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ABSTRACT
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Tax Evasion on a Social Network

We relate tax evasion behavior to a substantial literature on self and social comparison 

in judgements. Taxpayers engage in tax evasion as a means to boost their expected 

consumption relative to others in their “local” social network, and relative to past 

consumption. The unique Nash equilibrium of the model relates optimal evasion to a 

(Bonacich) measure of network centrality: more central taxpayers evade more. The indirect 

revenue effects from auditing are shown to be ordinally equivalent to a related Bonacich 

centrality. We generate networks corresponding closely to the observed structure of social 

networks observed empirically. In particular, our networks contain celebrity taxpayers, 

whose consumption is widely observed, and who are systematically of higher wealth. In 

this context we show that, if the tax authority can observe the social network, it is able to 

raise its audit revenue by around six percent.
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1 Introduction

Tax evasion is a significant economic phenomenon. Estimates provided by the UK tax

authority put the value of the tax gap —the difference between the theoretical tax liability

and the amount of tax paid —at 6.5 percent (H.M. Revenue and Customs, 2016). Academic

studies for the US and Europe put the gap substantially higher, at around 18-20 percent

(Cebula and Feige, 2012; Buehn and Schneider, 2016).

In this paper we link evasion behavior to a mass of evidence that people engage continually

in comparisons —with others (social comparison) and with themselves in the recent past

(self comparison — or “habit”). Utility, evidence for developed economies suggests, is in

large part derived from consumption relative to these comparators, rather than from its

absolute level (e.g., Ferrer-i-Carbonell, 2005; Luttmer, 2005; Clark and Senik, 2010; Mujcic

and Frijters, 2013). The evolutionary processes that might explain this phenomenon are

explored in Postlewaite (1998), Rayo and Becker (2007) and Samuelson (2004), among others.

Researchers have proposed that self and social comparison can explain economic phenomena

including the Easterlin paradox (Clark et al., 2008; Rablen, 2008), the equity-premium puzzle

(Constantinides, 1990; Galí, 1994); stable labor supply in the face of rising incomes (Neumark

and Postlewaite, 1998); upward rather than downward sloping wage profiles (Loewenstein

and Sicherman, 1991; Frank and Hutchens, 1993); the feeling of poverty (Sen, 1983); the

demand for risky activities (Becker et al., 2005); and migration choices (Stark and Taylor,

1991). There are important consequences for consumption and saving behavior (Dybvig,

1995; Chapman, 1998; Carroll et al., 2000), for the desirability of economic growth (Layard,

1980, 2005), for monetary policy (Fuhrer, 2000), and for tax policy (Boskin and Sheshinki,

1978; Ljungqvist and Uhlig, 2000; Koehne and Kuhn, 2015).

Despite the overwhelming evidence of a concern for self and social comparison, these features

have yet to be explored simultaneously in the context of the tax evasion decision. In this pa-

per we provide a network model in which taxpayers are assumed to have an intrinsic concern

for income relative to a benchmark that reflects both self and social comparison.1 Taxpayers

in our model observe the consumption of a subset of other taxpayers (the “reference group”)

with whom they are linked on a social network. In this context, taxpayers may seek to evade

tax so as to improve their standing relative to those they compare against. Taxpayers also

1The economics of networks is a growing field. For recent overviews, see Ioannides (2012), Jackson and
Zenou (2015), and Jackson et al. (2017). Our analysis connects to a broader literature that applies network
theory to the analysis of crime (e.g., Glaeser et al., 1996; Ballester et al., 2006).
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benchmark their current consumption against its lagged values. The model exhibits strategic

complementaries in evasion choices, so that more evasion by one taxpayer reinforces other

taxpayers’decisions to evade also. Following the lead of Ballester et al. (2006), we utilize

linear-quadratic utility functions to provide a characterization of Nash equilibrium. We show

that there is a unique Nash equilibrium in which evasion is a weighted network centrality

measure of the form proposed by Bonacich (1987). Network centrality is a concept developed

in sociology to quantify the influence or power of actors in a network. It counts the number

of all paths (not just shortest paths) that emanate from a given node, weighted by a decay

factor that decreases with the length of these paths. In this sense, our contribution combines

sociological and economic insights in seeking to understand tax evasion behavior.

Although the model is simple enough to admit an analytic solution, it is also suffi ciently rich

that it may be used to address a range of questions of interest to academics and practitioners

in tax authorities. Here we focus on three such questions: first, we investigate —for an arbi-

trary network structure —how changes in the model’s exogenous parameters affect optimal

evasion; second, we explore how the marginal indirect effects arising from performing one

extra audit vary across taxpayers in the network. Last, we investigate the value to a tax

authority —in terms of additional revenue raised through audits —of knowing the structure

of the social network. The analysis is performed on a class of generative networks that pos-

sess many of the empirically observed features of social networks —in particular allowing for

highly visible celebrity taxpayers. Our results suggest that, if a tax authority moves from

not observing the social network to observing fully the social network, it may increase audit

revenues by around six percent. A stronger concern for social comparison by taxpayers in-

creases the value of information relating to the social network, while a greater concentration

of links within a social network decreases the value of such network information.

An important feature of our model is that it addresses explicitly the role of local comparisons

on a social network. By contrast, the existing analytical literature on tax evasion allows only

global (aggregate) social information to enter preferences: the global statistic that taxpayers

are assumed to both have a concern for, and to be able to observe, is either (i) the proportion

of taxpayers who report honestly (Gordon, 1989; Myles and Naylor, 1996; Davis et al., 2003;

Kim, 2003; Traxler, 2010; Ratto et al., 2013); (ii) the average post-tax consumption level

(Goerke, 2013); (iii) the level of evasion as a share of GDP (Dell’Anno, 2009); or (iv) the

average tax payment (Mittone and Patelli, 2000; Panadés, 2004).

While reducing social information to a single statistic known to all taxpayers promotes
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analytical tractability, it is problematic in other respects. First, from the perspective of

modelling with explicit social networks, assuming that taxpayer’s observe aggregate-level

information is implicitly the assumption that every taxpayer observes the behavior of every

other taxpayer. As we adopt the convention that a link from i to j in the social network

signifies that i can observe j’s consumption, full observability is equivalent to the assumption

that the social network is the complete network (in which every taxpayer is directly linked to

all other taxpayers). Yet there are reasons to think that relative consumption externalities

are, in fact, heterogeneous across individuals. In particular, we know that people’s reference

group is typically composed of “local”comparators such as neighbors, colleagues, and friends

(Luttmer, 2005; Clark and Senik, 2010).2 Moreover, implicitly assuming a complete network

implies that all taxpayers are equally connected socially, thereby ruling out, in particular,

the existence of “stars”or “celebrities”whose consumption is very widely observed in the

network. Yet, this feature of social networks may matter for the targeting of tax audits

(Andrei et al., 2014).

