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ABSTRACT

IZA DP No. 10985 SEPTEMBER 2017

Bayesian versus Heuristic-Based Choice 
under Sleep Restriction and Suboptimal 
Times of Day

This paper examines the impact of a commonly experienced adverse cognitive state on 

decision making under uncertainty. Specifically, we administer an at-home sleep restriction 

protocol combined with random assignment to the time-of-day for decision making. Thus, 

we induce sleepiness in our subjects via sleep restriction as well as suboptimal time-of-

day prior to administration of a Bayesian choice task. The specific task used discriminates 

between Bayesian choices that coincide with more simple reinforcement heuristic choices 

(in “Easy” trials) versus those that do not (in “Hard” trials), which is ideal given our 

underlying hypothesis that sleepy subjects are more likely to use simple heuristics. We first 

show that both circadian mismatch and sleep restriction significantly increase subjective 

sleepiness – this documents protocol validity. Our key behavioral results are that sleepy 

subjects are more likely to make a Bayesian inaccurate decision and more likely to make 

decisions consistent with a simple reinforcement heuristic, particularly in more cognitively 

difficult “Hard” trials. Secondary results show that stimulation of subject affect increased 

used of the simple decision heuristic but, when combined with sleep restriction, increased 

affect may increase task motivation and improve choice accuracy. These results offer new 

insights into the likely impact of sleepiness on decision making under uncertainty and 

highlight the potential negative impact on such cognitive states may have on accurate 

formation of probability assessments.
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INTRODUCTION: 

According to recent data, chronic sleep restriction (i.e., ≤ 6 hr/night) is habitual for 
approximately 30% of U.S. adults (Schoenborn and Adams, 2010), and shift work of some sort is 
performed annually by over 20 million U.S. wage and salary workers (McMenamin, 2007).  
Insufficient sleep is also considered a public health problem by the U.S. Centers for Disease 
Control and Prevention, and so an investigation of how commonly experienced levels of sleep 
restriction and adverse circadian timing impacts decisions under uncertainty is timely.  
Specifically, a main objective of ours is to examine the impact of sleepiness on Bayesian versus 
heuristic-based choices using a protocol that has high ecologically validity and yet still 
constitutes a proper experiment (i.e., random assignments and sleep treatment manipulations).   

Previous studies on sleep and Bayesian choice have used either observational (non-manipulated) 
sleep levels, or in-lab total sleep deprivation protocols.  Our experimental protocol has high 
ecological validity in that we focus on levels of mild but chronic sleep restriction and suboptimal 
times-of-day that are highly relevant to real-world decision makers—the levels of sleep 
restriction and circadian suboptimal timing we study have direct relevance to tens of millions of 
adults (in the U.S. alone).  Additionally, because our protocol allows individuals to undergo the 
experimental sleep manipulations in their natural environment with no real restrictions on 
compensatory behaviors, our primary data generation has high external validity.   

Choice under uncertainty is fundamental to many environments and therefore motivates our use 
of a Bayesian choice paradigm.  Given the novelty of our sleep protocol, we chose a vetted 
Bayesian task from the existing literature (Charness and Levin, 2005).  The task discriminates 
between “Easy” trials, where Bayesian choices are empirically indistinguishable from simple 
reinforcement heuristic choices, and “Hard” trials, where the reinforcement heuristic produces 
Bayesian error.  This task is useful for our purposes given our underlying hypothesis (articulated 
later) that sleep restricted or suboptimal time-of-day decisions are more likely to rely on less 
deliberative cognitive processes, such as the use of heuristics.  

 

BACKGROUND: 

Attitudes towards risk are an important component of decision making under risk as well as 
uncertainty.  Regarding risky choice, the literature has documented tendencies to increase risk 
taking when sleep deprived (e.g., Killgore et al, 2012), although others have found results 
consistent with desensitization to risk following sleep deprivation in a more pure risk taking task 
(McKenna et al, 2007).1  These previous studies typically involve extreme levels of laboratory 
sleep deprivation in a hyper-controlled environment that may not reflect a typical sleep 

                                                           
1 We note, however, than many studies in the sleep literature administer tasks that are not well-designed to 
disentangle risky choice versus uncertainty (e.g., ambiguous gambles) choices, or choices over gains versus loss 
domains.  For example, the Iowa Gambling task is well-known in sleep research as a way to evaluate risky choice—
the Killgore et al, 2012, among many others, uses this task in sleep research.  However, the task does not evaluate 
pure risk, but rather ambiguity, and it allows for gains or losses from a given decision, thus confounding choices 
over the gains and loss domains.  The McKenna et al. (2007) study was designed to address these concerns. 
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deprivation experience. Such studies, while valuable and often the necessary first step in 
answering a basic research question, trade high levels of internal control for external validity.  
Alternatively, research using observational sleep levels benefits from the field-relevance of 
voluntary sleep choice, but such research does not offer the advantages of experimental 
manipulation or random assignment of sleep levels (see Dickinson et al, 2015, for a specific 
example of voluntary sleep choice on Bayesian decisions).  Somewhat less common are studies 
looking at the impact of suboptimal circadian timing of a decision and its effects on risky choice. 
Castillo et al. (2017) is a recent study that found increased tendency to choose riskier asset 
bundles at suboptimal times of day that were similar to those we study in the present paper.   

