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Income and Happiness: New Results from  
Generalized Threshold and Sequential Models∗  

 
Empirical studies on the relationship between income and happiness commonly use standard 
ordered response models, the most well-known representatives being the ordered logit and 
the ordered probit. However, these models restrict the marginal probability effects by design, 
and therefore limit the analysis of distributional aspects of a change in income, that is, the 
study of whether the income effect depend on a person's happiness. In this paper we 
pinpoint the shortcomings of standard models and propose two alternatives, namely 
generalized threshold and sequential models. With data of two waves of the German Socio-
Economic Panel, 1984 and 1997, we show that the more general models yield different 
marginal probability effects than standard models. 
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1 Introduction

The objective of this paper is to point out, and offer a solution to, a methodological short-

coming of the previous literature on the effect of income on happiness in cross sectional

data. Under “happiness” we understand here the response to a survey question such as —

in the German Socio-Economic Panel — “Taken all together, how satisfied are you with

your life today?”, on a scale from 0 to 10, where 0 means “completely dissatisfied” and 10

means “completely satisfied”. There is by now a large literature on the effect of income

on happiness, with data for different countries, different points in time, and using different

specifications. This literature is surveyed, for example, in Frey and Stutzer (2002). Since

the dependent variable “happiness” is measured on an ordinal scale, it is common to employ

standard ordered response models, such as ordered probit and ordered logit, although some

researchers also ignore this issue and use simply OLS (for a discussion see Ferrer-i-Carbonel

and Frijters (2004)).

In either case, previous studies have focused almost entirely on mean effects, i.e. on

estimating the expected happiness response (or expected latent happiness indicator in the

case of ordered response models) to a change in income. Completely missing so far is any

evidence whether the magnitude of the income effect depends on a person’s happiness: is it

possible that the effect of income on happiness is different in different parts of the outcome

distribution? Could it be that “money cannot buy happiness, but buy-off unhappiness” as

a proverb says? And if so, how can such distributional effects be quantified?

Note that the hypothesis of a – possibly negative – relationship between the effect of

income and the level of happiness is different from the hypothesis of a decreasing marginal
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effect of income on happiness as income increases. The two hypotheses are not the same

since income is but one factor affecting happiness, with a myriad of other factors having

been identified as equally or more important in the recent literature (e.g. unemployment,

health, age, etc.), in addition to chance, i.e. individual unobserved factors.

The standard ordered probit or logit models with their specific structure restrict the

distributional effects a-priori without the possibility “to let the data speak”. These models

function as benchmark, against which results from more general models can be compared.

Technically, we require a model that is sufficiently flexible such that the effect of income

on the probabilitiy distribution of happiness is not fully determined by functional form. We

consider two such more general models. The first is a model based on a latent threshold where

the thresholds themselves are linear functions of the explanatory variables. As a second

alternative, we discuss a sequential model which is based on a sequence of binary choice

models for the conditional probability of choosing a higher response category, borrowing

concepts from the literature on discrete duration models. Both models allow for category

specific parameter vectors, possibly but not necessarily different in different parts of the

underlying distribution.

The paper proceeds as follows. In the next section, we offer a partial review of the pre-

vious literature on income and happiness. One important lesson is that “getting it right”,

i.e. correctly measuring the effect of income on happiness, will be increasingly important,

as proposals are being made to use happiness surveys in the valuation of public goods and

intangibles. Such valuations can become standard in cost-benefit analyses one day, comple-

menting other methods such as hedonic modeling and contingent valuation, and therefore
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influence whether projects are undertaken or not, and if so, how much compensation should

be paid to inconvenienced parties. This should be reason enough to closely scrutinize the

methodological underpinnings of the previously reported effects.

In Section 3, the methods are presented. We start with a review of the standard ordered

logit and probit models and then contrast them with the generalized threshold and sequential

model. In Section 4, we report on an analysis of the relationship between income and

happiness using data from two waves of the German Socio-Economic Panel, 1984 and 1997.