The only literature that has enriched the analysis of social information to allow for local

social information is that which uses agent-based simulation techniques as an alternative to

analytical methods. Models in this tradition nonetheless employ representations of social

networks that appear to differ markedly from real world examples. A common property of

the network structures employed (e.g., Korobow et al., 2007; Hokamp and Pickhardt, 2010;

Bloomquist, 2011; Hokamp, 2014) is that the number of taxpayers who observe the behav-

ior of each taxpayer is fixed, thereby ruling out the existence of highly-observed celebrity

taxpayers. Other authors (e.g., Davis et al. 2003; Hashimzade et al., 2014, 2016) utilize an

undirected network, meaning that, if i is linked to j, then necessarily j is linked to i. Yet

social networks display marked asymmetry in the direction of links (Foster et al., 2010; Szell

and Thurner, 2010).3 We offer a model that is both analytically tractable and that allows

for local comparisons on an arbitrary social network. In this sense, our approach lies in the

cleavage between existing analytical and agent-based approaches, and is complementary to

each.4 We perform simulation analysis on a class of generative networks that are not subject

2More generally, relative consumption externalities may be viewed as a form of peer effect. In other
contexts, generative models of peer effects predict heterogeneous exposure. For instance, when job informa-
tion flows through friendship links, employment outcomes vary across otherwise identical agents with their
location in the network of such links (Calvó-Armengol and Jackson, 2004).

3Zaklan et al. (2008) and Andrei et al. (2014) are among exceptions that do explore more general network
structures.

4By extending analytical understanding of network effects upon tax evasion —in particular being able to
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to the restrictions discussed above, and which are widely utilized to model network struc-

tures in the natural sciences. Our methodology in this regard, therefore, has applicability

beyond the current context of tax evasion.

To our knowledge, no previous contribution allows simultaneously for both self and social

comparison in the tax evasion decision. Goerke (2013), however, assumes an intrinsic concern

for relative consumption by taxpayers. The primary focus of his contribution is, however,

the derived impact on tax evasion from endogenous changes in labor supply, whereas we

treat income as an exogenous parameter. In the remaining literature that considers a social

dimension to the tax evasion decision, taxpayers are assumed to derive utility solely from

absolute consumption, but react nonetheless to social information because they experience

social stigma —the extent of which depends on the evasion of other taxpayers —if caught

evading. The focus of much of this literature is on the potential for multiple equilibria,

whereas our model yields a unique equilibrium. While a concern for relative consumption

is compatible with the simultaneous existence of social stigma towards evaders, the two

approaches differ in emphasis. Underlying the idea of social stigma is the concept of social

conformity, in which agents seek to belong to the crowd, whereas the presumption of relative

consumption theories is that individuals seek to stand out from the crowd. A literature

relating to this point in the context of tax evasion supports the notion that social information

impacts compliance behavior (Webley et al., 1988; De Juan et al., 1994; Alm and Yunus,

2009; Alm et al., 2017), but rejects social conformity as the underlying mechanism (Fortin

et al., 2007).

A recent contribution that allows explicitly for self comparison in the tax evasion decision is

Bernasconi et al. (2016). There are, however, important differences in approach and results.

In our model, a higher level of habit consumption is associated with higher evasion, for it

generates a negative internality on myopic taxpayers: higher past consumption outcomes

reduce present utility. To overcome this internality, taxpayers must gamble (evade) more.

Conversely, in Bernasconi et al., higher habit consumption reduces tax evasion. In their

model taxpayers are far-sighted, so consumption internalities do not arise. Instead, higher

habit consumption levels stimulate increased risk aversion, for taxpayers are assumed infi-

nitely loss averse over consumption levels below the habit level. By contrast, in our model,

consumption may fall below its habit level in periods in which a taxpayer is audited and

prove formal comparative statics properties of the model —we assist the interpretation of simulation output
from related agent-based models.
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fined.

The paper proceeds as follows: section 2 develops a formal model of tax evasion on a social

network. Section 3 analyzes the comparative statics predictions of the model, and section

4 characterizes the indirect effects of an audit, both on the future behavior of the audited

taxpayer, and to the behavior of other, unaudited, taxpayers through the channel of social

comparison. Section 5 considers the value of network information to a tax authority, and

section 6 concludes. Proofs are collected in the Appendix.

2 Model

Let N be a set of taxpayers of size N . A taxpayer i ∈ N has an (exogenously earned) income

Wi > 0. By law taxpayers should declare Wi to the tax authority and pay tax θ (Wi), where

θ : R≥0 7→ (0,Wi) is a non-decreasing function. If a taxpayer declares their true gross income,

Wi, they receive a (legal) net disposable income Xi ≡ Xi (Wi) = Wi − θ (Wi). Taxpayers

can, however, choose to declare less than their true income, thereby evading an amount of

tax Eit ∈ [0,Wi −Xi]. Taxpayer i is audited with probability pi ∈ (0, 1) in each period.

Heterogeneity in the pi can arise, for example, if the tax authority conditions audit selection

upon observable features of taxpayers. Audited taxpayers face a fine at rate f > 1 on all

undeclared tax, à la Yitzhaki (1974).

Taxpayers are assumed to derive utility from their level of consumption relative to a reference

level of consumption Rit (the determination of which we shall discuss later). As is standard in

agent-based modelling, although taxpayers live for multiple periods, each makes a succession

of single-period decisions and so is “myopic”. In this context, myopic behavior could be the

result of cognitive limitations of the part of taxpayers. Consistent with this notion, and our

emphasis on social networks, Manski (1991) and McFadden (2006) argue that individuals

faced with dynamic stochastic decision problems that pose immense computational challenges

may instead look to other individuals to infer satisfactory policies.5

In each period, taxpayers behave as if they maximize expected utility, where utility is denoted

by U (.). The expected utility of taxpayer i at time t is therefore given by

E (Uit) ≡ [1− pi]U (Cn
it −Rit) + piU (Ca

it −Rit) , (1)

5For a small theoretical literature that assumes far-sighted taxpayers see Levaggi and Menoncin (2012,
2013).
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where consumption in the audited state (Ca
it) and not-audited states (C

n
it) is given by:

Cn
it ≡ Xi + Eit; Ca

it ≡ Cn
it − fEit. (2)

An obvious objection to this formulation is that it neglects entirely the possibility of absolute

utility. Although an absolute component to utility surely exists, we note that measures of

subjective wellbeing typically become uncorrelated with absolute income above a threshold of

average national income estimated at $5,000 (in 1995, PPP) by Frey and Stutzer (2002). As

most citizens of developed countries lie above this threshold, our model may be a reasonable

approximation in such cases. Optimal evasion in period t is the solution to the problem

maxEit E (Uit) subject to the Cournot constraint that reference consumption, Rit, is taken as

given. The first order condition for optimal evasion is therefore given by

[1− pi]U ′(Cn
it)− pifU ′(Ca

it) = 0. (3)

2.1 Reference Consumption

Reference consumption, Rit, is a function of self and social comparison. To formalize the

notion of social comparison, we assume that each taxpayer observes the consumption of a

non-empty set of taxpayers Ri⊂ N , a set we term the reference group. A taxpayer, i, is said
to be observed if their consumption is visible to at least one other taxpayer in the network,

i.e., i ∈ ∪j∈N\iRj.

We represent the observability of consumption in the form of a directed network (graph),

where a link (edge) from taxpayer (node) i to taxpayer j indicates that i observes j’s con-

sumption. Links are permitted to be subjectively weighted, for some members of the reference

group may be more focal comparators than are others. The network is represented as an

N ×N (adjacency) matrix, G, of subjective comparison intensity weights gij ∈ [0, 1], where

gii = 0. We normalize the gij for each taxpayer to sum to unity:
∑

j∈Ri gij = 1. Taxpayers

i and j with gij > 0 are said to be linked. Accordingly, the reference group of taxpayer i is

the set of all taxpayers to whom i is linked: Ri = {j ∈ N : gij > 0}. For later reference, a
network, G, in which there is a path (though not necessarily a direct link) between every

pair of taxpayers is said to be connected. The set of connected networks we denote by C. A
necessary condition for G ∈ C is that all taxpayers belonging to N are observed.