Because our focus is on decision-making under uncertainty, we highlight two particular studies 
most related to this paper.  Dickinson and Drummond (2008) and Dickinson et al (2015) examine 
the impact of sleep restriction on outcomes in a Bayesian task environment.  The task paradigm 
differs from the present paper, but consistent results are reported across the two studies.  One 
study administered a laboratory imposed total sleep deprivation protocol (22-24 cumulative wake 
hours: Dickinson and Drummond, 2008) while the other studied objective measures of voluntary 
sleep choice and focused on those with ≤ 6 hours of sleep per night over the one week prior to 
decision making (Dickinson et al, 2015).  Both papers found that restricted sleep led one to place 
relatively less decision weight on new evidence relative to existing information in the Bayesian 
task used.  These studies are informative for the present paper because they highlight the fact that 
sleepy subjects appear less likely to engage high-level cognitive processes necessary to 
incorporate multiple sources of information into a decision.2  Horne (1993) notes a general 
connection between sleep deprivation and decreased prefrontal activation. Although the recent 
literature is a bit more mixed, results general show harm to decision quality even if this is 
associated with increases in prefrontal activation of certain areas.3  Our hypotheses are therefore 
derived from the existing literature that finds results consistent with reduced use of beneficial 
deliberation when sleep restricted or at a lower point of circadian alertness. 

The present study administers a unique at-home sleep manipulation protocol with random 
assignment of time-of-day for decisions to evaluate decisions in the Bayesian switching task of 
Charness and Levin (2005).  The specifics of the task are discussed in the next section, but the 
important feature is the distinction between “Easy” versus “Hard” trials noted in the Introduction 
above.  In Easy trials, a simple reinforcement heuristic can be employed to make decisions that 
are Bayesian-accurate.  Because of this, a decision maker that uses the simple decision heuristic 
may paradoxically make more accurate decision assessments if deliberative thinking poses any 
risk of overthinking the decision.4  Hard trials separate what a heuristic decision-maker would 
choose relative to a Bayesian decision-maker, thus allowing one to separate and identify 

                                                           
2 Poudel et al (2017) document the neural correlates of well-rested decision makers using the specific Bayesian 
task of these prior studies.  
3 See Dickinson and McElroy (in press) for a concise summary of the recent literature on prefrontal activation in 
high-level decision making following sleep loss. 
4 For example, Achtziger and Alós-Ferrer (2014) develop a 2-stage model of decision making that posits increased 
likelihood of error is one chooses a deliberative cognitive system when a more automatic would be appropriate for 
the choice. 
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individuals based on likely cognitive approach to the decision.  Because of the 2-stage nature of 
each trial in the Bayesian task, a final consideration worth noting is the reward anticipation 
experienced by a subject who is shown a black ball in Stage 1—a black ball is the “payoff ball” 
for the Stage 2 decision that follows.  The positive emotion or reward anticipation noted by 
Charness and Levin (2005) is relevant because sleep deprivation has been shown to enhance 
reward anticipation (see Venkatraman, 2007, 2009, and 2011). These studies offer an example of 
how neural activation changes following sleep deprivation are not beneficial to decision quality.  
In this case, the reason is the introduction of an optimism bias where the individual has 
heightened anticipation of the monetary reward.  In the context of the present study, this implies 
sleep restricted or circadian mismatched subjects may experience an even greater increase in 
positive affect than usual after a Stage 1 black ball draw. 

 

EXPERIMENTAL DESIGN: 

Here we present the essential features of the sleep manipulations, and direct the reader elsewhere 
for a detailed examination that includes analysis of sample selection, attrition, and validity of the 
at-home sleep protocol (Dickinson et al., 2017). Specifically, our unique mixed design combines 
experimentally manipulated sleep levels with random assignment to a more or less preferred 
time-of-day for the decision sessions. The at-home sleep protocol is valid in that we have 
documented significantly increased sleepiness when subjects are either sleep restricted or at a 
sub-optimal time of day compared to when well-rested or at a more preferred time-of-day 
(Dickinson et al., 2017) 

A short online survey was administered every semester for several years, and within that survey 
we included a validated instrument for measuring morningness/eveningness preferences in order 
to identify validated morning-types and evening-types within a regularly maintained database.  
Then, we randomly assigned morning-types and evening-types, ex ante, to a Morning (7:30am-
9:00am) or Evening (10:00pm-11:30pm) experiment group prior to sending an email invitation 
for the main study.  We refer to subjects assigned a more preferred time of day as “circadian 
matched” and those at less preferred times of day as “circadian mismatched.” This circadian 
match/mismatch dimension of the sleep protocol effectively generates random assignment to a 
more or less optimal time-of-day for decision making.   

The recruitment email for the main study invited morning-type and evening-type subjects to 
participate in a 3-week study requiring adherence to a prescribed sleep schedule and 3 in-lab 
sessions.  Each subject was asked to spend 1 week sleeping 5-6 hr/night (sleep-restricted: SR) 
and 1 week sleeping 8-9 hr/night (well-rested: WR).  These treatment weeks constitute weeks 1 
and 3 of the protocol, with the treatment order counterbalanced across groups.  For all subjects, 
week 2 was an ad lib sleep week to washout the effect of week 1 prior to commencing the week 
3 schedule.  Compliance was assessed using validated wrist-worn actigraphy devices common to 
clinical and sleep research.  As such, nightly sleep levels were measured passively but 
objectively using validated instrumentation.  The sleep restriction dimension of the design is 
therefore within-subjects, whereas the circadian mismatch is a between-subjects manipulation.  
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Importantly, the Bayesian task was administered within both decision sessions that occurred at 
the end of weeks 1 and 3.  Thus, each subject made choices in the Bayesian task under both SR 
and WR conditions (at either a constant optimal or suboptimal time of day).   

Subjects were compensated a fixed $80 for compliance with the sleep protocol details, wearing 
the actigraphy device, and providing completed sleep diaries at the end of the 3 weeks.  This 
fixed payment occurred several days after completion of the study to give researchers time to 
download sleep data and verify good-faith effort to comply with the sleep prescription.5  
Compensation for outcomes in the Bayesian decision task was separate from this fixed 
compensation, and it occurred in cash at the end of a decision task session. 

