 0.051*** -0.321***
(0.005) (0.006) (0.005) (0.005) (0.004) (0.011)

App×DOW -0.068*** -0.073*** -0.066*** -0.062*** -0.041*** 0.001
(0.017) (0.016) (0.015) (0.016) (0.015) (0.019)

App×Other -0.040*** -0.039*** -0.040*** -0.041*** -0.044*** -0.062***
(0.014) (0.013) (0.014) (0.013) (0.013) (0.015)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.824 0.817 0.814 0.814 0.814 0.845

Panel F: Offline Appointment Cancellation Rate

DOW 0.005*** 0.006*** 0.004*** 0.002*** 0.005*** -0.013***
(0.001) (0.001) (0.000) (0.000) (0.000) (0.001)

App×DOW -0.040*** -0.038*** -0.038*** -0.036*** -0.039*** -0.032***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

App×Other -0.036*** -0.036*** -0.036*** -0.037*** -0.036*** -0.038***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.664 0.664 0.663 0.663 0.664 0.669

Notes: This table reports the estimated effects of the app on hospital’s offline consultations (Panel D), offline
registrations (Panel E), and offline cancellation rate (Panel F), by days of the week. The estimated coefficients
and the corresponding 90% confidence intervals are plotted in Figure 6. Dependent variables are in logarithmic
terms. Independent variable DOW is dummy for a given day of the week, and Other is dummy for other days
of the week. All regressions include hospital fixed effects, month fixed effects, and year fixed effects. Robust
standard errors clustered at the hospital-month level are in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A10
Reduction in Waiting Time by Days of the Week

(1) (2) (3) (4) (5) (6)
Monday Tuesday Wednesday Thursday Friday Weekends

DOW 1.096*** -0.092 0.962*** 1.368*** 0.592*** -3.300***
(0.139) (0.151) (0.157) (0.145) (0.142) (0.122)

New ×DOW -2.081*** -2.022*** -2.441*** -2.737*** -2.882*** -3.440***
(0.153) (0.167) (0.165) (0.164) (0.157) (0.140)

New ×Other -2.771*** -2.771*** -2.693*** -2.637*** -2.613*** -2.404***
(0.129) (0.128) (0.128) (0.128) (0.129) (0.133)

Observations 1,705,283 1,705,283 1,705,283 1,705,283 1,705,283 1,705,283
R-squared 0.008 0.008 0.008 0.008 0.008 0.009
Number of Individuals 278,909 278,909 278,909 278,909 278,909 278,909
Year and Month FE YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Individual FE YES YES YES YES YES YES

Notes: This table reports the estimated effects of subsequent app launches on the waiting time of existing app
users by days of the week. The estimated coefficients and the corresponding 90% confidence intervals are plotted
in Figure 7. Dependent variables are waiting time on mobile waiting list measured in hours. Independent variable
“New” measures the number of new apps adopted in the same city since the individual’s first appearance in the
sample. DOW is the day of the week dummy for Monday to Friday and weekends, respectively, from Columns
(1) to (6). Other is the dummy for days of the week other than DOW. Robust standard errors clustered at the
individual level are in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A11
Heterogeneous Effect by Days of the Week and by Hospital Tier

(Part 1: Total and Offline Consultations)

(1) (2) (3) (4) (5) (6)
Monday Tuesday Wednesday Thursday Friday Weekends

Panel A: Log Total Consultations

DOW × T ierTwo 0.162*** 0.057*** 0.009*** -0.013*** 0.010** -0.136***
(0.005) (0.004) (0.004) (0.004) (0.004) (0.008)

DOW × T ierThree 0.350*** 0.252*** 0.179*** 0.134*** 0.111*** -0.616***
(0.009) (0.012) (0.009) (0.010) (0.009) (0.019)

DOW × T ierTwo×App 0.108*** 0.117*** 0.085*** 0.116*** 0.123*** 0.053**
(0.025) (0.024) (0.020) (0.022) (0.020) (0.025)

DOW × T ierThree×App 0.004 -0.023 0.020 0.005 0.066*** 0.297***
(0.023) (0.022) (0.022) (0.023) (0.023) (0.029)