To define reference consumption we first introduce a latent variable, Zit, which reflects

self and social comparison. Specifically, Zit is the sum of a level of habit consumption hit
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reflecting self comparison (weighted by ιh > 0), and a level of consumption sit reflecting

social comparison (weighted by ιs > 0):

Zit ≡ Z(hit, sit) = ιhhit + ιssit.

Habit consumption we specify as hit ≡ hit (Ct−1).6 To specify sit we first write expected

consumption as qit = Xi + [1 − pif ]Eit. We then set sit as the (weighted) mean of qjt
over i’s reference group (j ∈ Ri). This weighted average is conveniently written as sit ≡
sit (qt) = giqt, where gi is the ith row of G, and qt is a N × 1 column vector of the expected

consumptions.

To form reference consumption, we embed Zit in a simple linear difference equation, given

by

Rit (hit,qt) = Ri,t−1 + ςR [Zit −Ri,t−1] ; ςR ∈ [0, 1] . (4)

Under the specification in (4) reference consumption adjusts towards Zit in each period,

with the strength of this adjustment regulated by the parameter ςR. In this sense ςR may be

interpreted as determining the persistence of shocks to reference consumption. In the special

case ςR = 1 there is full adjustment in every period, so Rit = Zit, whereas, when ςR = 0, Rit

is fixed at its initial value Ri0 for all t.

2.2 Nash Equilibrium

Using (4) in the first order condition (3), we now solve for the unique Nash equilibrium of

the model. To do this, we first define a notion of network centrality due to Bonacich (1987),

which computes the (weighted) discounted sum of paths originating from a taxpayer in the

network:

Definition 1 Consider a network with (weighted) adjacency matrix G. For a diagonal ma-

trix β and weight vector α, the weighted Bonacich centrality vector is given by b(G,β,α) =

[I−Gβ]−1α provided that [I−Gβ]−1 is well-defined and non-negative.

6In writing hit = h (Ci,t−1) we adopt the convention, observed widely in the empirical literature, that
habit depends only on consumption in the previous period. For examples of this approach see, e.g., Muell-
bauer (1988), Carroll and Weil (1994) and Guariglia and Rossi (2002). As, however, we shall embed habit
consumption within a long-memory reference consumption level, past consumption levels nonetheless have
persistent effects.
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In Definition 1, the matrix β specifies discount factors that scale down (geometrically) the

relative weight of longer paths, while the vector α is a set of weights. In the present context

the matrix [I−Gβ]−1 is a form of social comparison multiplier. It measures the way in which

actions by one taxpayer feed through into other taxpayers’actions. Ballester et al. (2006)

show that [I−Gβ]−1 will be well-defined, as required in Definition 1, when I > ρ (G)β,

where ρ (G) is the largest absolute value of the eigenvalues of G. Intuitively, this condition

is that the local externality that a taxpayer’s evasion imparts upon other taxpayers cannot

be too strong. If local externality effects are too strong then the set of equations that define

an interior Nash equilibrium of the model have no solution. In this case, multiple corner

equilibria can instead arise (see, e.g., Bramoullé and Kranton, 2007). Focusing on the case

when local externality effects are not too strong, we have the following Proposition:

Proposition 1 If

(i) utility is linear-quadratic, U (z) =
[
b− az

2

]
z, with a ∈

(
0, b

maxi∈N Wi

)
and b > 0;

(ii) I > ρ (M)β;

then there is a unique interior Nash equilibrium, at which the optimal amount of tax evaded

is given by

Et = b(M,β,αt),

where

mij =
[1− pif ][1− pjf ]

ζ i
gij;

βii = ςRιs;

αi1,t =
1− pif
aζ i

{b− a [Xi −R (hit,X)]} ;

ζ i = [1− pif ]2 + pi [1− pi] f 2 > 0.

According to Proposition 1, in the case of linear-quadratic utility a taxpayer’s optimal evasion

corresponds to a Bonacich centrality on the social networkM, weighted to reflect a taxpayer’s

marginal utility of consumption.7 By this measure, taxpayers that are more central in the

social network evade more. The uniqueness of equilibrium evasion follows intuitively from

7Marginal utility in the linear-quadratic specification is given by U ′ (z) = b − az. Accordingly, the term
in braces in the expression for αi1t is the marginal utility from ones own legal consumption, Xi, relative to a
reference level of consumption reflecting the weighted average over the reference group of legal consumption.
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the observation that, under linear-quadratic utility, each taxpayer’s best response function

is linear in the evasion of every other taxpayer. The social network M transforms the

underlying comparison intensity weights, gijt, by a factor [1 − pif ][1 − pjf ]ζ−1i > 0 that

reflects potential heterogeneity in audit probabilities across taxpayers. It follows that, in

the special case that all taxpayers face a common audit probability, as might occur if a tax

authority has committed to a policy of random auditing, no adjustment to the underlying

comparison intensity weights is warranted. In this case, therefore, optimal evasion is a

weighted Bonacich centrality measure on the untransformed network G:

Corollary 1 Under the conditions of Proposition 1 and setting pi = p for all i ∈ N , the
unique interior Nash equilibrium for evasion is given by Et = b(G,ω,αt), where

ωii =
ιsςR[1− pf ]2

ζ
.

What if utility is not linear-quadratic? For an arbitrary twice-differentiable utility function

we may generalize the model by considering the first order linear approximation around a

Nash equilibrium to a set of (potentially non-linear) first order conditions of the form in (3).

The resulting set of equations are given by

Et = JEt + α̂t = [I− J]−1 α̂t =

[ ∞∑
k=0

Jk

]
α̂t, (5)

where α̂t is again a vector of weights for the different taxpayers, and J is a matrix of

coeffi cients measuring how actions interact. By appropriate decomposition of J, therefore, a

solution to the equation system in (5) is a Bonacich centrality measure of the form contained

in Definition 1.

The model we have outlined is suffi ciently rich that it may be used to address a range of

questions of interest to academics and practitioners in tax authorities. Subsequent sections

will consider how changes in the exogenous parameters affect evasion; how the marginal

revenue effects that arise from performing one extra audit vary across taxpayers in the social

network; and the value of knowing of network information to a tax authority. To study these

questions, however, requires a controlled environment that, in particular, abstracts from

the stochastic perturbations generated by tax authority audits. Accordingly, in a second

corollary of Proposition 1, we finish this section by defining the notion of steady state, in
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which Cit = Ci,t−1 = Cn
it for all i ∈ N .8 This corresponds to the state the model converges

toward if the auditing process is temporarily “switched off”:

Corollary 2 In a steady state of the model consumption satisfies CSS = Cn,SS = X + ESS,

where steady-state evasion, ESS, is given by the vector of Bonacich centralities, b(M,β,αSS),

with

αSSi1 =
1− pif
aζ i

{
b− a

[
Xi −R

(
hSSi ,X

)]}
.

3 Comparative Statics

Under linear-quadratic utility the model exhibits strategic complementaries in evasion choices:

expected utility is supermodular in cross evasion choices. An advantage of this feature of

the model is that we may employ the theory of monotone comparative statics (Edlin and

Shannon, 1998; Quah, 2007) to analyze, in a straightforward way, the qualitative (sign)

implications of changes in the underlying exogenous parameters for an otherwise arbitrary

social network satisfying condition (ii) in Proposition 1.9

We consider a steady state of the model and analyze a permanent marginal increase in

a parameter z. The model is then allowed to adjust to a new steady state. This marginal

response of the steady-state level of evasion to a change in z we denote by dESS
i /dz. Because

the effects of habit are not contemporaneous, the full adjustment to a new steady state

(dESS
i /dz) comprises a contemporaneous adjustment (∂ESS

i /∂z) and a delayed adjustment.