The results are somewhat mixed. Although we find that income has a stronger effect in the

left part of the happiness distribution than in the utmost right part, the restriction of equal

coefficients (under which the generalized threshold model reduces to the standard ordered

model) can be rejected only for women and not for men. Also, when translated into marginal

probability effects, the extra income sensitivity for low happiness responses (five or below on

a scale from 0 to 10) is at most one percentage points above the prediction of the standard

model. Also, the probability of responding with a high value (for example 8 or above) is in

all cases an increasing function of income. In this sense, there is some evidence that “money

can buy happiness”.

2 Previous Literature

The relationship between income and happiness is perhaps the single most intensively studied

question within the growing literature on the socio-economic determinants of individual

happiness (i.e. reported subjective well-being from personal surveys). The early work in the

field (Easterlin, 1973, 1974, 1995; Scitovsky 1975) answered the rethoric questions “does
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money buy happiness?” and ”will raising the incomes of all increase the happiness of all?”

with a resounding “no”.

This research was motivated by the apparent infatuation of the economics profession with

income maximization, and it reminded us that the ultimate goal of all economic activity

must be human satisfaction and that, according to the empirical evidence, maximizing GDP

would not be ministerial to that goal. The standard explanation why an increased income

for everyone, as measured by GDP growth say, fails to deliver higher levels of happiness –

either in international comparisons or over time – are by now relatively well understood.

Although a ceteris paribus increase in a person’s income leads to higher well being - as is

commonly found in cross section studies (e.g. Frey and Stutzer, 2000, 2002; Gerdtham and

Johannesson, 2001; Gardener and Oswald, 2001; or Shields and Wheatley Price, 2004) - such

an effect is strongly moderated by status and comparison effects in the aggregate (Easterlin,

1995; Clark and Oswald, 1996; Blanchflower and Oswald, 2001; Frijters et al., 2004; among

others).

While the full implications of this insight for economic policy are largely ignored, there

exists another aspect of the cross-sectional relationship between income and happiness that

may yet prove to be of great and lasting practical importance for policy analysis. This second

aspect is related to the potential of income to act as a numeraire, and hence put a price on

everything else that may affect happiness as well. The basic idea is one of compensation:

in the case of a “bad”, how much of an increase in income is required to offset the negative

effect of the bad on happiness, and keep the person at the same level of happiness as in

the absence of the bad? Similarly, in case of a good, one can implicitly determine the
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pecuniary value of the good by asking, how much income a person would be willing to give

up in order to obtain the good, so that the overall happiness is unchanged. Examples for

this line of research are Winkelmann and Winkelmann (1998) who estimate the money-

equivalent value of the psychological cost of unemployment, and Schwarze (2003) who uses

the principle to determine an income equivalence scale, i.e. the income compensation required

to keep the same individual well-being level with one additional household member present.

Frey, Luechinger and Stutzer (2004) estimate the value of public safety, or the absence of

terrorism. Van Praag and Baarsma (2004) estimate the external cost of air traffic noise for

people living near the Amsterdam Airport. This is a very active area of research, and new

interesting applications are likely to be added in the future.

Importantly, all of this research makes quite restrictive assumptions regarding the way

that income is assumed to effect happiness. Usually, income is entered in logarithms. In this

case the marginal effect is inversely proportional to income: to achieve the same increase in

(average) happiness, larger and larger absolute changes in income are necessary. As argued

above, this may not be sufficiently flexible to measure the true impact of income on happiness,

and the above results may therefore be unreliable.

3 Methods

3.1 Standard Model

Let yi denote the observed ordinal dependent variable, where i = 1, . . . , n and n is the

number of observations. There are J different outcomes coded without loss of generality in

a rank preserving manner such that yi ∈ {1, . . . , J}. The values of yi are determined by an

6



unobserved continuous variable y∗i and a partition of the real line:

yi = j if and only if κj ≤ y∗i < κj+1 j = 1, . . . , J

where κ1, . . . , κJ+1 are threshold values and it is understood that κ1 = −∞ and κJ+1 = ∞.