Other × T ierTwo×App 0.092*** 0.090*** 0.095*** 0.090*** 0.089*** 0.109***
(0.019) (0.019) (0.019) (0.019) (0.019) (0.021)

Other × T ierThree×App 0.110*** 0.115*** 0.108*** 0.110*** 0.100*** 0.014
(0.019) (0.019) (0.018) (0.018) (0.018) (0.019)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.813 0.805 0.803 0.802 0.802 0.846

Panel B: Log Offline Consultations

DOW × T ierTwo 0.162*** 0.057*** 0.009*** -0.013*** 0.010** -0.136***
(0.005) (0.004) (0.004) (0.004) (0.004) (0.008)

DOW × T ierThree 0.350*** 0.253*** 0.179*** 0.134*** 0.111*** -0.616***
(0.009) (0.012) (0.009) (0.010) (0.009) (0.019)

DOW × T ierTwo×App 0.016 0.023 0.006 0.022 0.024 -0.021
(0.022) (0.021) (0.019) (0.020) (0.019) (0.023)

DOW × T ierThree×App -0.087*** -0.110*** -0.069*** -0.084*** -0.022 0.194***
(0.023) (0.023) (0.023) (0.025) (0.023) (0.030)

Other × T ierTwo×App 0.006 0.005 0.007 0.005 0.005 0.018
(0.017) (0.017) (0.017) (0.017) (0.017) (0.019)

Other × T ierThree×App 0.017 0.021 0.015 0.017 0.007 -0.075***
(0.021) (0.020) (0.020) (0.020) (0.020) (0.020)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.809 0.801 0.799 0.798 0.798 0.844

Notes: This table reports the estimated effects of the app by days of the week and by hospital tiers. The esti-
mated coefficients and the corresponding 90% confidence intervals are plotted in Panel (A) of Figure 8. Dependent
variables are log total consultations in Panel (A) and log offline consultations in Panel (B). DOW is the dummy
for a given day of the week, i.e. Monday to Friday and weekends, respectively, from Columns (1) to (6). Other
is the dummy for days of the week other than DOW . App is the dummy that switches to one after the app is
launched in treatment hospitals. T ierThree and T ierTwo are the dummies for tier-three and tier-two hospitals,
respectively. All regressions include the hospital fixed effects, month fixed effects, and year fixed effects. Robust
standard errors clustered at the hospital-month level are in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A12
Heterogeneous Effect by Days of the Week and by Hospital Tier

(Part 2: Total and Offline Registrations)

(1) (2) (3) (4) (5) (6)
Monday Tuesday Wednesday Thursday Friday Weekends

Panel A: Log Total Registrations

DOW × T ierTwo 0.172*** 0.068*** 0.016*** -0.009** 0.015*** -0.158***
(0.005) (0.004) (0.004) (0.004) (0.004) (0.007)

DOW × T ierThree 0.347*** 0.253*** 0.179*** 0.132*** 0.117*** -0.617***
(0.009) (0.011) (0.009) (0.010) (0.009) (0.018)

DOW × T ierTwo×App 0.094*** 0.104*** 0.072*** 0.108*** 0.114*** 0.049**
(0.025) (0.025) (0.021) (0.022) (0.021) (0.024)

DOW × T ierThree×App -0.081*** -0.105*** -0.066*** -0.078*** -0.025 0.206***
(0.022) (0.021) (0.020) (0.021) (0.021) (0.026)

Other × T ierTwo×App 0.083*** 0.081*** 0.087*** 0.081*** 0.080*** 0.098***
(0.019) (0.019) (0.019) (0.019) (0.019) (0.021)

Other × T ierThree×App 0.023 0.027 0.021 0.023 0.014 -0.072***
(0.017) (0.017) (0.017) (0.017) (0.017) (0.018)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.828 0.821 0.819 0.818 0.818 0.861

Panel B: Log Offline Registrations

DOW × T ierTwo 0.172*** 0.068*** 0.016*** -0.009** 0.015*** -0.158***
(0.005) (0.004) (0.004) (0.004) (0.004) (0.007)