To analyze the sign of the full adjustment, we first prove a Lemma that links the signs of

the contemporaneous and full adjustments.

Lemma 1 For an arbitrary exogenous variable, z, if ∂Xi
∂z

∂ESSi
∂z
≥ 0 then

sign

(
dESS

i

dz

)
= sign

(
∂ESS

i

∂z

)
.

According to Lemma 1, the sign of the full and contemporaneous adjustments of steady-

state evasion are related. The condition in the Lemma encompasses a number of cases; in

8In this sense, analysis at a steady-state of the model removes unhelpful time-dependencies from the
analysis. It also permits the underlying behavioral trends predicted by the model to be observed visually
and calculated algebraically. These trends are otherwise obscured, both algebraically and in visual output,
by uninformative noise.

9For an excellent introduction to monotone comparative statics methods see Tremblay and Tremblay
(2010).
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particular, it holds if (i)Xi is independent of z (∂Xi/∂z = 0); and (ii) if ∂Xi/∂z and ∂ESS
i /∂z

both take the same sign. The intuition for the condition in the Lemma is that it is suffi cient

to ensure that the contemporaneous adjustment of evasion, ∂ESS
i /∂z, and of steady-state

consumption, ∂CSS
i /∂z, are of the same sign. In the event, however, that z induces opposing

contemporaneous responses from Xi and ESS
i the overall effect on steady-state consumption

may take either sign, so Lemma 1 does not apply.

With Lemma 1 in hand we prove the following Proposition:

Proposition 2 Under the conditions of Proposition 1 it holds at an interior Nash equilib-
rium that:

dESS
i

da
< 0;

dESS
i

∂b
> 0;

dESS
i

dpi
< 0;

dESS
i

dpj
≤ 0;

dESS
i

df
< 0;

dESS
i

dhit
> 0;

dESS
i

dιh
> 0;

dESS
i

dιs
> 0;

dESS
i

dXi

≷ 0;
dESS

i

dXj

≥ 0.

We begin with the results for the pair of parameters {a, b} belonging to the linear-quadratic
utility function. Noting that the coeffi cient of absolute risk aversion is given by A (z) =

a [b− az]−1 > 0, increases in a associate with decreased risk aversion, while increases in b

associate with increased risk aversion. Consistent with this observation, increases in a cause

optimal evasion to increase, while increases in b decrease optimal evasion.

An increase in one’s own audit probability lowers optimal evasion, as does an increase in

the audit probability of another taxpayer in the social network. The latter result is a weak

inequality, but can be strengthened to a strict inequality if G ∈ C. When a taxpayer’s audit
probability increases they decrease their evasion, thereby decreasing the evasion required

of other taxpayers to maintain a given level of expected relative consumption. Albeit with

differences in economic interpretation, these results are in line with those of models of tax

evasion that introduce social concerns through a social norm for compliance. As is standard,

an increase in the fine on undeclared tax reduces optimal evasion.
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The parameter, ιs, which measures the extent to which taxpayers care about social compar-

ison, is positively associated with evasion. Taxpayers impose a negative externality upon

other taxpayers when their expected consumption increases, and the size of this externality

is directly regulated by ιs. The greater the externality, the more evasion is pushed upwards

in the struggle among taxpayers to maintain relative consumption. The parameters hit and

ιh, which both reflect the role of self comparison, are also positively associated with evasion,

but the economic intuition (relative to social comparison) differs. Whereas social comparison

generates negative externalities, self comparison generates negative internalities: past con-

sumption outcomes affect negatively the evaluation of current consumption. To overcome

this internality, taxpayers must seek a present consumption level that exceeds hit, which

entails attempting greater evasion.10 The effects of self and social comparison therefore in-

teract positively: the desire to out-consume one’s reference group induces evasion, which

then pushes up past consumption (in expectation), causing a further increase in evasion on

account of the concern for self comparison.

The finding for Xj in Proposition 2 governs how a taxpayer’s evasion responds to changes in

the income of other taxpayers. This cross effect is always non-negative (and strictly positive

if G ∈ C), for Wj enters optimal evasion only through Xj (Wj) and ∂Xj (Wj) /∂Wj > 0,

so sign (∂Eit/∂Wj) = sign (∂Eit/∂Xj). This effect arises as one taxpayer becoming richer

implies that, to preserve their level of expected relative consumption, other taxpayers must

evade more. The role of own-income is the only case where Lemma 1 does not apply, for

∂Xi/∂z and ∂ESS
i /∂z are of opposite signs. Empirically, evasion and income are positively

related (Clotfelter, 1983; Baldry, 1987). Accordingly, in the simulation analysis, we calibrate

the model to be consistent with this evidence.

4 Indirect Effects

Consider a single audit to a taxpayer i that perturbs the steady state of the model. The

revenue effects this generates are commonly broken down three ways: the direct effect, Di, is

the tax recovered contemporaneously with the audit that would otherwise have been evaded;

the own indirect effect (Iii) refers to the additional revenue that arises from future changes

10As noted in the Introduction, our finding that the level of habit consumption increases optimal evasion
is the opposite of the finding of Bernasconi et al. (2016), who consider the intertemporal problem facing a
far-sighted taxpayer. In their framework the intuition above need not hold, for taxpayers do not generate
unforeseen internalities on their future selves when they consume more in the present.
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in evasion behavior by the audited taxpayer i, while the cross indirect effect (Iij) refers to

the additional future revenue that arises from spillover (or “ripple”) to the evasion behavior

of the (unaudited) taxpayer j (j 6= i). Cross indirect effects occur in our model through

the channel of social comparison: perturbations in the consumption of other taxpayers as

a result of audit activity affect the reference consumption of other “local” taxpayers. The

aggregate indirect effect, Σi, is the sum of the indirect effects across N from an audit of i,

Σi =
∑

k∈N Iik. As own and cross effects are hard to distinguish empirically, studies in this

tradition focus solely on the aggregate effect. Our model, however, allows us to characterize

indirect effects at the individual level, and to relate heterogeneity in these effects to differences

in individual characteristics.

The pattern of indirect effects across taxpayers may differ markedly from the pattern of direct

effects. To see this, suppose there is a taxpayer who has high evasion but is not observed by

any other taxpayer, and another who has lower evasion, but is widely observed. Choosing to

audit the former taxpayer will yield a higher direct effect, but the cross indirect effects will

all be zero, potentially making the latter taxpayer a more gainful choice. Understanding the

pattern of indirect effects is important as empirical evidence points to their dominance over

direct effects: Dubin et al. (1990), for instance, estimate the aggregate indirect effect of an

audit to be, on average, six times larger than the direct effect in the US.11

Let Ii denote the vector of indirect effects, whose jth entry corresponds to the indirect effect

Iij; and Σ denote the vector of aggregate cross indirect effects, whose jth entry corresponds

to Σj. In many contexts what is important to tax authorities is measures that rank audit

revenue effects across taxpayers, for then audit resources may be targeted towards the highest

ranked taxpayers (see, e.g., Hashimzade et al., 2016). We therefore formally introduce the

notion of ordinal equivalence: two column vectors A and B are ordinally equivalent (written

A ∼ B) if and only if Ai1 ≷ Aj1 ⇔ Bi1 ≷ Bj1 for all distinct i, j.