Finally, the model is completed by assuming that

y∗i = x′
iβ + ui

where xi is a k × 1 vector of covariates (excluding a constant), β is a conformable vector of

parameters and u is the error term.

In standard ordered models it is assumed that the threshold values κj are constants

to be estimated together with the regression parameters β. Estimation of the j − 1 + k

parameters by maximum likelihood is straightforward once a distribution function F (u) has

been specified. The likelihood contributions are of the form

P (yi = j|xi) = F (κj+1 − x′
iβ)− F (κj − x′

iβ) (1)

Let yij = 1 if yi = j and yij = 0 else. For a sample of n independent observations (yi, xi) the

log-likelihood function is given by

ln L(β, κ2, . . . , κj; y, x) =
n∑

i=1

yij ln P (yi = j|xi)

The ordered logit and probit models are obtained by substituting for F the cumulative

density function of the logistic and the standard normal distribution, respectively. For more

details see McKelvey and Zavoina (1975), McCullagh (1980).
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3.2 Interpretation

There are a number of ways to interpret the parameters of this model. What does it mean

for an element of β to be “large” or “small”? First, one might be tempted to interpret

the coefficients in terms of the latent model for y∗i , since this part of the model is a simple

linear regression. However, the β’s are identified only up to scale. Moreover, y∗i , being an

artificial construct, is not of interest. Potentially more interesting is a comparison based on

“compensating variation”. Let xil denote the l-th element of the vector of covariates and βl

the corresponding parameter. Now consider changing two covariates xil and xim at the same

time such that ∆y∗i = 0 (and therefore all probabilities are unchanged). This requires

βl∆xil = −βm∆xim or
∆xil

∆xim

= −βm

βl

If, for example, xil is logarithmic income and xim is unemployment, then the above frac-

tion gives the relative increase in income required to compensate for the negative effect of

unemployment (assuming that βl > 0 and βm < 0).

To move the interpretation closer to the observed outcomes yi, the threshold mechanism

needs to be taken into account. One way of doing this is to ask how much of a change in

a covariate it takes to move over one response category. For this purpose, one can form

the ratio of the interval length to the parameter (κj+1 − κj)/βl. The smaller this ratio (in

absolute terms), the smaller the maximum change in xil required to move the response from

category j to category j + 1.

Such measures stop short of the most natural way of interpreting the parameters in

discrete probability models such as ordered response models, namely in terms of marginal

probability effects. Indeed, the main concern of this paper is to determine how the change in
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a covariate, such as income, changes the distribution of the outcome variable, here subjective

well-being. The marginal probability effects can be obtained directly from equation (1):

MPEjl(xi) =
∂P (yi = j|xi)

∂xil

= [f(κj − x′
iβ)− f(κj+1 − x′

iβ)]βl (2)

where f is the density function of u. In general, marginal probability effects are functions of

xi. Average marginal probability effects can be obtained by taking expectations:

AMPEjl = Ex

[
∂P (yi = j|xi)

∂xil

]
(3)

A consistent estimator of the AMPEjl is obtained by replacing β in equation (2) with the

maximum likelihood estimator β̂ and averaging over the sample:

̂AMPEjl =
1

n

n∑
i=1

M̂PEjl(xi)

It is interesting to note that despite their intuitive appeal, marginal probability effects are

rarely reported in practice. Among all contributions on the determinants of subjective well-

being listed in the references just three report them, where two of them consider the marginal

effect on the highest outcome only.

Once we focus on the full distribution of outcomes, and the marginal probability effects,

it becomes immediately apparent that standard ordered models are quite restrictive, and

perhaps unnecessarily so. A first way to pinpoint the restrictive nature of the marginal effects

is the observation that their relative magnitude is not allowed to vary over the outcomes.

We obtain

MPEjl(xi)

MPEjm(xi)
=

βl

βm

The relative marginal effects do not depend on j (nor do they depend on xi); in other words,

they are the same in every part of the distribution. It is not possible, for instance, that
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income is more important (relative to unemployment, say) in the left part of the outcome

distribution than in the right part. This property holds regardless of the choice of F .