DOW × T ierThree 0.347*** 0.253*** 0.179*** 0.132*** 0.117*** -0.617***
(0.009) (0.011) (0.009) (0.010) (0.009) (0.018)

DOW × T ierTwo×App -0.009 -0.003 -0.016 0.003 0.003 -0.030
(0.023) (0.022) (0.020) (0.021) (0.020) (0.022)

DOW × T ierThree×App -0.167*** -0.187*** -0.151*** -0.162*** -0.108*** 0.108***
(0.023) (0.022) (0.021) (0.023) (0.021) (0.027)

Other × T ierTwo×App -0.012 -0.013 -0.011 -0.014 -0.014 -0.005
(0.017) (0.017) (0.018) (0.018) (0.018) (0.020)

Other × T ierThree×App -0.065*** -0.062*** -0.068*** -0.066*** -0.075*** -0.156***
(0.018) (0.018) (0.018) (0.018) (0.018) (0.019)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.825 0.818 0.815 0.814 0.814 0.859

Notes: This table reports the estimated effects of the app by days of the week and by hospital tiers. The esti-
mated coefficients and the corresponding 90% confidence intervals are plotted in Panel (B) of Figure 8. Dependent
variables are log total registrations in Panel (A) and log offline registrations in Panel (B). DOW is the dummy
for a given day of the week, i.e. Monday to Friday and weekends, respectively, from Columns (1) to (6). Other
is the dummy for days of the week other than DOW . App is the dummy that switches to one after the app is
launched in treatment hospitals. T ierThree and T ierTwo are the dummies for tier-three and tier-two hospitals,
respectively. All regressions include the hospital fixed effects, month fixed effects, and year fixed effects. Robust
standard errors clustered at the hospital-month level are in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A13
Heterogeneous Effect by Days of the Week and by Hospital Tier

(Part 3: Total and Offline Cancellation Rate)

(1) (2) (3) (4) (5) (6)
Monday Tuesday Wednesday Thursday Friday Weekends

Panel A: Log Total Cancellation Rate

DOW × T ierTwo 0.009*** 0.010*** 0.006*** 0.004*** 0.004*** -0.019***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

DOW × T ierThree -0.001 0.000 0.000 -0.002** 0.005*** -0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

DOW × T ierTwo×App -0.011** -0.011** -0.010** -0.005 -0.007 -0.002
(0.005) (0.005) (0.005) (0.005) (0.005) (0.004)

DOW × T ierThree×App -0.064*** -0.059*** -0.064*** -0.061*** -0.067*** -0.068***
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Other × T ierTwo×App -0.006 -0.006 -0.006 -0.007 -0.007 -0.009*
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005)

Other × T ierThree×App -0.064*** -0.065*** -0.064*** -0.065*** -0.064*** -0.063***
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.677 0.677 0.676 0.676 0.676 0.684

Panel B: Log Offline Cancellation Rate

DOW × T ierTwo 0.009*** 0.010*** 0.006*** 0.004*** 0.004*** -0.019***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

DOW × T ierThree -0.001 0.000 0.000 -0.002** 0.005*** -0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

DOW × T ierTwo×App -0.020*** -0.021*** -0.018*** -0.016*** -0.018*** -0.007
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

DOW × T ierThree×App -0.060*** -0.055*** -0.059*** -0.057*** -0.063*** -0.063***
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Other × T ierTwo×App -0.014*** -0.014*** -0.015*** -0.015*** -0.015*** -0.019***
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Other × T ierThree×App -0.060*** -0.061*** -0.060*** -0.061*** -0.060*** -0.059***
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.672 0.672 0.671 0.671 0.671 0.679

Notes: This table reports the estimated effects of the app by days of the week and by hospital tiers. The esti-
mated coefficients and the corresponding 90% confidence intervals are plotted in Panel (C) of Figure 8. Dependent
variables are log total cancellation rate in Panel (A) and log offline cancellation rate in Panel (B). DOW is the
dummy for a given day of the week, i.e. Monday to Friday and weekends, respectively, from Columns (1) to (6).
Other is the dummy for days of the week other than DOW . App is the dummy that switches to one after the app
is launched in treatment hospitals. T ierThree and T ierTwo are the dummies for tier-three and tier-two hospi-
tals, respectively. All regressions include hospital fixed effects, month fixed effects, and year fixed effects. Robust
standard errors clustered at the hospital-month level are in parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A14
Reduction in Waiting Time by Hospital Tier and by Days of the Week