Proposition 3 The indirect revenue effects of conducting a single audit of i that perturbs
the steady state of the model satisfy Ii ∼ ESS

i b(M,β,ρSSi ), where {M,β} are defined as in
Proposition 1, ESS

i is an N ×N diagonal matrix of the constant ESS
i , and ρ

SS
i is an N × 1

vector of weights given by

ρSSi =
∂αSS

∂CSS
i

.

11Other estimates of this ratio are 2:1 (Tauchen et al., 1993), 4:1 (Alm et al., 2009), 11:1 (Plumley, 1996),
and 15:1 (Dubin, 2007). Despite the marked variability, all estimates are consistent with the dominance of
indirect effects over direct effects.
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According to Proposition 3, the sizes of the own and cross indirect effects from auditing a

taxpayer i are, in each case, ordinally equivalent to the product of a Bonacich centrality and

i’s steady-state level of evasion. Thus, more central taxpayers, in the sense of b(M,β,ρSSi ),

generate greater indirect effects when audited. The intuition for Proposition 3 is as follows:

an audit of a taxpayer i may have effects on the evasion behavior of both i and a set of

other taxpayers, and these effects are long-lasting (when ςR > 0). Nonetheless, as the

convergence of evasion back to its steady-state value is at a uniform rate for all affected

taxpayers, the size of the indirect effect Iij is ordinally equivalent to the size of the initial

deviation from steady state of j’s evasion in the period after the audit of i. This initial

effect can, in turn, be decomposed exactly (by virtue of the linearity of evasion in habit

consumption), into the product of the marginal effect of a change in i’s consumption on

j’s evasion (∂ESS
j /∂CSS

i ) and the change in i’s consumption (C
n,SS
i − Ca,SS

i ). The former

writes as ∂ESS
j /∂CSS

i = bj1(M,β,ρSSi ), and the latter writes as Cn,SS
i −Ca,SS

i = [1 + f ]ESS
i ,

which is proportional to simply ESS
i . Hence, the Iij rank in the same way across j as do the

bj1(M,β,ρSSi )ESS
i .

12

5 Audit Targeting and Network Structure

Can tax authorities observe links in social networks? Although surely the full gamut of links

cannot be observed, importantly, there exist some individuals — celebrities — for whom it

is common knowledge that many people observe them. Also, even for non-celebrities, the

idea that tax authorities know at least something about people’s associations is becoming

more credible with the advent of “big data”. The UK tax authority, for instance, uses a

system known as “Connect”, operational details of which are in the public domain (see,

e.g., Baldwin and McKenna, 2014; Rigney, 2016; Suter, 2017). Connect cross-checks public

sector and third-party information, seeking to detect relationships among actors. According

to Baldwin and McKenna (2014), the system produces “spider diagrams”linking individuals

to other individuals and to other legal entities such as “property addresses, companies,

partnerships and trusts.”The IRS is known to have also invested in big data heavily, but

has so far been much more reticent in revealing its capabilities.

Given the discussion above, in this final section we consider the business case for investing in

the means to acquire information about social networks. Can such knowledge be used to raise

12As an immediate corollary of Proposition 3 the vector of aggregate indirect effects satisfies Σ ∼ χ, where
the ith entry of χ is given by χi1 =

∑
k∈N bk1(M,β,ρSSi )ESSi .
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additional revenue, and, if so, how much extra might realistically be raised? We also address

the related questions of how the value of network information varies with the topological

properties of the network, and with the assumed level of concern for social comparison. We

begin by developing a theoretical framework for analyzing rigorously these questions, and

then perform simulations of this framework to obtain numerical estimates.

5.1 Theoretical Framework

To understand the value of network information to a tax authority we seek to understand

the additional revenue that a tax authority could raise when moving from a position of

not observing the social network to a position of fully observing the social network. To

focus attention solely on the role of network information, we shall assume the tax authority

observes all other information. In particular, the tax authority observes (i) the functional

forms h (.) and X (.), which govern the formation of, respectively, habit consumption and

legal disposable income; (ii) the set of audit probabilities {pi}i∈N ; and (iii) the parameters
{a, b, ιh, ιs}.13

Let Ri be a measure of the additional revenues accruing from an audit of taxpayer i, poten-

tially allowing for both direct and indirect effects. In analogous fashion, let R̂i be the best

prediction of Ri of a tax authority that cannot observe the social network. We consider a

tax authority that, in each period, utilizes the vector of taxpayer income declarations, di,

to choose a set NA ⊂ N of taxpayers to be audited. The set NA is taken to be chosen
to maximize additional predicted revenue, R̂A ≡

∑
j∈NA R̂j, subject to a binding budget

constraint. The IRS, for instance, ranks tax returns for the purpose of audit selection by

assigning each return a “DIF score”that reflects the potential revenue gain from auditing it

(see, e.g., Alm and McKee, 2004; Plumley and Steuerle, 2004; Hashimzade et al., 2016).

How does the tax authority compute R̂i, conditional on observing an income declaration di?

To address this question, let the taxpayer’s income declaration by denoted as dit. Using this

notation, we may write evasion as Eit = θ (Wi)−θ (di), thereby giving the income declaration

as

dit = d̂it (Wi) = θ−1 (θ (Wi)− Eit (Wi)) . (6)

13In practice, tax authorities do not perfectly observe these quantities. Hence, to the extent that un-
certainty over these quantities interacts positively with uncertainty over the structure of the network, our
estimates of the value of knowledge of the latter will represent a lower bound.
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The function d̂it (Wi) in equation (6) gives the optimal disclosure dit for a taxpayer with

income Wi. Of relevance to our purpose, however, is the inverse function Wi = Ŵ (dit) =

d̂−1it (dit), which gives the true incomeWi of a taxpayer who optimally declares an income dit.

Accordingly, if the tax authority observes fully the network, then on receipt of the taxpayer’s

declaration dit it can infer true income, Wi, exactly. If, however, the tax authority does

not observe the social network, then d̂−1it (dit) must be computed with respect to the tax

authority’s prior beliefs about the network, rather than with respect to the true network,

causing taxpayer income to be inferred imprecisely. To capture this point formally, let G
denote the set of all feasible networks G, for a given N . We then write R̂i (G) as the

expectation of Ri over the set of all feasible networks:

R̂i (G) = EH∈G
(
Ri

(
Ŵ (di (G) ; H)

))
. (7)

As the set G is unmanageably large, we approximate equation (7) by

R̂i (G) ≈ Ri

(
Ŵ (di (G) ,EH∈G (H))

)
,

where EH∈G (H) is a network whose adjacency matrix has the (common) value [N − 1]−1

for all off-diagonal elements. Thus, the tax authority’s uncertainty is represented by setting

all comparison intensity weights (both within and across taxpayers) to a uniform value.

Computing estimates for R̂i (G) in this way, our analysis centers on the the statistic

∆R (G) ≡ RA (G)− R̂A (G)

R̂A (G)
× 100 (8)

which measures, for a given social networkG, the percentage increase in audit revenue that is

achieved when a tax authority moves from not observing the social network to full observing

it. To obtain numerical estimates of ∆R (G) we now simulate the model.