A second restrictive property is that the sign of the marginal effects for increasing j

is entirely determined by the distribution function F . For example, with F being either

standard normal or logistic, f is bell-shaped with a maximum at 0. Also note that in order

to be well defined, we must have κj ≤ κj+1. It follows from equation (2) that

sgn[MPEjl(xi)] = −sgn[βl] if κj < x′
iβ and κj+1 ≤ x′

iβ

sgn[MPEjl(xi)] = sgn[βl] if κj ≥ x′
iβ and κj+1 > x′

iβ

The sign is indeterminate for κj < x′
iβ and κj+1 > x′

iβ. The model has a “single crossing”

property. As one moves from the probability of the smallest outcome to the probability of

the largest outcome, marginal probability effects are either first negative and then positive,

or they are first negative and then positive. A reversion is precluded by the assumptions of

the model.

More specific results can be obtained once we consider a specific distribution function F .

The best known result is the proportional log-odds assumption of the ordered logit model.

From equation (1)

P (yi < j|xi) = Λ(κj − x′
iβ) =

exp(κj − x′
iβ)

1 + exp(κj − x′
iβ)

and therefore

P (yi ≥ j|xi)

P (yi < j|xi)
=

1− Λ(κj − x′
iβ)

Λ(κj − x′
iβ)

= exp(−κj + x′
iβ)

Hence, the logarithmic odds of an outcome greater or equal than j relative to an outcome

less than j are a linear function of xi. The slope does not depend on the category j.
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The heart of the matter is the single index assumption. In order to obtain more flexible

response patterns for probabilities or odds, one will need to look for a richer parametric

model where index functions are allowed to vary across response categories. In the next two

sections, such models will be discussed. The presented models allow any covariate to have

different effects in different parts of the distribution, relative to what the base model with

constant thresholds would predict.

3.3 Generalized Threshold Models

When searching for more flexible parametric models for ordered dependent variables, the

multinomial logit model stands at one extreme in terms high flexibility. However, it does not

make any use of the ordering information and therefore is inefficient. A very flexible model

that uses the ordering information can be obtained by making the threshold parameters

linear functions of the covariates (e.g., Maddala, 1983, Terza, 1985). Let κij = κ̃j + x′
iγj,

j = 1, . . . , J where xi is a k × 1 vector of covariates excluding the constant as before.

After substitution κij for κj into equation (1), we obtain

P (yi = j|xi) = F (κ̃j+1 + x′
iγj+1 − x′

iβ)− F (κ̃j + x′
iγj − x′

iβ)

= F (κ̃j+1 − x′
iβj+1)− F (κ̃j − x′

iβj)

where βj = β − γj and it is understood that κ̃1 = −∞ and κ̃J+1 = ∞ as before. Thus,

F (κ̃1 − x′
iβ1) = 0 and F (κ̃J+1 − x′

iβJ+1) = 1.

The model now contains J−1 parameter vectors β2, . . . , βJ , plus J−1 constants κ̃2, . . . , κ̃J

that can be estimated jointly by maximum likelihood. The generalized model nests the
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standard ordered model under the restriction

β2 = . . . = βJ

Hence, the restricted model has (J − 2)× k additional degrees of freedom. Clearly, the pro-

liferation of parameters, in particular when J is large, is a potential disadvantage. However,

a test can be easily conducted, and one can economize on degrees of freedom by imposing

partial restrictions in subsets of outcomes, such as β2 = β3, while allowing parameters to

differ in other parts of the distribution.

The model has substantially more flexible marginal probability effects, since

MPEjl(xi) = f(κ̃j − x′
iβj)βjl − f(κ̃j+1 − x′

iβj+1)βj+1,l (4)

All the statements in the previous subsection on constant relative effects and single crossing

no longer need to hold. Rather, these effects can be determined empirically.