The Bayesian Decision Environment 

We administered a modified version of the Bayesian choice task in Charness and Levin (2005). 
Figure 1 described the task, in which a trial or round of the task involves two stages.  For each 
trial of the task, subjects see the 2x2 stimulus showing varied numbers of black and white balls 
in each cell of a matrix.  Subject only make a decision in Stage 2, and the subject is paid $10 if a 
black ball is drawn in stage 2 of a randomly selected trial from this task ($0 otherwise) and 
therefore has a payoff interest in making a decision to maximize the probability of a black ball 
being drawn in Stage 2.6  In Stage 1, Nature selects the TOP or BOTTOM row, which will be the 
row used for both stages of that trial, with 50% chance for each (described to subjects as flip of a 
fair coin). Subjects are not, however, made aware of the outcome of Nature’s coin flip.  Rather, 
in Stage 1 of the trial subjects are told that one ball will be drawn with replacement from either 
the LEFT or the RIGHT column of the task matrix.  Subjects observe the outcome of that draw 
(e.g., Stage 1 column is RIGHT and the resultant draw shown to the subject was a white ball).  
Thus, Stage 1 provides information regarding the row Nature had drawn for that trial.  More 
specifically, if subjects are told the Stage 1 column is RIGHT, and the ball drawn is black, then 
this eliminates all uncertainty—the subject should then know that the row is UP for this trial.  In 
Stage 2 of the trial, subjects are then asked to choose the column from which a ball will be drawn 
with the payoff implications noted above.   

The example above described an Easy trial, because a ball drawn in stage 1 from RIGHT tells the 
subject the row with certainty.  If a black ball is drawn in Stage 1, then a subject maximizes her 
expected payoff by selecting RIGHT for the Stage 2 draw.  If, however, a white ball is drawn in 
Stage 1 from RIGHT, then the subject maximizes her expected payoff by choosing to have the 
Stage 2 ball drawn from LEFT.  Importantly, in these Easy trials (where Stage 1 draw is from 
                                                           
5 It is worth noting that we used a fairly loose standard of “compliance” for the choice to release full payment of 
the fixed compensation ($80) for study participation.  That standard was different than what we considered 
“compliant” data for purposes of the analysis of the decision data discussed in our Results section.  For data 
analysis, we considered a subject “compliant” if there was an objectively measured difference in nightly sleep 
between the WR and SR weeks of at least 60 minutes per night for that subject (see Dickinson et al, 2017, for 
additional discussion of compliance standard choice). 
6The reader may note that this is a slight modification of the Charness and Levin (2005) environment.  Our 
modifications focus attention on the Stage 2 choice for our purposes, and we modify the number of black and 
white balls in each cell of other task matrix to make the difference in expected payoffs between an accurate versus 
inaccurate (Bayesian) choice a bit larger. 
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LEFT) the payoff maximizing or Bayesian optimal choice, perfectly coincides with the choice a 
subject would make if following a simple “win-stay, lose-switch” reinforcement heuristic. Using 
this heuristic, if a subject sees a black ball drawn in Stage 1 then, because a black ball is what 
would give the subject a positive payoff, the subject will “stay” and choose the same column for 
Stage 2 as was used for Stage 1.  If, however, a white ball is drawn from LEFT in Stage 1, then 
the heuristic would lead a subject to switch and choose RIGHT for the Stage 2 draw.  As 
Charness and Levin (2005) note, one cannot empirically distinguish a Bayesian subject from a 
subject who uses the simpler reinforcement heuristic in Easy trials. 

Hard trials, on the other hand, are those where the Stage 1 draw is from the LEFT column.  Here, 
a Bayesian subject would maximize her expected payoff by switching to RIGHT for Stage 2 if 
the computer draws a black ball from LEFT in Stage 1 (i.e., the black ball reveals it is more 
likely one is in the UP row for that trial).  The reinforcement-heuristic, however, would cause 
one to “stay” and have the Stage 2 draw from the LEFT column even though this does not 
maximize expected payoff.  Likewise, a white ball from LEFT in Stage 1 would cause a 
reinforcement-heuristic subject to switch to RIGHT for Stage 2, even though the Bayesian choice 
is to stay with the LEFT column for Stage 2.  In total, subjects are administered a set of 40 trials: 
20 Easy and 20 Hard trials randomly ordered across the 40 trails. 

 

Hypotheses 

As noted, the Hard trials separate a Bayesian from a reinforcement-heuristic decision making.  
Thus, if sleepiness promotes less deliberative and more automatic or heuristic-based decisions, 
we predict reduced accuracy in Hard trials. In a strict sense, we predict no difference in accuracy 
on Easy trials, since Stage 1 eliminates uncertainty.  However, if one assumes it is possible to 
over-deliberate, then we may hypothesize increased Bayesian accuracy on Easy trials when sleep 
restricted or circadian mismatched—here, the increased use of a simple reinforcement heuristic 
actually works in favor of accuracy for a sleepy subjects since reinforcement choices will be 
Bayesian, and a subjects attempting to deliberate when sleepy may be more prone to decision 
error.  The implicit assumption that over-deliberation is possible, which may be questionable to 
some, is somewhat consistent with Achtziger and Alós-Ferrer (2014), who assume that the 
decision to use a deliberative cognitive process increases the potential for error if an automatic 
process is more appropriate.  Our first hypotheses are therefore with respect to decision accuracy.  

 

Hypothesis 1:  Bayesian accuracy will be lower on Hard trials (i.e., when reinforcement 
choices diverge from Bayesian choices) when sleep restricted or circadian 
mismatched compared to when well-rested or at a preferred time-of-day. 