5.2 Simulation

5.2.1 The Social Network

To generate the social network, we follow the approach of network scientists, who utilize

a class of network models, known as generative models, to investigate complex network

formation (see, e.g., Pham et al., 2016). In this modelling paradigm, complex networks are

generated by means of the incremental addition of nodes and edges to a seed network over a

long sequence of time-steps. Two processes governing the node/edge dynamics in generative
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models have been shown to generate features consistent with a multitude of social, biological,

and technological networks (see, e.g., Redner, 1998; Adamic and Huberman, 2000; Jeong et

al., 2000; Ormerod and Roach, 2004; Capocci et al., 2006). The first —the node-degree (or

preferential attachment) process —makes the probability that a new addition to the network

observes an existing taxpayer, i, a positive function of i’s degree (the number of taxpayers

who already observe i). The second —the node-fitness process —makes the probability that

a new addition to the network observes an existing taxpayer, i, a positive function of i’s

fitness (an exogenous and time-invariant characteristic of node i).

At step s of the generative process consider a taxpayer i with degree dis, and fitness ηi > 0.

The separate node-degree and node-fitness processes are entwined in a single process by

allowing the probability that said taxpayer i is observed by the taxpayer added at step s to

be proportional to the product ηiA (dis), where A (.) is an increasing function. Important

special cases of this approach include that of Barabási and Albert (1999), who assume ηi to

be equal across taxpayers; and that of Bianconi and Barabási (2001), who assume A (d) = d.

Recent research, however, suggests that social networks may be consistent with non-linear

forms for A (.). In particular, the sublinear specification, A (d) = dφ, φ < 1, finds empirical

support (Backstrom et al., 2006; Kunegis et al., 2013; Pham et al., 2016). Pham et al. (2016:

7) estimate φ = 0.43 for the social network constituted by a sample of 46,000 Facebook wall-

posts, and we adopt this estimate (we also investigate the systematic effects of varying this

estimate of φ).

In allowing for a role for node-fitness in social network formation, we are able to account for

the observation that, empirically, celebrity taxpayers are surely not drawn at random from

the distribution of income, but rather belong systematically to the upper tail. TV and sports

stars, whose consumption habits are widely reported, are also some of the richest members of

society. To replicate this feature, we equate node-fitness with income: ηi = Wi. We specify

the distribution function of Wi across taxpayers to satisfy a power law, consistent with a

large body of empirical evidence (e.g., Coelho et al., 2008).

In our implementation we generate networks of N = 200 taxpayers, starting from a seed

network composed of two interlinked taxpayers. Each taxpayer incrementally added to the

network is linked to members of the existing network according to the outcome of five random

draws under the probability distribution ηdφis discussed above. Note, however, that these

draws are with replacement, so a taxpayer may be linked multiple times to another. As
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the model of section 2 allows for only a single, albeit weighted, link between taxpayers, we

use the frequency of links realized by the generative process to construct the comparison

intensity weights. Specifically, let #ij ∈ N denote the number of times taxpayer i is linked
with j by the generative process. If #ij = 0 then taxpayers i and j are not linked. If #ij ≥ 1

then taxpayers i and j are linked, and the intensity of the link is given by

gij =
#ij∑

k∈Ri #ik

.

5.2.2 Model Functions and Parameters

Having now described the social network, we specify the remaining model functions and

parameters. Habit consumption is specified as hit = Ci,t−1, and, to make concrete the vector

of predicted income, Ŵ, we specify the tax system as a linear income tax, θ (Wi) = θWi,

where θ ∈ (0, 1). We may then write evasion as Eit = θ [Wi − dit] and the legal disposable
income level as X (Wi) = [1− θ]W . Next, we show that the vector Ŵ takes the form of a

weighted Bonacich centrality:

Lemma 2 Under the conditions of Proposition 1, and with a linear income tax, the income
of a taxpayer who declares income optimally according to (6) is given by

Ŵ (G) = b(V (G) ,κ,γt (G)),

where

vij =
[1− pif ] [1− pjf ] gij

ξi
;

κii = θςRιs;

γij,t =
{1 + [f − 2] pif}θadit + b [1− pif ]

aξi
+

[1− pif ]R(hit,X−ψdt)

ξi
;

ψii = θ [1− pif ] ; ψij = 0 (j 6= i);

ξi = [1− θ] [1− pif ] + θ {1 + [f − 2] pif} > 0.

We now choose the audit probabilities. Although Ŵ (G) in Lemma 2 controls for the sys-

tematic effects of the pi, nonetheless the quantitative findings are not wholly immune to

the values chosen. The restriction to interior equilibria, however, pins down the implied

pattern of the pi across taxpayers. To see this, suppose a taxpayer will belong to NA (i.e.,
pi = 1) then they will optimally choose the corner solution Ei = 0. Similarly, if a taxpayer
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will not belong to NA (i.e., pi = 0) they will optimally choose the other corner solution,

Ei = θWi. To avoid a corner solution, therefore, no taxpayer must belong to NA for sure.
The only instance in which random selection of the set NA is optimal is when the R̂i are

equal across all taxpayers, such that every taxpayer is predicted to be an equally attractive

audit target. We therefore choose the pi to equalize the R̂i, where we take Ri to be the

total additional revenue accruing from an audit of taxpayer i, allowing for both direct and

indirect effects (Ri = Di + Σi).14 As we find multiple such solutions for the pi, we choose

the one corresponding as closely as possible to an observed level of steady-state evasion of

20 percent, as is broadly consistent with the empirical evidence for developed countries cited

in the Introduction.15

As the memory parameter, ςR, governs —independently of the other parameters —the rate

of convergence of evasion back to its steady-state level, it may be calibrated using a growing

body of empirical evidence (Gemmell and Ratto, 2012; DeBacker et al., 2015, 2017; Advani

et al., 2017; Mazzolini et al., 2017) that own indirect effects persist for approximately four

years after an audit. Figure 1 shows the temporal profile of the deviation in evasion from

its steady-state level following an audit. It may be seen that, when interpreting periods

as years, for ςR = 0.9 the model predicts a speed of convergence that matches closely the

empirical evidence. A level of fine f ∈ [1.5, 2] is broadly consistent with practice in the

UK and US, and we set f = 1.75. As an approximation to income tax schedules in many

developed countries, we set θ = 0.3.

Values for the parameters {a, b, ιs} cannot be chosen with reference to an existing empirical
evidence base. As such, the values we use in the reported results —{a, b, ιs} = {2, 80, 1.5} —
are intended only to be interpreted as illustrative. We have, however, examined the model

over a range of parameter values consistent with the conditions in Proposition 1. Although,

for brevity, we do not report the results of these additional simulations, they suggest that

our qualitative findings are not affected by the precise settings of these parameters.

14This is an objective setting of Ri in the sense that $1 of direct revenue is valued equivalently to $1 of
indirect revenue. We note as an aside, however, that tax authorities often place greater weight on direct
revenue than on indirect revenue, for the former is tangible, whereas the latter is much less tangible: it must
be inferred against a counterfactual that is never actually observed.
15Solutions for the p vector are obtained numerically to an arbitrary degree of precision using the aug-

mented Lagrange multiplier method with a sequential quadratic programming (SQP) interior algorithm (see,
e.g., Bertsekas, 1982).
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Using the parameter values specified above, the empirical observation that tax evasion is

increasing in income permits us to place a lower bound on ιh, which measures the concern

for habit. As may be verified by differentiation in Proposition 1, optimal evasion is linear in

Xi —and thereby inWi —and the gradient of this linear relationship is itself linearly increasing

in ιh. Figure 2 depicts the gradient ∂ESS
i /∂Wi for different values of ιh; ∂ESS

i /∂Wi > 0 for

ιh > 0.9995. Satisfying this lower bound, we choose to align ιh with ιs by setting ιh = 1.5 in

the main results.16

5.2.3 Results

To compute an estimate of ∆R (G), as defined in (8), we simulate the model in the manner

described above. As, however, ∆R (G) is defined for a single G it has the potential to be

misleading when the realized G is unrepresentative of the generative process. Moreover,

computation of ∆R (G) is suffi ciently burdensome to make its calculation for many different

G infeasible. To mitigate this source of variability, therefore, we instead form G as the

average of multiple independent iterations of the generative process.17 We then obtain

∆R (G) = 6.01. (9)

Our result in (9) is that knowledge of the network increases audit revenues by six percent.