In the logit case, we obtain

P (yi < j|xi) = Λ(κ̃j − x′
iβj)

and therefore

P (yi ≥ j|xi)

P (yi < j|xi)
=

1− Λ(κ̃j − x′
iβj)

Λ(κ̃j − x′
iβj)

= exp(x′
iβj − κ̃j)

The effects of covariates on the log-odds are now category specific.

The greater flexibility in modeling ordered responses with generalized thresholds does

not come without costs. First, the constraint of ascending constants in the standard model

to obtain a well-defined likelihood now extends to

κj − x′
iβj ≤ κj+1 − x′

iβj+1 ∀i, j (5)
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In a model with generalized thresholds, it is necessary that the multiple indices satisfy the

order restrictions for all observations i. As a practical consequence, the large number of

parameters in conjunction with the order restriction (5) may increase computation time

considerably, as attempts of unproductive likelihood steps are routinely made.

3.4 Sequential Model

For an alternative approach for modeling an ordinal response variable, we now consider

the class of sequential models. This kind of model has been discussed in the statistics

literature (see, for example, Tutz, 1991). However, previous applications in econometrics

are, to the best of our knowledge, non-existent. As before, we assume that the ordered

response variable is coded as j = 1, . . . , J , where j = 1 designates the smallest outcome and

j = J the largest. The basic idea is to cast the model in terms of conditional transition

probabilities P (yi = j|yi ≥ j), j = 1, , . . . , J . These conditionals fully characterize the

probability function of y. For example,

P (yi = 1) = P (yi = 1|yi ≥ 1)P (yi ≥ 1) = P (yi = 1|yi ≥ 1)

P (yi = 2) = P (yi = 2|yi ≥ 2)P (yi ≥ 2) = P (yi = 2|yi ≥ 2)(1− P (yi = 1|yi ≥ 1))

P (yi = 3) = P (yi = 3|yi ≥ 3)P (yi ≥ 3)

= P (yi = 3|yi ≥ 3)[1− P (yi = 1)− P (yi = 2)]

= P (yi = 3|yi ≥ 3)(1− P (yi = 1|yi ≥ 1))(1− P (yi = 2|yi ≥ 2))

and in general

P (yi = j) = P (yi = j|yi ≥ j)
j−1∏
r=0

(1− P (yi = r|yi ≥ r)) j = 1, . . . , J
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where it is understood that P (yi = 0|yi ≥ 0) = 0 and P (yi = J |yi ≥ J) = 1.

This approach is in close analogy to discrete time hazard rate models in duration analysis.

Let tj, j = 1, . . . , J denote the possible exit points, ordered by time. Then P (T = tj|T ≥ tj)

gives the probability of exit at time tj, conditional on survival until tj.

The sequential model naturally accounts for the ordering of the responses without im-

posing any arbitrary cardinality assumption. We don’t claim that the model is a literal

representation of the cognitive processes that are at work when a respondent answers this

type of question. It even appears rather unlikely that individuals actually think that way,

starting with the lowest category, here one, and sequentially choose between one or at least

two, two or at least three, and so on. We rather see the sequential model as a flexible tool

for obtaining a model for ordered responses with unrestricted marginal probability effects.

In order to model the effects of explanatory variables, we can parameterize the model as

follows:

P (yi = j|yi ≥ j, xi) = F (αj + x′
iβj)

where αj is a category specific constant, βj is a vector of category specific slopes, and F is

any function mapping real numbers onto the unit interval. The corresponding probability

function is

P (yi = j|xi) = F (αj + x′
iβj)

j−1∏
r=0

(1− F (αr + x′
iβr)) j = 1, . . . , J (6)

where it is understood that α0 = −∞ and αJ = ∞ such that F (α0 + x′
iβ0) = 0 and

F (αJ + x′
iβJ) = 1. A model with category specific constants only is obtained as a special

case.
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An important advantage of this model over the generalized threshold model is that no re-

strictions on the parameter space are required to ensure the existence of a proper probability

function. This simplifies estimation considerably. On the other hand, due to the increasing

number of terms in (6), the calculation of marginal probability effects becomes somewhat

intractable, in particular for large J , since repeated application of product and chain rules

is required.