Hypothesis 2:  Bayesian accuracy will be higher on Easy trials (i.e., when reinforcement 
choices coincide with Bayesian choices) when sleep restricted or circadian 
mismatched compared to when well-rested or at a preferred time-of-day. 
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The task allows for evaluation of emotion or “affect” on decisions, which we seek to exploit in 
our data analysis. Charness and Levin (2005) identify that the Stage 1 draw likely generates 
positive affect if a black ball is drawn.  Their assumption is that this positive affect then leads to 
more emotion-based choices in Stage 2, which favors the reinforcement heuristic.  In our 
simplified version of this Bayesian task we do not compensate subjects if a black ball is drawn in 
Stage 1 by the computer.  Nevertheless, we hypothesized that a black ball in Stage 1 will 
generate a degree of positive affect that favors the reinforcement heuristic.  Alternatively, we 
noted above that the positive affect from a black ball drawn in Stage 1 may enhance reward 
anticipation to a greater degree when sleepy. This would promote an increased propensity to use 
the reinforcement heuristic following a Stage 1 black ball draw for sleep restricted or circadian 
mismatched subjects.  In other words, when a black ball is drawn in Stage 1 optimism may be 
primed more sleepy subjects. This mechanism leads to a hypothesis regarding how our sleep 
manipulations will change behavior differentially following a Stage 1 black ball draw.   

Hypothesis 3:  The reinforcement heuristic will be used more when a black ball is drawn in 
Stage 1 if sleep restricted or circadian mismatched compared to when well-
rested or at a preferred time-of-day. 

 . 

RESULTS: 

Pooled analysis (collapsing across trials) 

We report data on 119 subjects deemed compliant with the 3-week prescription (n=62 circadian 
matched; n=57 circadian mismatched).  Analysis of data pooled across the set of 20 Easy and 20 
Hard trials was first conducted on Bayesian choice by creating a Bayes Score ∈ [0,20] for each 
trail type.  Bayes Scores were significantly higher on Easy trials (16.95 ± 4.55) than on Hard 
trials (13.03 ± 4.67), and the difference is significant during both administrations of the task 
(Signed rank test, p < .01 in each instance).  Random effects regressions (2 observations per 
subject) on Bayes Score are estimated with sleep restriction (SR) and circadian mismatch (MM) 
as indicator variables.  An additional indicator variable for the second decision session is also 
included to account for learning or repeat administration effects for this task.  The results are 
shown in Table 1.   

The estimations indicate that subjects are Bayesian accurate on significantly more trials upon the 
second administration of the task—approximately one to two more trials correct out of the 20 
total trials of Hard and Easy tasks, respectively.  On Easy trials, MM condition leads to increased 
BayesScores, while on Hard trials the SR condition leads to significantly lower Bayes Scores.  
Robustness estimations are included in the Appendix and include alternative measures of scoring 
SR as a continuous variable or using self-reported sleepiness as replacement for the MM and SR 
indicator variables. The results are robust across specifications, with the exception of the 
estimations using sleepiness as a regressor.  Here, whether using sleepiness ratings itself, or 
whether instrumenting sleepiness from sleep specific treatment and demographic variables, the 
additional estimations support Table 1 results only in the Hard trials.  Thus, we consider it more 
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robust that subjects in the SR condition are significantly less Bayesian accurate on Hard trials, 
which support Hypothesis 1.7   

Support for Hypothesis 1 but not Hypothesis 2 is perhaps not surprising given the statistically 
more powerful within-subjects SR condition compared to the between-subjects MM. It is also the 
case that the magnitude of the impact of SR on self-reported sleepiness is significantly higher 
than the magnitude of the MM impact (see Appendix Table A4 first-stage regression results).  
This likely results from the fact that the experimental manipulation of SR involve a full week of 
accumulated sleep restriction and thus is an overall more effective treatment manipulation.  

Pooled trial analysis was also conducted on response times, though in a more exploratory 
fashion.  Some have used response times as a valid indicator of cognitive process (see 
Kahneman, 2011), but we reserve judgment on the predicted effects of an adverse sleep state 
response times.  For example, an implication of the response time theory in Achtziger and Alós-
Ferrer (2014) is that a sleepy subject may nevertheless produce systematically longer response 
times.  This would be the case if sleepy subjects takes more time selecting whether to use an 
automatic or deliberative decision process (as distinguished from the typically longer response 
times that should be observed with deliberative compared to automatic decision processes once 
the process is selected). In other words, though sleepy subjects may be more likely to use a faster 
non-deliberative decision process, the resultant prediction on observable response times is 
unclear because a delay may exist in selecting/engaging the fast decision process when sleepy. 

Response times (in milliseconds) were averaged across the set of 20 Hard and Easy trials for 
each subject and the results are also shown in Table 1.  Here, average response times are longer 
on Hard trials (790.04 ± 306.97ms) compared to Easy trials (733.64 ± 265.25ms).  However, the 
difference is only significant during the first administration of the task (Signed Rank test: p < 
.01) and average response times are statistically no different during the second administration of 
the task at the end of the 3-week experiment protocol.  Table 1 shows that response times on 
both Easy and Hard trials are significantly quicker during the second task administration, and 
adverse sleep states of SR and MM both increase average response time.  Given the known 
impact of sleep restriction on impaired executive function (i.e., generally impaired deliberative 
thought processes), the fact that sleepier subjects display long response times suggest caution in 
any interpretation of longer response times as simple indicators of increased deliberation. It 
seems clear that the interpretation of response time data is a more complex endeavor that would 
likely benefit greatly from complementary data to help accurately identify the decision process 
being used during decision making. 