(1) (2) (3) (4) (5) (6)
Monday Tuesday Wednesday Thursday Friday Weekends

DOW 1.092*** -0.101 0.958*** 1.363*** 0.601*** -3.310***
(0.139) (0.151) (0.157) (0.145) (0.142) (0.122)

NewTierTwo ×DOW -5.392*** -4.575*** -4.445*** -5.654*** -5.858*** -4.329***
(0.267) (0.274) (0.301) (0.280) (0.279) (0.228)

NewTierThree ×DOW 0.571** 0.044 -0.839*** -0.371 -0.464* -2.813***
(0.251) (0.275) (0.283) (0.275) (0.269) (0.230)

NewTierTwo ×Other -4.974*** -5.155*** -5.170*** -4.959*** -4.937*** -5.194***
(0.202) (0.202) (0.201) (0.201) (0.202) (0.209)

NewTierThree ×Other -0.994*** -0.846*** -0.688*** -0.762*** -0.740*** -0.143
(0.195) (0.193) (0.193) (0.194) (0.194) (0.202)

Observations 1,705,283 1,705,283 1,705,283 1,705,283 1,705,283 1,705,283
R-squared 0.008 0.008 0.008 0.008 0.008 0.009
Number of Individuals 278,909 278,909 278,909 278,909 278,909 278,909
Year and Month FE YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Individual FE YES YES YES YES YES YES

Notes: This table reports the estimated effects of subsequent app launches on the waiting time of existing app
users by days of the week and by hospital tiers. The estimated coefficients and the corresponding 90% confi-
dence intervals are plotted in Figure 7. Dependent variables are waiting time on mobile waiting list measured
in hours. NewTierTwo measures the number of new apps adopted by tier-two hospitals, and NewTierThree mea-
sures the number of new apps adopted by tier-three hospitals. DOW is the dummy for a given day of the
week, i.e. Monday to Friday and weekends, respectively, from Columns (1) to (6). Other is the dummy for
days of the week other than DOW . Robust standard errors clustered at the individual level are in parentheses:
∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A15
Heterogeneous Effect by Age Groups

(1) (2) (3) (4) (5) (6)
Total Offline

VARIABLES Consultations Registrations Cancellation
Rate

Consultations Registrations Cancellation
Rate

Panel A: Age below 20

App 0.158*** 0.163*** 0.004* 0.028 0.029 0.000
(0.021) (0.021) (0.002) (0.021) (0.020) (0.002)

Observations 29,728 29,728 29,728 29,728 29,728 29,728
R-squared 0.846 0.855 0.649 0.846 0.854 0.650

Panel B: Age between 20 to 40

App 0.105*** 0.071*** -0.024*** -0.007 -0.043*** -0.027***
(0.014) (0.014) (0.004) (0.014) (0.014) (0.004)

Observations 29,731 29,731 29,731 29,731 29,731 29,731
R-squared 0.827 0.837 0.739 0.824 0.835 0.737

Panel C: Age between 40 to 60

App 0.057*** 0.016 -0.032*** 0.024** -0.018* -0.033***
(0.013) (0.011) (0.005) (0.012) (0.011) (0.005)

Observations 29,727 29,727 29,727 29,727 29,727 29,727
R-squared 0.770 0.780 0.716 0.775 0.784 0.715

Panel D: Age above 60

App 0.083*** 0.041*** -0.031*** 0.056*** 0.017 -0.032***
(0.015) (0.013) (0.006) (0.014) (0.012) (0.006)

Observations 29,717 29,717 29,717 29,717 29,717 29,717
R-squared 0.783 0.790 0.627 0.784 0.792 0.626