Thus, in a way we have made precise, knowledge of the structure of social networks is of

value to tax authorities.

How does the estimate in (9) respond as a function of ιs, the weight attached to social

comparison? Figure 3 depicts estimates for ∆R (G) as ιs is varied on the interval [0, 3]. For

ιs = 0 the evasion decision is based entirely on private information, and the network plays no

role. In this case the tax authority can predict evasion perfectly even when not observing the

network (implying ∆R (G) = 0). As ιs is increased above zero taxpayers exhibit increasing

concern for social comparison, with the implication that network information increases in

value, for it becomes more critical to predicting patterns of evasion across taxpayers.

It is also of interest to understand the systematic effects of network structure. Figure 4

depicts the estimates for∆R (G) as φ is varied on the interval [0, 1]. Note that φ regulates the

16Summarizing, the fixed parameter values used in all figures in this paper are a = 2, b = 80, ιh = ιs = 1.5,
f = 1.75, θ = 0.3, φ = 0.43. Our codes are available upon request.
17That is, each element gij of G is the mean of the realized comparison intensity weights across the

independently generated networks. We do not average over a prescribed number of iterations, but rather
implement a stopping rule that monitors the rate of convergence of the sample mean towards the true mean.

20



importance of node-degree (preferential attachment) in the network formation process: high

values of φ produce networks with a highly concentrated distribution of links, implying the

existence of a small number of extremely visible taxpayers. It is seen that as the concentration

of links is increased the value of network information decreases monotonically. This finding

might appear counterintuitive at first glance, for the level of heterogeneity between the most

and least visible taxpayers in the network grows with φ, seemingly making network effects

more pronounced. The widening gap at the extremes of the distribution of links masks,

however, the reality that the variability across taxpayers in reference consumption actually

diminishes with φ. As φ increases a growing proportion of taxpayers have the same few

celebrity taxpayers in their reference group. As everyone is, by degrees, comparing to the

same set of taxpayers, the amount of variability in the social information obtained by each

taxpayer decreases. This reduction in variance permits a tax authority to target audits

effectively, even when not observing the network, thereby reducing the value of obtaining

network information.

6 Conclusion

Tax evasion is estimated to cost governments of developed countries up to 20 percent of

income tax revenues. We link the tax evasion decision with a large literature on the role

in individual decision-making of self and social comparison. Previous studies have focused

on only one of these forms of comparison, and social comparison has been restricted to

comparisons at the aggregate, rather than local, level. Moreover, the network structures that

have been employed in these models possess few of the topological properties of observed

social networks.

In this paper we have sought to provide an analysis that addresses these issues. Taxpayers

compare their consumption with others in their social network, and also to their own con-

sumption in the recent past. In making social comparisons, each taxpayer makes “local”

comparisons on their part of the social network. Engaging in tax evasion is a tool by which

taxpayers can seek to increase their consumption relative to others, and relative to their own

prior consumption. In this setting, we show that a linear-quadratic specification of utility

yields a unique solution for optimal evasion corresponding to a weighted Bonacich centrality

measure on a social network: by this measure, taxpayers that are more central in the social

network evade more.
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Our model provides a rich framework for understanding how a variety of variables, some

under the control of tax authorities, will influence evasion behavior. Although optimal

evasion depends in quite a complex way on the underlying parameters, we are able to sign

unambiguously its comparative statics for all but one of the exogenous parameters. Allowing

for self comparison makes ours a dynamic model in which audits have long-lasting impacts.

This permits a rich decomposition of the direct and indirect effects of an audit. Although the

precise value of indirect effects is algebraically complex in our model, we show that a relatively

simple Bonacich centrality measure is ordinally equivalent to the vector of individual indirect

effects. We believe the techniques developed in this regard may be used to understand more

generally the predictions of a range of related social network models.

We show that network information allows a tax authority to better predict the likely revenue

benefits from conducting an audit of a particular taxpayer. We obtain numerical estimates

of this effect using a social network that permits, in particular, the existence highly-observed

“celebrity”taxpayers belonging systematically to the upper tail of the income distribution.

Although our precise numerical estimates must be treated with care due to uncertainty over

some of the parameter values of the model, our results point to an important role for network

effects: audit revenues are increased by around six percent when network information is

known, relative to when it is not.

We finish with some possible avenues for future research. First, the comparative statics

exercises we have performed are by no means exhaustive: it would, for instance, also be

of interest to investigate systematically the effects of adding or removing links within the

social network. Second, while we have focused on tax evasion, it seems possible to extend

the model to consider tax avoidance behavior, or indeed criminal activity more generally.

While these extensions must await a dedicated treatment, we hope our contribution at least

clarifies the role of self and social comparison in driving tax evasion behavior on a social

network.
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Appendix
Proof of Proposition 1. Under linear-quadratic utility equation (3) can be solved to give
optimal evasion at an interior solution as

Eit =
1− pif
aζ i

{b− a [Xi −Rit]} , (A.1)

where ζ i > 0 is defined in the Proposition. Marginal utility, b − a [Xi −Rit], is positive by
the assumed restrictions on a. Using (4), optimal evasion in (A.1) is written in full as

Eit =
1− pif
aζ i

{b− a [R (hit,X) + ιs[1− pif ]giEt]} , (A.2)

where necessarily 1− pif > 0 at an interior optimum. Then the set of N equations defined
by (A.2) for taxpayers i ∈ N can be written in matrix form as Et = αt + MβEt where
the elements of {αt,β,M} are as in Proposition 1. It follows that [I−Mβ] Et = αt, so
Et = [I−Mβ]−1αt ≡ b(M,β,αt).
Proof of Lemma 1. Without loss of generality, we may set ςR = 1 so that full convergence
to the new steady state occurs at time t + 1 following a change in z at time t. The full
adjustment, dESS

i /dz, is then given by

dESS
i

dz
=
∂ESS

i

∂z
+
∂ESS

i

∂RSS
i

∂RSS
i

∂hSSi

∂hSSi
∂CSS

i

[
∂CSS

i

∂Xi

∂Xi

∂z
+
∂CSS

i

∂ESS
i

∂ESS
i

∂z

]
, (A.3)

where the first term is the contemporaneous adjustment, and the second term is the delayed
adjustment. Noting that ∂CSS

i /∂Xi = ∂Cn,SS
i /∂Xi = ∂CSS

i /∂ESS
i = ∂Cn,SS

i /∂ESS
i = 1,

and, from (4), that ∂RSS
i /∂hSSi = ιh, (A.3) reduces to

dESS
i

dz
=
∂ESS

i

∂z
+ ιh

∂ESS
i

∂RSS
i

∂hSSi
∂CSS

i

[
∂Xi

∂z
+
∂ESS

i

∂z

]
. (A.4)