Reinforcement Heuristic estimations (trial-level analysis) 

                                                           
7As noted in the first-stage regression of the instrumental variables estimation approach in Appendix Table A4, the 
MM condition increases self-reported sleepiness significantly, but significantly less so than the SR condition.  
Additionally, we find in our sample that a subject in the compounded SR*MM condition actually report lower 
sleepiness levels during the decision session than a subject in either SR or MM by itself.  This may result from 
subject engaging in countermeasures when both SR and MM.  Because of this possibility, and the fact that self-
reported sleepiness may not reflect objective sleep need (see Van Dongen et al, 2003), the principal trial-level 
analysis will use objective sleep condition as a regressor rather than self-reported sleepiness. 
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For the trial-level analysis, we focus on the key outcome measure at issue for the test of our 
hypotheses: consistency of choice with the reinforcement heuristic.  We therefore score a 
dichotomous variable equal to one for each trial where a subject’s choice is consistent with the 
reinforcement heuristic (and zero otherwise).8  Independent variables include the SR and MM 
treatments, the 2nd Decision Session indicator, an variable that indicates a Stage 1 black ball 
draw, a trial variable to capture within-session learning, and a gender indicator.  We use random 
effects models to account for multiples observations per subject, and estimations include both a 
base model of reinforcement choice determinants (models (1) and (3)) that estimates only 
learning and main treatment effects, and models with additional covariates (models (2) and (4)).  
The expanded models include a term for gender, interaction terms between the sleep treatments 
(SR and MM) and the Stage 1 Black ball draw, and a Trial count variable. In Table 2 we report 
the marginal effects of each regressor on the probability of making a reinforcement choice. 

Focusing first on Easy trials, we see in Table 2 that subject are more likely to make a 
reinforcement choice with each passing trial, as well as in the second decision session.  Both of 
these are beneficial effects in the Easy trials where reinforcement choices are also Bayesian.  We 
also find in model (1) that a black ball drawn in Stage 1 increases the probability that one makes 
a reinforcement heuristic choice, which is consistent with the hypothesis a Stage 1 black ball 
increases positive affect and promotes more automatic response.  The estimated impacts of the 
sleep treatment variables, SR and MM, are statistically insignificant on Easy trials.  In the 
expanded Easy trials model (2), we also estimate that females are 5% less likely to make a 
(beneficial) reinforcement choice.  Regarding the impact of a Stage 1 black ball draw, we find 
that the increase in reinforcement-consistent choices occur only for subjects either in the SR or 
MM conditions.  This offers support for Hypothesis 3 for Easy trials.  We also find that MM 
subjects are more likely to use the reinforcement heuristic with each passing trial.  In short, to the 
extent that SR or MM impact reinforcement choices, they increase the use of reinforcement, 
which is beneficial on Easy trials.  This result helps explain the mechanism behind the 
Hypothesis 2 support in Table 1 regarding improved Easy trial accuracy for MM subjects.   

The results for Hard trials, on the other hand, show notable differences.  Repeat task or 
“learning” effects (Trial and 2nd Decision Session) are in the direction of significant reductions in 
reinforcement heuristic choices on Hard trials.  Thus, the consistency across across both Easy 
and Hard trial types is that Bayesian accuracy improves with repetition of the task.  Female 
subjects are significantly more likely to make reinforcement choices in Hard trials, which is 
harmful for decision accuracy.  The gender effect we report is therefore consistent across trial 
types and explains higher Bayesian error rates in this task among females.9  Also, the 
reinforcement priming of drawing a black ball in Stage 1 is significant but much larger in 
magnitude in Hard compared to Easy trials.  Specifically, a black ball in Stage 1 increase the 
probability of making a (erroneous) reinforcement heuristic choice by over 20% in Hard trials 
(versus a small magnitude effect that was not robust across models (1) and (2)).  Somewhat 
                                                           
8 Note that such a dichotomous variable is equivalent to an indicator of Bayesian choices in Easy trials but not-
Bayesian choices in Hard trials. 
9 Mann-Whitney tests of Bayes scores show females Bayes scores are significantly lower than male Bayes scores in 
both Easy trials (p < .01) and Hard trials (p = .03). 
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surprisingly, this effect of the Stage 1 black ball is diminished among subjects in the SR 
condition.  So, our results do not support the general Hypothesis 3 claim that a black ball in 
Stage 1 will promote increase use of the reinforcement heuristic for SR or MM subjects.  At least 
for SR subjects, the significant Stage 1 black ball effect promotes increased beneficial decision 
effects relative to being well-rested, perhaps due to increased motivation and focus. 

A final analysis is conducted to explore differences in the types of error subjects make.  More 
specifically, we distinguish between a “Stay Error” and a “Switch Error”.  The variable Stay 
Error is coded as equal to one if a subject chose the same column as the Stage 1 draw, even 
though the Bayesian accurate choice would have to been to switch columns. Switch Error is 
equal to one if a subject switched columns though it would have been Bayesian to stay.  Table 3 
reports random effects probit regressions (marginal effects reported) separately for each error 
type and trial type.  Results in Table 3 show that the improvements in accuracy due to learning 
involve reductions in both error types in Easy trials, although the magnitude of the learning 
effect is larger for reductions in Stay Errors.  In Hard trials, however, learning across trials or 
sessions significantly reduces only Switch Errors.  Again we find the significant impact 
regarding sleep manipulations only in the SR condition, where SR is estimated to increase Stay 
Errors on Easy trials but increase Switching Errors on Hard trials.  The impact of SR on type of 
errors committed for a given trial type is in the same direction of the estimated impact of being 
female on error type committed relative to male subjects.     

 

CONCLUSIONS: 

Our results indicate that commonly experienced adverse sleep states have significant effects on 
decisions under uncertainty.  We formulated three hypotheses regarding the impact of sleep 
restriction and circadian mismatch on outcomes in the Bayesian choice task administered.  Our 
results support Hypothesis 1—sleep restriction significantly reduced Bayesian accuracy on Hard 
trials.  There was weak support for Hypothesis 2, where we estimated a weak but positive effect 
of circadian mismatch on Bayesian accuracy in Easy trials.  The robustness analysis identifies 
the SR effect as stable across numerous specifications, while support for Hypothesis 2 was not 
robust.  This may be due to the statistically and practically more powerful impact of a within-
subjects SR manipulation whereby sleep debt is accumulated across an entire week (as opposed 
to a single night circadian mismatch for the decision session).   