Notes: Dependent variables are logarithmic of total consultations, total registrations, and total cancellation rates
respectively in Columns (1) to (3), and logarithmic of offline consultations, offline registrations and offline can-
cellation rates in Columns (4) to (6). Panel A is for patients aged below 20, Panel B for age between 20 and 40,
Panel C for age between 40 and 60; and Panel D for age above 60. All regressions include hospital fixed effects,
month fixed effects, and year fixed effects. Robust standard errors clustered at the hospital-month level are in
parentheses: ∗ ∗ ∗ p < 0.01, ∗ ∗ p < 0.05, ∗ p < 0.1
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TABLE A16
Effect of App in Non-categorized Departments by Hospital Tier

(1) (2) (3) (4) (5) (6)
Total Offline

Dependent Variable Consultations Registrations Cancellation
Rate

Consultations Registrations Cancellation
Rate

App× T ierTwo 0.091 0.080 -0.009 0.020 0.001 -0.017
(0.059) (0.060) (0.015) (0.065) (0.073) (0.018)

App× T ierThree 0.071** -0.046 -0.073** -0.066* -0.167*** -0.061**
(0.033) (0.033) (0.029) (0.038) (0.026) (0.029)

Observations 27,355 27,355 27,355 27,355 27,355 27,355
R-squared 0.849 0.855 0.637 0.841 0.847 0.635

Notes: This table shows the effect of the appointment app on non-categorized departments, that is, all depart-
ments excluding the more severe and less severe departments defined in Table 5. App is the dummy that switches
to one after the app is launched in treatment hospitals. T ierThree and T ierTwo are dummies for tier-three and
tier-two hospitals, respectively. All regressions include hospital fixed effects, month fixed effects, and year fixed ef-
fects. Robust standard errors clustered at the hospital level are in parentheses: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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Appendix C Figures

(A) Consultation

(B) Registration

(C) Cancellation Rate

FIGURE A1 Robustness Analysis

Notes: The figure checks the robustness of our baseline results by re-estimating Equation 1 with modified
specifications. Each bar represents the estimated β, coupled with the 90% confidence interval. Robust 1 uses
subsample with only adopter hospitals; Robust 2 adds city-specific time trend; Robust 3 adds interaction term
between linear time trend and pre-app average cancellation rates; Robust 4 adds linear and quadratic time trend;
Robust 5 uses subsample that drops three specialty hospitals (dermatology, neurology, and dentistry); Robust
6 uses subsample that drops weekend observations; Robust 7 uses subsample that restricts to hospitals in the
provincial capital; Robust 8 uses subsample that drops observations before September 3, 2013 to get a balanced
panel. We report the detailed regression results in Appendix Table A4.
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FIGURE A2
Heterogeneous Effect by Hospital Tier

Notes: This figure estimates the heterogeneous effect of the app across hospitals of different size. We run
yit = α+βTierTowAppit×T ierTwoi +βTierThreeAppit×T ierThreei +λi +λt + εit on hospital-level data, where
T ierThreei and T ierTwoi are dummies for tier-three and tier-two hospitals, respectively. Lighter shaded bars
are estimated βTierTow, while darker shaded bars are estimated βTierThree, both coupled with 90% confidence
intervals. We report the detailed regression results in Table 3.
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(A) Consultation

(B) Registration

(C) Cancellation Rate

FIGURE A3
Heterogeneous Effect by Type of Department and by Hospital Tier

Notes: This figure estimates the heterogeneous effect of the app across different types of departments and across
hospitals of different tiers. We run yit = α+βTierTwoAppit×T ierTwoi+βTierThreeAppit×T ierThreei+λi+λt+εit
on hospital-level data from two types of departments: less serious, and more serious. T ierThreei and T ierTwoi
are dummies for tier-three and tier-two hospitals, respectively. Light shaded bars are estimated βTierTwo and
dark shaded bars are estimated βTierThree, both coupled with 90% confidence intervals. We report the detailed
regression results in Table 5. Department categories are defined in Section 5.2.
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FIGURE A4
Patients with Severe Conditions Sort to Weekend Slots

Notes: This figure presents evidence that the rise of total consultation in tier-three hospitals is largely due to
that patients with severe conditions switching from the over-utilized weekday slots to the under-utilized weekend
slots.
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