From (A.1) we see that ∂ESS
i /∂RSS

i > 0, and, by construction, ∂hSSi /∂CSS
i ≥ 0. Hence,

the term in square brackets in (A.4) is positive. It follows that if
[
∂Xi/∂z + ∂ESS

i /∂z
]
is of

weakly the same sign as ∂ESS
i /∂z then dESS

i /dz takes the sign of ∂Eit/∂z. For this condition
to hold requires ∂Xi/∂z T ∂ESS

i /∂z ⇔ ∂ESS
i /∂z ≷ 0, which is equivalent to the condition

∂ESS
i

∂z

∂Xi

∂z
≥ −

[
∂ESS

i

∂z

]2
. (A.5)

As the right side of (A.5) is negative, a suffi cient condition for (A.5) to hold is that

∂ESS
i

∂z

∂Xi

∂z
≥ 0,

which is the condition given in the Lemma.
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Proof of Proposition 2. We begin by first computing the sign of ∂Eit/∂z, where z is a
placeholder for each variable given in Proposition 2. Observe that Eit and Ejt (j 6= i) are
complementary actions. We have

∂2E (Uit)

∂Eit∂Ejt
= agijιs[1− pif ][1− pjf ] ≥ 0.

With this result we are able to utilize the theory of monotone comparative statics. In partic-
ular, we establish globally the sign of the derivative ∂2E (Uit) / [∂Eit∂z] for each exogenous
variable z. It then follows that if ∂2E (Uit) / [∂Eit∂z] ≥ 0 for all i, then ∂Eit/∂z ≥ 0, and if
∂2E (Uit) / [∂Eit∂z] ≤ 0 for all i, then ∂Eit/∂z ≤ 0. Differentiating in (1) we obtain

∂2E (Uit)

∂Eit∂b
= 1− pif > 0;

∂2E (Uit)

∂Eit∂f
= −pi [b− a {Xi −Rit − 2 [f − 1]Eit}] < 0;

∂2E (Uit)

∂Eit∂pi
= −f [b− a {Xi −Rit − [f − 2]Eit}] < 0;

∂2E (Uit)

∂Eit∂pj
= −aEitgijιsςR[1− pif ] ≤ 0;

∂2E (Uit)

∂Eit∂Xi

= −a[1− pif ] < 0;

∂2E (Uit)

∂Eit∂Xj

= agijιsςR[1− pif ] ≥ 0;

∂2E (Uit)

∂Eit∂ιs
= a[1− pif ]giqt > 0;

∂2E (Uit)

∂Eit∂ιh
= a[1− pif ]hit > 0;

∂2E (Uit)

∂Eit∂hit
= aιhςR[1− pif ] > 0.

The exception is the exogenous variable a, for which we show that ∂2E (Uit) / [∂Eit∂a] is
signed locally to an interior equilibrium. Under a set of regularity conditions —that utility
is C2 and concave, U (.) > 0 for positive values of the argument, and that the problem has a
unique solution that obeys the first order conditions and varies smoothly with the variable
of interest (a here) —Quah (2007, p. 420) shows that signing ∂2E (Uit) / [∂Eit∂a] local to the
(unique) interior maximum is suffi cient to determine the equilibrium sign of ∂Eit/∂a. As
these regularity conditions hold in the current context, we utilize this approach to establish
the equilibrium sign of ∂Eit/∂a. We obtain

∂2E (Uit)

∂Eit∂a

∣∣∣∣
∂EUit/∂Eit=0

= − [1− pif ] b

a
< 0.

We now utilize Lemma 1. The variables z ∈{a, b, f, pi, pj, Xj, ιh, ιs, hit} satisfy ∂Xi/∂z =
0, giving the sign of dESS

i /dz as the sign of ∂2E (Uit) / [∂Eit∂z] above. For Xi we have
∂Xi/∂z > 0 and ∂ESS

i /∂z < 0, hence Lemma 1 does not apply.
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Proof of Proposition 3. Suppose, in a steady state of the model, that taxpayer i
is audited at time t = ta, and otherwise no audits take place. In period ta + 1 his/her
evasion deviates below the steady-state level, reflecting the consumption shock in period ta.
Beyond period ta + 1 the taxpayer’s evasion converges back to its steady-state level at a rate
determined by ςR. These deviations in the evasion behavior of taxpayer i generate a matching
pattern of deviation from steady state, followed by uniform convergence, in the evasion of
(some or all) other taxpayers in the network. The indirect effect Iij is, therefore, given by
Iij =

∑∞
t=ta+1

[ESS
j −Ejt|i], where Ejt|i is j’s evasion at time t following an audit to taxpayer

i. But, given that the speed of convergence of Ejt|i back to steady state is independent of
i and j (it is determined only by ςR), we have that ESS

j − Ej,ta+1|i ≷ ESS
k − Ek,ta+1|i ⇒

ESS
j − Ej,ta+v|i ≷ ESS

k − Ek,ta+v|i for all v > 1. It follows that, for each taxpayer j, the sum
over time of the deviations from j’s steady-state evasion level (induced by an audit of i)
is ordinally equivalent to the initial deviation of j’s evasion from its steady-state level, i.e.,
[ESS

j − Ej,ta+1|i]:
∞∑

t=ta+1

[
ESS − Et|i

]
∼
[
ESS − Eta+1|i

]
.

[ESS − Eta+1|i] can, in turn, be decomposed exactly (by the linearity of evasion in habit
consumption), as

ESS − Eta+1|i = [∆Ci] [∂ESS/∂CSS
i ] = [∆Ci] b(M,β,ρSSi ),

where ∆Ci is an N × N diagonal matrix of the constant Cn,SS
i − Ca,SS

i = [1 + f ]ESS
i . As

Cn,SS
i −Ca,SS

i is proportional to ESS
i it follows that [∆Ci] b(M,β,ρSSi ) ∼ ESS

i b(M,β,ρSSi ),
which proves the Proposition.
Proof of Lemma 2. Substituting X (Wi) = [1− θ]Wi and Eit = θ [Wi − dit] into (A.1)
and rearranging for Wi gives

Wi =
{1 + [f − 2] pif} θadit + b [1− pif ] + a [1− pif ]Rit

aξi
; (A.6)

ξi = [1− θ] [1− pif ] + θ {1 + [f − 2] pif} .

Noting that the second order condition for (A.1) to define a maximum is−θ2a {1 + [f − 2] pif} <
0, it follows that ξi > 0. Using (4), (A.6) is written in full as

Wi =
{1 + [f − 2] pif} θadit + b [1− pif ]

aξi
+
a [1− pif ] {R (hit,X−ψdt) + [1− pif ] [1− pif ] giW}

aξi
.

(A.7)
Then the set of N equations defined by (A.7) for taxpayers i ∈ N can be written in matrix
form as W = γt + VκW where the elements of {γt,κ,V} are as in Proposition 2. Hence
W = [I−Vκ]−1 γt = b(V,κ,γt).
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Figure 1: Temporal profile of the deviation in evasion from steady state following an audit.
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Figure 2: Full effect of a change in income on steady-state evasion.
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Figure 3: Percentage increase in audit revenues when observing the network, plotted against
ιs, the importance of social comparison.

33



✵

✺

✶✵

✵ ✵✳✺ ✶

φ

∆R (G)

Figure 4: Percentage increase in audit revenues when observing the network, plotted against
φ, the importance of preferential attachment.
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