Tests of Hypotheses 1 and 2 are also indirectly embedded in our analysis of the probability of 
making a choice consistent with the reinforcement heuristic.  Table 2 results showed that when 
reward anticipation is primed through the draw of a black (payoff) ball in Stage 1 of the Easy 
trials, then both SR and MM subjects increased their use of the reinforcement heurist. This 
supports Hypothesis 3 for Easy trials and also offers qualified support for Hypothesis 2 (i.e., the 
hypothesis is supported when affect is primed in Stage 1 because increased reinforcement 
heuristic use improves accuracy on Easy trials).  Table 2 analysis also supports Hypothesis 1 for 
Hard trials (SR is shown to increase reinforcement choice in Hard trials where it harms 
accuracy), but does not support Hypothesis 3 regarding Hard trials. In sum, we report a robust 
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result of SR harming Bayesian accuracy on Hard trials due to increased use of the reinforcement 
heuristic.  The mixed results regarding Hypothesis 3 are not supportive of our initial conjecture 
regarding the impact of a Stage 1 Black Ball and sleepiness, but the results may be consistent 
with a different hypothesis not initially considered.  Namely, the Stage 1 black ball draw may 
heighten task motivation by drawing attention to the monetary incentives at stake in the decision 
task.  While our ex ante view was that this would engage detrimental overconfidence or 
optimism regarding the Stage 2 outcomes, the specifics of our task are not particularly conducive 
towards an optimism bias on Stage 2 choice.  Rather, this result may highlight how at least mild 
adverse sleep states may focus one’s effort.  Of course, this is post hoc reasoning, but may offer 
insights to consider.  It has been shown in the sleep literature that incentivized tasks may help 
combat some of the detrimental task performance effects of sleep deprivation (see Alhola and 
Polo-Kantola, 2007, and sources within), and so this result may be worth exploring more 
systematically in future research. 

While we did not have a formal hypothesis for the types of errors subjects would commit under 
adverse sleep conditions, these results may also be of interest for further investigation.  
Specifically, it may be the case that choosing from the same column in Stage 2 as was used for 
Stage 1 is a default or status quo option. This may then imply an interesting interpretation of the 
sleep restriction effects we reported.  Namely, it may be that SR causes more errors of omission 
(Stay Errors) on Easy trials, but more errors of commission (Switch Errors) on Hard trials.  

Our main finding is an important one and adds to existing results in the literature on sleep and 
Bayesian choice.  When the task environment is challenging and clearly separates Bayesian from 
reinforcement decision makers, subjects under conditions of mild but commonly experienced 
sleep restriction are more likely than rested subjects to make inaccurate assessments. Previous 
findings reported a decreased decision weight placed on important new information when sleep 
deprived (Dickinson and Drummond, 2008) or voluntary low sleep levels (Dickinson et al, 
2015), but these earlier studies used a distinct protocol and found no evidence that these 
significant decision model effects impacted Bayesian accuracy. In the present study, we find a 
significant impact on accuracy when sleep restricted. This finding has important implications in 
any environment where individuals must incorporate new evidence into existing information to 
formulate beliefs.  For example, health decisions represent one such environment where existing 
information (base rate risks) may not coincide with new evidence (e.g., a positive test result) and 
may therefore present a difficult Bayesian assessment environment.  While sleepy decision 
makers may yet make accurate assessments if the decision environment happens to be “easy”, 
the accurate incorporation of new information is the preferred approach to make accurate 
assessments and will be necessary for accurate choice in more challenging decision 
environments. 
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UP 
(p=.50) 

RIGHT 

DOWN 
(p=.50) 

A coin flip picks UP or DOWN at the beginning of Stage 
1 of each choice round (50% chance each for UP or 
DOWN).  After the unknown row choice, LEFT or 

RIGHT is chosen by computer to complete Stage 1, with 
a payoff incentive to subject if a black ball is drawn.  For 
Stage 2, the unknown row choice remains fixed, subjects 
know this, but subjects now choose whether or not to pick 

the same column as was picked for them in Stage 1. 

LEFT 
SUBJECT CHOICE FIGURE 1:  The Bayes v. Reinforcement task 

 
 
 

 
 
 
Table 1: Treatment impacts on Response Times and Bayes Scores 
(data pooled across the 20 trials of Easy or Hard choices for a given subject for each Session) 

Coefficient estimates shown (standard errors in parenthesis) 
 Response Time estimations Bayes Scores Estimations 

N=238 
(119 subjects) 

Dep Var 
Average RT (ms) 

Easy Trials 

Dep Var 
Average RT (ms) 

Hard Trials 

Dep Var 
Bayes Score 
Easy Trials 

Dep Var 
Bayes Score 
Hard Trials 

Constant 731.55 (33.04)*** 809.13 (37.52)*** 15.46 (.57)*** 12.66 (.60)*** 
2nd Decision Session -117.65 (.21.87)*** -177.55 (24.99)*** 1.89 (.39)*** 1.02 (.44)** 

SD 44.14 (21.87)** 64.21 (24.99)*** -.15 (.39) -.96 (.44)** 
MM 81.10 (41.53)* 78.47 (47.08)* 1.28 (.72)* .71 (.73) 

Chi-squared 39.63*** 64.59*** 27.72*** 12.58*** 
Note:  Response times (in milliseconds) are averaged over the set of trials (Easy vs Hard trials separated).   Bayes 
scores are the total number of Bayesian correct responses out of 20 for the set of trials (Easy vs Hard trials 
separated).  Two observations on each of the 119 subjects exist (1st and 2nd experiment session) and estimation 
include random effects error structure at the subject level. 
*, **, *** indicate significance at the .10, .05, and .01 level, respectively, for the 2-tailed test. 
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Table 2:  Use of the Reinforcement Heuristic (at individual trial level) 

Marginal effects shown (standard errors in parenthesis) 

 Dependent Variable:  Use of Reinforcement Heuristic (=1) 
 Easy Trials 

(n=4758) 
(1)                              (2) 

Hard Trials 
(n=4758) 