But as before, more specific results can be obtained by assuming that F is the cumulative

distribution function of the logistic distribution. In this case, the marginal probability effects

can be derived as

MPEjl(xi) =
∂P (yi = j|x)

∂xil

= P (yi = j|xi)

[1− Λ(αj + x′
iβj)]βjl −

j−1∑
r=0

Λ(αr + x′
iβr)βrl


Like in the generalized ordered logit model the effects of a change in one explanatory variable

are now local, i.e. they vary by category j. To estimate the parameters of the model one

needs to perform J − 1 consecutive logit regressions. The dependent variable yij is equal

to one if yi = j and equal to zero if yi > j. In each step, only observations “at risk” are

included, i.e. those for which it is the case that yi ≥ j.

4 Data and Results

In this section we report on the estimation results of the relationship between income and

happiness. We use data from two waves — 1984 and 1997 — of the A-sample of the German

Socio-Economic Panel (GSOEP), i.e. we consider the sample of West Germans (SOEP Group

2001). The dependent variable happiness is the response to the survey question “Taken all

together, how satisfied are you with your life today?”, on a scale from 0 to 10, where 0
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means “completely dissatisfied” and 10 means “completely satisfied”. To avoid cells with

low frequency we combined the categories 0, 1 and 2, as well as the categories 3 and 4,

leaving J = 8 categories for estimation. Explanatory variables include a quadratic in age

(age between 25 and 64), dummy variables for health status, unemployment, logarithmic

household income and logarithmic household size. By entering income and size separately,

we allow for flexible scale effects in utility from consumption at the household level. The

alternative, using per-capita income (or its logarithm) would impose constant returns to

scale (see also Schwarze, 2003). All analyses are performed separately by sex.

— Insert Table 1 about here —

Table 1 summarizes the sample means of selected variables. The descriptive statistics

show that the share of responses in the highest “happiness” categories was markedly lower

in 1997 compared to the year 1984. Overall, people are mostly satisfied with their life:

more than two-thirds of women and men state a happiness level of seven or higher. From a

descriptive point of view, happiness and income are positively related over most of the range,

with the exception of the highest happiness category. Respondents in the highest category

have on average less income than those reporting a high happiness, but not the highest. A

common result known from the previous literature and also supported by the present data

is that among unhappy people the unemployment rate is relatively high, and that reported

health status and happiness are positively correlated.

In the following, we report results from three different models: the standard ordered

response model, the generalized threshold model, and the sequential model, all of them with
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a logistic specification of the error terms. In the discussion, we will emphasize two important

aspects: model selection and testing; and interpretation of the models in terms of marginal

probability effects.

4.1 Model Selection and Testing

Before we start with different procedures of model selection we give estimation results for

one subsample, women 1984, and then illustrate selection criteria by means of this example.

Table 2 reports estimation results for the standard ordered logit model, Table 3 and Table

4 for the generalized threshold and the sequential model, respectively.

— Insert Table 2, 3 and 4 about here —

In the standard ordered logit model the parameter vector β is estimated together with J−

1 = 7 thresholds. All significant parameters have the expected sign. For example household

income and health status have a positive effect on happiness, whereas unemployment has

a negative effect. The relationship between age and happiness is insignificant. We caution

that such an interpretation falls short of the most natural way of interpretation in terms of

marginal probability effects, and can be misleading in a sense that the standard model might

be too restrictive with equal parameter vectors in each part of the outcome distribution.

In the generalized threshold model the estimated parameters differ in each category.

By visual inspection, the coefficients on logarithmic household income are decreasing from

the lowest to the highest category. To test the hypothesis of no change we can conduct a

likelihood ratio (LR) test by computing minus two times the difference of the restricted and

the unrestricted log-likelihood values. The LR statistic is asymptotically χ2-distributed with
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degrees of freedom equal to the number of restrictions, J − 2 in the case of a single regressor

such as income. For women, 1984 and 1997, we can clearly reject the null hypothesis of

equal income coefficients, whereas for men in both years we cannot reject the hypothesis at

conventional levels of significance.

The null hypothesis of no category specific parameters can be tested in the same manner,

i.e. by computing minus two times the difference of the log-likelihoods of the standard and

the generalized ordered model. For women in 1984 the LR statistic is 104.64, the degrees

of freedom are 36, and thus the null hypothesis of equal coefficients can be highly rejected.

The same result applies for women 1997 and men in both waves. Therefore in either case

the generalized model is preferred to the standard model.

In the sequential logit model the hypothesis of equal coefficients is not a relevant one.

Indeed, equal coefficients, and therefore equal conditional transition probabilities while mov-

ing from j = 1 to j = J , would mean that the marginal probabilities P (yi = j) decrease

monotonically following a geometric decay function. This clearly is not an interesting bench-

mark. The sequential model does not nest the standard ordered logit model. To make the

results comparable across models, we need to consult the marginal probability effects rather

than the parameter values per se. To compare the goodness-of-fit of the two models, we can

use the Akaike Information Criterion. Since the number of parameters is the same in the

sequential and generalized threshold model, this amounts to comparing the log-likelihoods

and choosing the model with the higher value. In the sequential model we can simply sum

the log-likelihoods of each binary logit regression to obtain the overall log-likelihood. In three

cases the generalized ordered logit model is preferred to the sequential model (e.g. women

18



1984: −5474.75 > −5479.82), only for men 1997 the log-likelihood value of the sequential

logit is slightly higher.

4.2 Marginal Probability Effects of Income

The use of probability models for ordered responses lends itself to the interpretation of

parameters in terms of marginal probability effects. The question of interest is: How does

the probability of observing a certain outcome j = 1, . . . , J change if one of the explanatory

variables changes? In this paper, we are mainly interested in the effect of a change in income

on the probability of being more or less happy. For female observations in 1984 we reported

the estimated average marginal probability effects ( ̂AMPE) in Tables 2,3 and 4. The results

for women 1997 and men in both years are summarized in Table 5.

— Insert Table 5 about here —

How can we interpret the marginal probability effects precisely? Consider, for example,

the results for men, 1997, and take the ceteris paribus effect of increasing logarithmic house-

hold income by a small amount on the probability of choosing the sixth category (j = 6).

For the standard ordered logit model Table 5 shows a value of 0.0465 (the rows for the

standard model are denoted by “OLogit”). That is, the probability of j = 6 increases by

0.0465 percentage points if we increase ln(hhincome) by 0.01 (this is approximately a 1%

change in level household income). Now take a doubling of household income, i.e. a change

in logarithmic household income of 0.693, keeping household size and everything else con-

stant. The associated change in the probability of j = 6 is about 0.0465× 0.693× 100, a 3.2

percentage point increase. In the generalized ordered logit as well as in the sequential logit
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(rows “GOLogit” and “SLogit”, respectively) the estimated marginal probability effects of

income are considerably larger. They exceed the standard ordered logit effect by more than

50 percent. A doubling in income is predicted to increase the probability of a 6 response by

approximately 5.1 percentage points.

If we compare the average marginal probability effects among the three different models

and over all possible outcomes, we get somewhat mixed results. On one hand, all models

suggest that more income reduces the probability of being unhappy, and increases that of

being happy. On the other hand, there is no systematic under- or over-estimation in the

“restrictive” ordered logit model compared to the generalized models. However, our data

point out in a nice way the shortcomings of the standard model. Consider for example the

estimated marginal probability effects for men in the year 1997. In the generalized ordered

logit and the sequential logit these effects are at first negative, then positive, and then again

negative in the highest category. By design, such a pattern is impossible in the standard

ordered logit model. A similar result appears for women 1984, where the signs switch three

times if marginal probability effets are estimated by the generalized threshold model.