             (3)                                (4) 
Trial .0012 (.0003)*** .0007 (.0004) -.0020(.0006)*** -.0005 (.0010) 

2nd Decision Session .0680 (.0141)*** .0670 (.0140)*** -.0570 (.0139)*** -.0539 (.0138)*** 
Stage 1 Black Ball .0205 (.0071)*** -.0006 (.0103) .2124 (.0140)*** .2541 (.0240)*** 

SD -.0018 (.0062) -.0116 (.0109) .0533 (.0139)*** .1025 (.0250)*** 
MM .0354 (.0272) -.0055 (.0286) -.0395 (.0414) .0208 (.0497) 

female --- -.0512 (.0301)* --- .0825 (.0420)** 
S1BB*SD --- .0237 (.0130)* --- -.0620 (.0278)** 

S1BB*MM --- .0217 (.0130)* --- -.0226 (.0280) 
SD*Trial --- .0000 (.0000) --- -.0000 (.0000) 

MM*Trial --- .0013 (.0006)** --- -.0019 (.0012) 
Chi-squared 155.29*** 165.82*** 266.59*** 277.22*** 

Note:  Results from random effect probit regressions (random effects at subject level).  Standard errors are 
calculated using the Delta-method. 
*, **, *** indicate significance at the .10, .05, and .01 level, respectively, for the 2-tailed test. 
 

 

Table 3:  Use of the Reinforcement Heuristic (at individual trial level) 

Marginal effects shown (standard errors in parenthesis) 

 Dependent Variables:  Stay Error=1 implies if subject stayed but should have 
switched to other column in Stage 2.  Switch Error=1 if subject switched but 

should have chosen the same column in Stage 2. 
 Easy Trials 

(n=4760) 
 

     Stay Error=1       |     Switch Error=1 

Hard Trials 
(n=4760) 

              
    Stay Error=1     |     Switch Error=1 

Trial -.0006 (.0002)*** -.0002 (.0001)** -.0003 (.0005) -.0013 (.0004)*** 
2nd Decision Session -.0285 (.0069)*** -.0150 (.0058)*** -.0103 (.0118) -.0418 (.0089)*** 

female .0299 (.0163)* .0064 (.0080) .0262 (.0309) .0487 (.0206)** 
SD .0080 (.0048)* -.0014 (.0020) .0180 (.0118) .0248 (.0086)*** 

MM -.0089 (.0141) -.0102 (.0087) -.0259 (.0299) .0020 (.0193) 
Chi-squared 57.87*** 70.72*** 5.35 55.35*** 

Note:  Results from random effect probit regressions (random effects at subject level).  Standard errors are 
calculated using the Delta-method. 
*, **, *** indicate significance at the .10, .05, and .01 level, respectively, for the 2-tailed test. 
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APPENDIX:  Robustness analysis of pooled (by trial) outcomes 
 
Tables A1 and A2 shows results from estimations analogous to Table 1 in the main manuscript, 
but with alternative scoring of sleep condition.  Specifically, continuous variables are introduced 
that measures one’s objectively measured nightly sleep level the week prior to decisions, Sleep 
Quantity, or that same objective measure subtracted from one’s perceived nightly sleep need, 
Personal SD.  Either measure is intended to capture degree of sleep restriction intensity.  
However, it should be noted that factors not captured in our data set (other than the sleep 
treatment manipulation) itself may be responsible for the differences in those with difference 
levels of nightly sleep or sleep restriction in either week.  Thus, the dichotomous scoring of SD 
in the main text is the most clean measure of the treatment manipulation for econometric 
estimation. 

 
 
Table A1: Treatment impacts on Response Times and Bayes Scores 
(data pooled across the 20 trials of Easy or Hard choices for a given subject for each Session) 

Coefficient estimates shown (standard errors in parenthesis) 
 Response Time estimations Bayes Scores Estimations 

N=238 
(119 subjects) 

Dep Var 
Average RT (ms) 

Easy Trials 

Dep Var 
Average RT (ms) 

Hard Trials 

Dep Var 
Bayes Score 
Easy Trials 

Dep Var 
Bayes Score 
Hard Trials 

Constant 737.56 (37.11)*** 799.91 (42.23)*** 15.27 (.64)*** 12.86 (.68)*** 
2nd Decision Session -120.42 (22.11)*** -179.59 (25.12)*** 1.92 (.39)*** 1.04 (.44)** 

Personal SD .16 (.18) .38 (.20)* .001 (.003) -.006 (.003 )* 
MM 84.25 (41.77)** 86.11 (47.57)* 1.30 (.72)* .58 (.73) 

Chi-squared 35.62*** 60.98*** 27.60*** 11.05** 
Note:  Personal SD is the difference between the objectively measured average nightly sleep level (in min/night) 
for the week preceding the decision and the perceived sleep need (in min/night) of that subject (elicited during the 
online sleep survey at a separate previous point in time)—that is, apersonalized sleep deprivation measure.  Only 
compliant subjects are included, but variation in Personal SD reflects different degrees of sleep restriction or rest 
in subjects that are handicapped for the subjects subjective sleep need.  Response times (in milliseconds) are 
averaged over the set of trials (Easy vs Hard trials separated).   Bayes scores are the total number of Bayesian 
correct responses out of 20 for the set of trials (Easy vs Hard trials separated).  Two observations on each of the 
119 subjects exist (1st and 2nd experiment session) and estimation include random effects error structure at the 
subject level. 
*, **, *** indicate significance at the .10, .05, and .01 level, respectively, for the 2-tailed test. 
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Table A2: Treatment impacts on Response Times and Bayes Scores 
(data pooled across the 20 trials of Easy or Hard choices for a given subject for each Session) 

Coefficient estimates shown (standard errors in parenthesis) 
 Response Time estimations Bayes Scores Estimations 

N=238 
(119 subjects) 

Dep Var 
Average RT (ms) 