Apart from point estimation of marginal probability effects, sampling variability is also

important. In principle, standard errors can be obtained by the delta method and asymptotic

normality follows from maximum likelihood estimation. However, due to the increasing num-

ber of terms in the marginal probability expressions of the sequential logit model, multiple

chain and product rules are required and bootstrapped standard errors offer an “easy-to-

implement” alternative.
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5 Conclusions

This paper had two main objectives. First, we stressed that the previous literature has mostly

neglected distributional aspects of the effect of income on happiness, and therefore ruled out

different effects on low and high happiness responses, respectively. As mentioned above,

this can become important in future research when happiness surveys are used for valuation

of public goods or intangibles. Secondly, we pinpointed the shortcomings of the standard

ordered response models in analyzing these issues, and proposed several alternatives (the

generalized threshold and the sequential model) that are flexible enough to answer questions

like “Is it true that money cannot buy happiness, but buy-off unhappiness?”

We illustrated these models with data from the 1984 and 1997 waves of the GSOEP. The

main focus was put on model selection and average marginal probability effects. The latter

was discussed in detail since this is the most natural way of interpretating regression coeffi-

cients in conditional probability models. The restrictiveness of standard methods compared

to the more general alternatives was highlighted, e.g. with signs of marginal effects that

are impossible in the standard model. In this sense we let the data speak, and determined

empirically that there is some evidence for “Money can buy happiness”.

Our results are related to three other recent papers who also relax the strict assumptions

of standard ordered models. In a first paper, Clark et al. (2004) take explicitly into account

that unobserved individual heterogeneity may cause different transformations of observable

characteristics into the verbal expression of satisfaction. They apply a latent class approach

to the ordered probit model and show with panel data from twelve European countries that

marginal income effects differ among classes. Secondly, Headey and Wooden (2004) allow for
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asymmetries in the well-being response to income by using two measures for the lefthand-

side variable from the same survey, one being well-being (or happiness) and the other being

ill-being (or psychological distress). Their results support the hypothesis that income has

the same impact on both measures. Thirdly, Kerkhofs and Lindeboom (1995) consider a

model for state-dependent reporting errors in subjective health measures. They generalize

the threshold values as function of explanatory variables, but focus on predicted probabilities

and not marginal probability effects. A main result is that predictions of reported health

status are sensitive to the labor market status.

However, with very few exceptions (Clark et al., 2004; Shields and Wheatley Price, 2004;

Frey and Stutzer, 2002: ch.4) marginal probability effects have been neglected in the litera-

ture on happiness and income. This paper argued that this does not have to be so necessarily,

and that one needs to go beyond the standard ordered response models if one wants to es-

timate these effects properly. Therefore, we conclude with a strong recommendation that

future work in this area seriously considers the use of more general models.
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Table 2: Estimating happiness by standard ordered logit, sample: women, 1984

coeff. std. err.

ln(hhincome) 0.3725∗∗∗ (0.0570)

ln(hhsize) -0.1479∗ (0.0836)

unemp -0.7394∗∗∗ (0.2242)

health 1.5472∗∗∗ (0.1149)

age 0.0043 (0.0255)

agesq/100 0.0005 (0.0290)

Mean(−x′β̂) -5.295093

κj j = 1 −∞
j = 2 1.3864 (0.7397)

j = 3 2.4210 (0.7351)

j = 4 3.7767 (0.7356)

j = 5 4.2871 (0.7366)

j = 6 4.9917 (0.7379)

j = 7 6.0579 (0.7401)

j = 8 6.7543 (0.7415)̂AMPEj,ln(income) j = 1 -0.0085 (0.0018)

j = 2 -0.0124 (0.0023)

j = 3 -0.0327 (0.0056)

j = 4 -0.0152 (0.0026)

j = 5 -0.0159 (0.0027)

j = 6 0.0056 (0.0018)

j = 7 0.0207 (0.0034)

j = 8 0.0585 (0.0099)

Number of obs. 2981

lnL(β̂) -5527.067

significance levels : ∗ 10% ∗∗ 5% ∗∗∗ 1%
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