Easy Trials 

Dep Var 
Average RT (ms) 

Hard Trials 

Dep Var 
Bayes Score 
Easy Trials 

Dep Var 
Bayes Score 
Hard Trials 

Constant 898.86 (78.37)*** 1040.59 (89.63)*** 14.70 (1.39)*** 9.60 (1.54)*** 
2nd Decision Session -117.50 (21.85)*** -177.74 (.25.03)*** 1.88 (.39)*** 1.04 (.44)** 

Sleep Quantity -.38 (.19)** -.52 (.22)** .002 (.003) .007 (.004 )* 
MM 82.18 (41.64)** 79.96 (47.23)* 1.28 (.72)* .69 (.73) 

Chi-squared 39.57*** 63.50*** 27.88*** 10.73** 
Note:  Sleep Quantity refers to the objectively measured average nightly sleep level (in min/night) for the week 
preceding the decision.  Only compliant subjects are included, but variation in Sleep Quantity reflects different 
degrees of sleep restriction or rest in subjects.  Response times (in milliseconds) are averaged over the set of trials 
(Easy vs Hard trials separated).   Bayes scores are the total number of Bayesian correct responses out of 20 for the 
set of trials (Easy vs Hard trials separated).  Two observations on each of the 119 subjects exist (1st and 2nd 
experiment session) and estimation include random effects error structure at the subject level. 
*, **, *** indicate significance at the .10, .05, and .01 level, respectively, for the 2-tailed test. 
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Table A3 estimates the direct impact of self-reported sleepiness (Karolinska Sleepiness Scores) 
on average response time and Bayes scores in the set of Hard and Easy trials.  As in the main 
manuscript, these results indicate that sleepiness (which is significantly increased in both the 
SD and MM treatment conditions) leads to longer response times.  These estimates also 
indicate that increase sleepiness lowers the total number of Bayesian choices in both Hard and 
Easy trials.  The main text found this to be true only for Hard trials.  In the Easy trials, the results 
indicate either no impact of sleepiness on Bayes scores, or possibly an improvement in Bayes 
scores, which is consistent with the hypothesis that sleepier subjects are less likely to 
incorrectly use a deliberative thinking process (and therefore increase the chance of a Bayesian 
error) on the Easy trials. 
 
Table A3: Self-Report Sleepiness impacts on Response Times and Bayes Scores 

Coefficients (standard errors in parenthesis) 

 Response Time estimations Bayes Scores Estimations 
N=238 

(119 subjects) 
Dep Var 

Average RT (ms) 
Easy Trials 

Dep Var 
Average RT (ms) 

Hard Trials 

Dep Var 
Bayes Score 
Easy Trials 

Dep Var 
Bayes Score 
Hard Trials 

Constant 723.86 (45.43)*** 823.72 (52.25)*** 16.83 (.79)*** 13.98 (.87)*** 
2nd Decision Session -116.16 (22.16)*** -179.36 (25.67)*** 1.83 (.39)*** .99 (.44)** 

Ksleepy 12.31 (6.73)* 10.16 (7.77) -.15 (.12) -.26 (.13)** 
Chi-squared 34.64*** 54.69*** 26.07*** 10.82*** 

Note:  *, **, *** indicate significance at the .10, .05, and .01 level, respectively, for the 2-tailed test. 
Response times (in milliseconds) are averaged over the set of trials (Easy vs Hard trials separated).   Bayes scores 
are the total number of Bayesian correct responses out of 20 for the set of trials (Easy vs Hard trials separated).  
Two observations on each of the 119 subjects exist (1st and 2nd experiment session) and estimation include random 
effects error structure at the subject level.  Results are similar if including an additional control for the 2nd Decision 
Session.  Coefficient estimates on 2nd Decision Session indicate lower average response times and increased Bayes 
Scores in both Hard and Easy trials for subjects who are being administered the tasks for the second time (the first 
administration would have been at the end of week 1 of the protocol, whereas the 2nd administration is at the end 
of week 3).  Ksleepy still significantly increases average RT on Easy trials and lower Bayes scores in Hard trials.  
While qualitatively similar, the Ksleepy estimates on average RT on Hard trials and Bayes scores on Easy trials lose 
precision and are no longer statistically significant. 
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Table A4:  Instrumental Variables Estimation 

(data pooled across the 20 trials of Easy or Hard choices for a given subject for each Session) 

Predictors of Ksleepy (self-report sleepiness) 
1st Stage regression:   

 

Constant 3.80 (.26)***    
2nd Decision Session -.30 (.20)    

Female .87 (.22)***    
SD 2.62 (.25)***    

MM 1.19 (.35)***    
SD*MM -1.20 (.40)***    

Morning Session -.53 (.25)**    
Morning*MM -.05 (.41)    

F(7,230) 30.23***    
 

2nd Stage Estimations of Response Times and Bayes Scores 
(uses predicted value of Ksleepy  from 1st stage regression) 

 
 Response Time estimations Bayes Scores Estimations 

N=238 
(119 subjects) 

Dep Var 
Average RT (ms) 

Easy Trials 

Dep Var 
Average RT (ms) 

Hard Trials 

Dep Var 
Bayes Score 
Easy Trials 

Dep Var 
Bayes Score 
Hard Trials 

Constant 699.73 (54.21)*** 791.78 (62.04)*** 15.99 (1.17)*** 15.26 (1.29)*** 
2nd Decision Session -114.02 (21.38)*** -176.52 (25.67)*** 1.91 (.38)*** .88 (.46)* 
Ksleepy 16.49 (8.83)* 15.70 (9.84) -.0002 (.18) -.49 (.22)** 
Chi-squared 32.20*** 55.56*** 25.26*** 12.99*** 

*, **, *** indicate significance at the .10, .05, and .01 level, respectively, for the 2-tailed test. 
Robust standard errors are clustered on subject. 
 

 
 


